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Summary 

The shape of a drop of incompressible fluid held together by the action of 
surface tension and made to rotate about an axis is determined, the effect of gravity 
being neglected. Two distinct problems are investigated. In the first an isolated 
drop of liquid in the form of a surface of revolution is considered. At zero angular 
speed the drop is spherical and with increasing angular momentum the oblateness 
increases until a maximum angular speed is reached (where the total mechanical 
potential is a minimum) beyond which a new linear series of equilibrium forms 
emerges. A solution in the form of a toroid is also found. 

In the second problem the drop is rotating together with a denser medium. 
It is shown that the drop tends to become a cylindrical thread with increasing 
angular speed and that there is a critical angular speed at which the angular 
momentum is a maximum and the total energy is a minimum. 

1. INTRODUCTION 

The equilibrium of a revolving isolated finite mass of fluid under the action of 
capillary force was considered by Lord Rayleigh (1914). He found a solution.in which 
the liquid drop is a surface of revolution that meets the axis of the rotation provided 
that the angular speed is sufficiently small. At a certain critical speed this drop 
collapses onto its equator and, for a finite range of speeds, two equilibrium con­
figurations are mathematically possible; for low speeds one meets the axis of the 
rotation and the other has the form of a toroid, but for higher speeds both meet the 
axis of the rotation. Lord Rayleigh used a graphical technique to determine the 
angular speed corresponding to collapse but did not point out the difficulties associated 
with reaching this stage, nor the non-uniqueness of the configurations as a function 
of the angular speed. 

When a drop of liquid rotates rigidly with a denser surrounding medium 
the drop tends to become a cylindrical thread as the angular speed tends to infinity. 
Rosenthal (1962) obtained this result but failed to show that the angular momentum 
of the system has a maximum where the total energy is a minimum. 

It is the purpose of the present paper to compute the potential and kinetic 
energies of the systems since, according to Orr (1906, 1907), Lyttleton (1953), and 
Pozharitiskii (1964), these quantities may be related to a discussion of the stability 
of rigid body rotation. Such a discussion appears in the following paper (present 
issue, pp. 837-44). 
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II. EQUILIBRIUM FORMS OF SURFACES OF REVOLUTION 

It is rather difficult to consider cases in which the liquid does not form a surface 
of revolution because the expression for the total curvature at a point on a general 
surface is very complicated. The possible existence of other configurations is suggested 
from an analogous problem to do with self-gravitating masses. For these it is known 
(Lichtenstein 1933) that for a rotating system the plane through the mass centre 
perpendicular to the axis of the rotation must be a plane of symmetry of an equilibrium 
form and that ellipsoids having three unequal axes are admissible provided that the 
angular momentum has the appropriate value. Of course not all these forms are 
stable to small disturbances. Poincare (1902) was even able to show that "pear­
shaped figures" existed which are not axially symmetrical around the longest axis. 

Fig. I.-Typical rotating liquid 
mass showing cylindrical element 
AB parallel to the axis of 
rotation. 

For a rotating liquid held together by the 
action of the capillary force we do not have such a 
simple theorem relating to symmetrical forms. 
At best we can argue as follows. Suppose that the 
mass of liquid is simply connected and that it is 
divided up into elementary cylindrical columns 
parallel to the axis of the rotation and with infin­
itesimal cross section. Let r be the curve which 
lies at the intersection of the liquid mass with a 
plane through the axis of the rotation and which 
contains the typical cylindrical element AB (see 
Fig. 1). Then it is apparent that the pressure 
differences at the boundary points A and Bare 
equal, because the contributions from the centri­

fugal force are the same. Since we do not take into account variations in the coefficient 
of surface tension over the surface it follows that the total curvature of the surface 
at A and B must be equal. This, by itself, does not imply geometrical symmetry, 
although it does show that the rate of change of total curvature with arc length 
measured along the curve r must be zero at the point on r that is furthermost from 
the axis of the rotation. Whether or not this criterion can be used to limit more 
general configurations to a very much narrower class has still to be examined. 

For a viscous fluid not acted upon by forces other than those in the interface 
it is known that no steady motion can exist unless the fluid rotates as a rigid body. 
So we shall assume that the angular speed w is constant. It is then found convenient 
to make use of the cylindrical polar coordinates (r, 8, z) with the z axis as the axis of 
rotation and to take as the equation of the interface, say, r = j(z). 

To begin we shall suppose that r = j(z) is a single-valued function, for then 
one way of determining the equilibrium configuration at a given angular speed is to 
apply a variational principle to the liquid drop of density PI and its surroundings of 
density pz. Lyttleton (1953) used Lagrange's equations of motion to show that for 
a dynamical system of particles rotating with constant angular velocity the positions 
of relative equilibrium are obtained by finding stationary values of the Lagrangian L 
of the motion. Thus, if L is calculated from the kinetic energy due to the rigid body 
rotation and from the energy associated with the capillary force in the interface then 
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the problem becomes one of finding the functionf = f(z) for whioh 

L=TI+T-U, 

with 

and 

is stationary but subject to the restriction that the volume 

V=21T fldz 

825 

(1) 

(la) 

(2) 

is known beforehand. Here TI is the kinetic energy that the system would have if 
the liquid drop had the same density as its surroundings and is independent of the 
shape of the interface although it depends on the angular speed, T is the kinetic 
energy of the drop minus the kinetic energy that the drop would have if it had the 
same density as its surroundings, and U is the energy stored in the interface. The 
coefficient of surface tension oc is taken to be constant in time and over the whole 
interface, and the prime denotes differentiation with respect to z. Actually the 
quantity U may be interpreted as a potential energy, for work is done by the capillary 
force when the surface of separation undergoes an infinitesimal displacement which 
reduces the total surface area. It is also to be noted that T is negative when PI < p2. 
The reason for choosing this derivation of the equation lies in the connection between 
the energy integral in (la) and the stability criteria to be discussed in the following 
paper. This technique is also discussed by Landau and Lifshitz (1959), who used a 
variational principle to derive similar equilibrium conditions. 

In reality the two media are separated by a narrow transitional layer, but this 
is so thin that it may be neglected as a first approximation. The existence of th~s 
layer and the consequent phenomena associated with it, which are neglected here, 
are discussed at length by Hirschfelder, Curtiss, and Bird (1954). The most important 
omissions concern the variation in the coefficient of surface tension due to surface 
contamination or the existence of a temperature gradient and the neglect of the 
gravitational forces. The latter omission is justified for small drops of fluid that are 
not too small for the transition layer to be dominant provided that the characteristic 
length g/w2 (where g is the acceleration due to gravity) is small and that the capillary 
length, defined by {2oc/( I PI-P21 g)}i, is large compared with the dimensions of the 
drop. 

Now the extremal problem can be solved by using a first integral of the Euler­
Lagrange equation, namely 

F-f' of/of' = constant, F = T-U-21Tf3 f f2 dz, 

because (1) has no term in z. This then leads to the differential equation 

(3) 

(4) 

where 21TfJ is the usual Lagrange multiplier and A is a constant of integration that 
has the value zero if the liquid intersects the axis of the rotation. 
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Actually a solution to this problem exists for which r = f(z) is not single valued. 
In this case we may imagine that the interface is divided into two parts, for example, 
r = /I(z) and r = h(z), with /I(z) ~ h(z) for all z, and where the equal sign applies 
only at the point Zo where dzjd/I = dzjdh = O. We now alter the equations for 
T, U, and V by changing the variable of integration from z to f since we are then 
dealing with single-valued functions and in this way we obtain equation (4) once 
again. The plus and minus signs in equation (4) thus refer respectively to the upper 
curve /I(z) and the lower curve h(z). However, the constant A may now be different 
for each curve, but we shall follow Lord Rayleigh (1914) and examine only those 
configurations for which A is the same. 

-t=f-'-:-:w~Z 

Fig. 2.-Plane section through 
the axis Oz of the liquid drop. 

III. CASE 1: DROPS THAT INTERSECT THE AxIs OF ROTATION 

Firstly we consider the case when the liquid meets the axis of rotation (see 
Fig. 2) so that we can write (4) in the form 

with 

where f1 is a constant to be determined from the condition that the enclosed volume 
is given the value V, and d is the mean radius of the drop defined by the relation 

V = 47Td3j3. (6) 

Clearly the quantity I w* I will serve as a nondimensional angular speed (note that 
w*2 ~ 0 whenever PI < P2). Now the magnitude of the total curvature at a point 
on the surface is given by 

J = !~(f(I+f'2)-I) = ~+ 4w*2f 2 (7) 
fdf ~ ~ 

and hence we can identify f1 as the pressure difference /l.p = PI -P2 on the axis of 
rotation at the poles. 

When the angular speed is zero the drop is under the influence of the capillary 
force alone and so the liquid surface must be spherical; therefore, at small angular 
speeds w*, /l.p > 0 and the drop has width 2a corresponding to the curve on the 
surface for which f' = O. On combining this condition with equation (5) it appears 
that 

/l.p = 2~(I-e)ja, with (8) 

and so /l.p ~ 0 as long as the parameter e ~ 1. However, the curvature K of a 
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plane section through the axis of the drop is given by 

K = _ ~(1+f'2)-1) = _l-e _ 3el 
df a a3 

(9) 

and this remains negative as long as -t < e ~ 1. Here the term (l-e)/a can be 
interpreted as the curvature of the plane section at the poles. 

If we now define a function cf>(f) by the relation 

cf> = cf>(f) = (l-e)fla +e(fla)3 (10) 

then equation (5) takes on the form 

dz/df = -cf>(1-cf>2)-t, (ll) 

since it is sufficient to take dz/df ~ 0 when f is small. If /l.p ~ 0 then, as fla increases 
from zero, cf> increases to its maximum value 1 and, at this point, dfldz = o. For 
further decrease in z we set 

dz/df = +cf>(1-cf>2)-1 (12) 

and this leads to a closed section in whichfhas only the one turning value atfla = 1. 

If e < 0 then the density of the liquid is less than that of its surroundings. 
For e < -t, cf> = 1 has one positive zero less than a which means that equation (ll) 
takes on complex values; for e = -t the left-hand side of (ll) has a first-order pole 
at fla = 1 and, since the volume of the drop is finite, this leads to the conclusion that 
the length of the drop tends to infinity as e -+ -!+O. If we now use equations (5) 
and (8) then this condition shows that 

W*2 = e(ald)-3 -+ - 00 as e~ -t+O. (13) 

This result was obtained by Rosenthal (1962), who showed that the drop is 
always convex and that it becomes threadlike as the angular speed tends to infinity. 
If we look at the angular momentum H of the drop (see Figs. 3 and 4) then it is 
clear that it is not a monotonically increasing function of the angular speed because 
the moment of intertia of an infinitely thin thread must be zero. (A formal proof is 
given in equation (36).) It follows that the angular speed is the fundamental quantity 
to be considered in this case. 

Table 1 makes clear the following points. 

(1) There exists a surface of revolution corresponding to each angular speed. 

(2) The maximum angular momentum occurs when the sum of the kinetic and 
potential energies is least and is given by Hmax = 0·6609'IT{2(p2-Pl)rul7}I, 
where the angular speed w = 1·2851{8oc/(P2-Pl)d3}1 and e = 0·4859. 

(3) For each value of the angular momentum less than the maximum there are 
two possible surfaces of revolution. 

(4) The angular speed increases monotonically and indefinitely as the parameter e 
decreases from 0 to - t so that, for a given angular speed, there exists only one 
surface of revolution. 
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(5) The potential energy of the interface increases from the value 47Tad2, when 
the drop is spherical, to infinity when the drop is an infinitely long thread; 
while the kinetic energy associated with the system increases from zero to 
infinity. 

2'25 

2'00 

1'75 

1'50 

'" 1'25 :g 
.~ 

> 1·00 

0'75 

-0,5 

Fig. 3.-Changes in the physical vari­
ables with the parameter e for a drop 
rotating in a denser medium. Here 

w* = W{(p2-pl)d3/8IY}'. 

(a) 

(b) 
t}--.---

:c-- 3 
Fig. 4.-Shapes of the drop rotating at angular 
speeds of (a) 0, (b) 0,6713, and (e) 1· 2851. The 
last configuration corresponds to the form of 

bifurcation of the linear series. 

For 0 ~ e < 1, 4>(f) has only one real zero and so the drop is again convex; 
however, for e> 1 this function has two possible zeros at fla = {(e-l)fe}i and 
ffa = 1. In the latter case equilibrium forms exist which are partly concave and for 

TABLE 1 

PHYSICAL QUANTITIES CORRESPONDING TO DROP OF LIQUID THAT ROTATES WITH DENSER MEDIUM 

e W{(p2- Pl)d3/8IY}! H 17T{2(p2 - pl)IYd7}, T147TIYd 2 (U +T)/47TIYd2 aid bId 

0 0 0 0 1 1 
-0·1 0·3338 0·3316 -0·0553 0·9466 0·9646 1·0723 
-0·2 0·5038 0·4605 -0,1160 0·8931 0·9237 1·1604 
-0·3 0·6713 0·5528 -0·1856 0·8394 0·8731 1· 2771 
-0·4 0·8813 0·6230 -0-2745 0·7857 0·8016 1·4619 
-0·4859 1·2851 0·6609 -0·4247 0-7478 0·6651 1·9261 
-0·5 00 0 -00 00 0 00 

these shapes the angular speed is such that the pressure difference at the poles is 
negative. It follows that there is then a tendency for the liquid to collapse onto its 
equator_ 
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If we now replace the variables] by]la and z by zla then the volume of the drop 
becomes 

(14) 

and so, on using the expression (11) for dz/d] and integrating in a suitable manner, 
we find that the above equation reduces to the form 

(15) 

where 

(16) 

and b = OB (Fig. 2) is half the distance from pole to pole. If we express the volume 
in terms of the mean radius and use the definition of angular speed w* given in (5) 
then (15) becomes 

2W*2 = 1-(I-e)bla (17) 

and so it is seen that collapse corresponds to 2w*2 = 1, where 

(18) 

This verifies that the action of surface tension is to try to prevent collapse and that 
smaller drops are less prone to this kind of "instability". Again, for e > 1 we have 
dz/d] = 0 only where] = 0 or] = {(e-l)/e}l and so if we allow e to increase from 
one then the point of collapse must occur before e has a value that allows the interface 
to have a second point at which d]ldz = O. That is, there can be no positive root of 
the equation 1> = -1. A simple calculation shows that this critical value must be 
less than four. In fact it is the positive root of the transcendental equation 

f 1>(I-1>2)-td] = 0 (19) 

and has the value 2·3291. Of course, whether collapse can be realized in practice 
has still to be investigated. Lord Rayleigh (1914) did not consider this question at 
all but used a graphical technique to estimate the value of the parameter e at collapse. 
He obtained the value 2·4. 

If we look at equation (17) (also Fig. 5) then it is clear that 2w*2 = 1 for one 
other value of the parameter e, namely, e = 1, which corresponds to the case where 
the pressure reversal just begins. This shows that w* does not increase monotonically 
with the parameter e as one might have suspected from the fact that the ratio bla 
diminishes monotonically with e. This latter statement comes from the inequality 

d(bla) __ (1 ](I-l) d] < 0 
de - Jo (1_1>2)3/2 . 

(20) 

Actually w* has one maximum at w* = Wmax = 0·7540 where e = 1· 6608. Thus 
in order to make the liquid collapse onto its equator it is necessary to increase the 
angular speed of the drop up to its maximum value Wmax and then to decrease it to 
the value 0 . 7071. At this stage the drop ought to have collapsed. Clearly it is necessary 
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that changes in the angular speed be very gradual so that no instabilities are introduced 
from the source of angular momentum. 

Now it might appear as if an increase in the angular speed followed by a decrease, 
as described above, would ultimately lead back to the spherical form, but this is not 
so if we can ensure that the angular momentum of the liquid increases throughout 
the change. Figure 6 shows the variations in the typical drop geometry with angular 
speed. 

2·75 

2'50 

2-25 

2-00 

\-75 

H* 

1\-50 
aid 

> 
\-25 

u*-r* 

bid 

004 0-8 \-2 \-6 2-0 2-329\ 

Fig. 5.-Changes in the physical variables 
with the parameter e for an isolated drop. 

(a) 

(b) 

(c) 

(d) 

Fig. 6.-Shapes of isolated drops rotating at 
angular speeds of (a) 0, (b) O· 7071, (c) O· 7540, 
and (d) O· 7071, which are respectively the 
drop at rest, the last of the convex forms, 
the stage beyond which the drop becomes 

unstable, and the collapse configuration. 

Table 2 makes clear the following points. 

(1) There exists a surface of revolution for each value of the angular momentum 
H ::( H max = 2· 8506 7T{2(PI - p2)ad7}!. 

(2) The maximum angular speed occurs when the difference between the potential 
and kinetic energies is least and is given by Wmax = O' 7 540{8aj (PI - P2)d3}l 
when e = 1·6608. 

(3) For each value of the angular speed less than the maximum but greater than 
O' 257T{(PI-P2)d3ja}i two possible surfaces of revolution exist. 
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(4) The angular momentum increases monotonically to the finite value Hmax 

as e increases from 0 to 2·3291 so that for a given angular momentum less 
than this only one surface of revolution can exist. 

(5) The potential energy of the interface increases from the value 47Tixd2, when the 
drop is spherical, to the finite value 1·7238 X 47T1xd2 when the drop collapses; 
while the kinetic energy associated with the drop increases from 0 to 
1·0079 X 47T()(d2• 

TABLE 2 
PHYSICAL QUANTITIES CORRESPONDING TO ISOLATED DROP 

W{{Pl-p2)d3f8a:}1 H f1T{2{pl - p2)a:d7}! Tf41Ta:d2 {U -T)f41Ta:d2 afd bfd 

0 0 0 1 1 
0·5810 0·8173 0·2374 0·7948 1·1399 0·7404 
0·7071 1·2591 0·4452 0·6677 1·2599 0·5433 
0·7514 1·7130 0·6436 0·6044 1·3850 0·3580 

1·6608 0·7540 1·8780 0·7080 0·5998 1·4295 0·2965 
2·0 0·7424 2·2905 0·8503 0·6246 1·5367 0·1573 
2·3291 0·7071 2·8506 1·0079 O' 7159 1·6701 0 

In order to interpret the occurrence of a maximum angular speed (see Pozhariti­
skii (1964), who related this to the stability of the liquid) we shall begin by relating 
the kinetic and potential energies to the angular speed and the corresponding angular 
momentum. We define the energies as fractions of the potential energy that the 
drop would have at rest, i.e. in units of 47Tad2• With this definition the nondimensional 
kinetic and potential energies become respectively 

(21) 

and 

(22) 

The asterisk indicates that the quantity is expressed as a fraction of 47T()(d2 . 

If we start with the identity 

ef\p = f-f(I-~2)-(I-e)l~ (23) 

and then combine it with equations (14), (16), (21), and (22), we get 

T*-U* = 2(e-l) _(a/d)2 II f(1_~2)t df 
3(a/d) 0 ' 

(24) 

which, on integrating the last term by parts, leads to 

5T*-2U* = 2(e-l)/(a/d). (25) 

This is a rather surprising resul~ in view of the complexity of the defining relations 
and it has been used as a check on the numerical calculations. 
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If we now make T* and U* the subjects of equations (24) and (25) then we find 
that 

T* = 2(e-l) +2.(ajd)2 e f(I-4,2)< df 
9(ajd) 3 Jo (26) 

and 

(27) 

and since 

for all e ~-t (28) 

it follows that U* ~ + 00 and T* ~ - 00 as e ~ -t+O, while they tend to finite 
values as e ~ 2·3291. These results are shown in Tables 1 and 2. 

The next step is to examine the condition under which the angular speed has 
a stationary value with respect to the parameter e. To investigate this situation we 
can differentiate (24) with respect to e and then, after a considerable amount of algebra 
which involves using the identity (25), we find that 

d( U*-T*)jd(w*2) = -T* jw*2 :(; 0. (29) 

The quantity U*-T* is known as the total mechanical potential and this has an 
absolute minimum where the angular speed is greatest. Lyttleton (1953) showed 
that this criterion corresponds to "secular stability". This is discussed in the following 
paper. 

In order to understand the physics of this problem more clearly it is found 
useful to determine the angular momentum of the liquid and how it varies with the 
parameter e. Since the drop rotates rigidly in an equilibrium configuration, we can 
express the angular momentum H in terms of the kinetic energy by means of the 
relation 

H = 87TT*rxd2jw ; (30) 

this can then be expressed in units of 7T{2(PI-P2)ad7}" in which case we may write 

(31) 

On differentiating this equation with respect to e we obtain 

dH* T* dw*2 2dT* 
w*-- = ----+--

de w*2 de de 
(32) 

and then by applying (29) we have 

w* = d(U*+T*)jdH* (33) 
and 

H* = - d(U*-T*)jdw*. (34) 

The configuration of the drop and hence the potential and kinetic energies depend 
only on a single parameter and so, at various stages in the above derivation, we 
regard them as functions of either the parameter e, the angular speed, or the angular 
momentum, as the case may be. Equation (33) shows that the angular momentum 
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increases with the "total energy" U*+T* whilst equation (34) verifies that the 
angular speed is a maximum when the total mechanical potential U*-T* is a 
minimum. 

When the outer medium is the denser it is clear that there is a value of e for 
which the angular momentum is a maximum. This result is indicated by the fact 
that at high angular speeds the interface is approximated by a cylindrical surface 
with small corrections at the ends, and so the angular momentum is given by 

(35) 

where M is the mass of the drop of liquid and is finite. If we now apply condition 
(13) then we see that H ---+ 0 as I w I ---+ 00. The existence of a maximum follows from 
the fact that H is a continuous function of e and that it is zero when w = o. A 
formal proof of this can be obtained by using the fact that e ---+ -! as I w* I ---+ 00 

and then applying this condition in equations (26) and (27). Thus 

H* = 2T* = 4(e-1) + 4(a/d)2 (I f(1-cp2)! df -+ 0 as I w* i -+ 00, (36) 
w* 9w*(a/d) 3w* Jo 

because of the inequality (28). Similarly 

U*/w* ---+ 0 as I w* I ---+ 00 • (37) 

IV. CASE 2: DROPS OF LIQUID IN THE FORM OF AN ANNULUS 

When the liquid does not meet the axis of rotation the constant of integration 
A that appears in equation (4) has to be retained. Hence, if the liquid is to form a 
closed surface it is necessary that l' = 0 for two positive values of f, namely f = ao 
and f = a, with a > ao, say. The differential equation describing the surface then 
becomes 

±f(l+1'2)-! = w*2(J2-a~)(J2-a2)/d3 + (J2-aao)/(a-ao) , (38) 

where the plus and minus signs have the same meaning as in equation (4). If we again 
replace f by f/a and z by z/a and then define a function w(f) by the relation 

w = w(f) = e(J2-1)(J2-ar)+(J2-al)/(1-al) ' 

where al = ao/a, equation (38) takes on the alternative form 

dz/df = -w(J2-w2)-!, 

(39) 

(40) 

so that we can get a closed drop only if the parameters e and al are so related that 

I(e, al) = e w(t _w2 ) -! df = o. Ja, (41) 

Actually these parameters must satisfy the inequality 

(42) 

which is the condition that dz/df remain finite in the open interval al < f < l. 
This result serves as a guide to the numerical computation of the roots of the 
transcendental equation (41). 
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By a simple differentiation we find that 

BI(e,al) _ _ f (l-f )(f -all df < 0 II 2 2 2 2 

. Be - a, (f2 _w2)3/2 "", (43) 

and so it follows that to each value of al > 0 there corresponds one positive value 
for the parameter e. It should be mentioned that if al is set equal to zero then we 
obtain the differential equation that corresponds to case 1; so we see that al is zero 
for all shapes that meet the axis of the rotation and that al is positive for the ring­
shaped surfaces, vanishing only at the point of collapse. Also the volume of the 
closed drop is 

~ 
J5 

10 

8 

.~ 5 

(44) 

o o 
> r-------------~- Fig. 7 (left).-Changes in the 

physical variables with the 
parameter al for a toroidal drop. 

4 

0'1 0'2 0'3 0'4 0·5 0·6 0·7 0'8 o·g 1'0 

al 

Fig. 8 (above).-Typical toroidal 
drop at an angular speed 
w* = 0·4460 where al = t. 

where, for a given e, we choose al to satisfy (41). Then, the kinetic and potential 
energies will be given by 

T* = (ajd)2 [1 ef4w(f2 _w2) -1 df (45) Ja, 
and 

(46) 

and, in a manner analogous to case 1, we can prove that 

5T*-2U* = 2{e(1+~)-(1-al)-1}j(ajd) (47) 

and hence that 

w* = d( U*+T*)jdH* (48) 

and 

H* = - d(U*-T*)jdw*. (49) 
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Now it happens that I(e, al) is a small quantity for a wide range of values of 
e and hence that it is not practical to solve equation (41) directly. Instead it is 
better to use the formulae for the kinetic and potential energies which are analogous 
to those given in equations (26) and (27) and then to find the value of e for which 
these equations are consistent with (45) and (46). In this case the relevant physical 
quantities are given in Table 3 and their variations with al are illustrated in Figure 7. 

Lord Rayleigh (1914) assumed that the toroidal form tends to a circular cross 
section as al ~ 1-0 and used a perturbation method to determine the shape at 
small angular speeds. The validity of this assumption is confirmed by the calculations 
and is illustrated in Figure 8. 

TABLE 3 

PHYSICAL QUANTITIES CORRESPONDING TO TOROIDAL DROP 

al e W{(Pl- p2)d3/8ot}i H /1r{2(Pl- p2)otd7}t T/41rotd2 U/41rotd2 

0·90 2·81 0·20 7·43 0·65 2·62 
0·70 1·10 0·32 2·94 0·47 1·90 
0·50 0·95 0·45 2·06 0·46 1·63 
0·30 0·98 0·57 1·62 0·46 1·39 
0·10 1·11 0·69 1·45 0·46 1·23 
0·05 1·00 0·69 1·29 0·46 1·14 
0·01 0·90 0·70 1·25 0·44 1·11 

So far we have examined the shapes of rigidly rotating isolated drops corres­
ponding to surfaces of revolution; however, it is most likely that other forms exist 
at angular speeds greater than Wmax. Two possibilities present themselves: either 
there are equilibrium forms that are not surfaces of revolution or else the fluid inside 
the drop ceases to rotate as a rigid body, in which case no steady-state configuration 
exists. A complete study of these problems is very difficult and is not attempted here. 
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