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Summary

This paper discusses the effect of a general oblique magnetic field on the
stability of two superposed fluids in relative horizontal motion. The stable and
unstable cases at the interface (z = 0) between two uniform fluids with constant
densities and velocities of streaming are separately discussed. The combined effect
of horizontal and vertical magnetic fields is to increase the wavelength at which
the Kelvin-Helmholtz instability sets in.

I. INTRODUCTION

Michael (1955) has discussed the stability of a combined current and vortex
sheet in a perfectly conducting fluid, while the effect on the Kelvin—Helmholtz
instability of a magnetic field transverse to the direction of streaming has been
considered by Northrop (1956). In the present note we study the effect of both
horizontal and vertical magnetic fields on the Kelvin—Helmholtz instability. A
general equation formulating this effect is first obtained. We then suppose that
the two uniform fluids, of densities p, and p, and velocities of streaming U, and U,,
are separated by a horizontal boundary at z = 0. The stable and unstable cases
are then separately discussed.

I1. Basic EQUATIONS

The fluid is considered to be heterogeneous, inviscid, and of zero resistivity.
We also suppose that the streaming takes place in the z direction with a velocity U.

The equations of motion and continuity are
p-dq/dt = —Vp—pg+ujx H; 1)

where g is the velocity vector, p the pressure, p the magnetic permeability, and g
the acceleration due to gravity; and

V.g—o0, )
as the fluid is considered to be incompressible.

Since the density of a particle moving with the fluid remains constant,

9p/0t +(g.V)p = 0. 3)
Using Maxwell’s equations for a perfect conductor (p=20)
0H[ot = Vx(gxH). (4)
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Let the actual density at any point due to a disturbance be p--3p and let p
denote the corresponding increment in pressure. Also let the components of velocity
in the perturbed state be U+-u, v, and w. Further, if H, and H, denote the vertical
and horizontal magnetic fields respectively and h = (%, ky, k) is the perturbation in
H, we have

oh, oh)\ @
( —|—Uax+ )+ (a—x—@-)——é&.‘ép, (5)
ov ov\ uwH,[(0h, Oh, 0
P(a”&z)—?(ax ay)— P (6)
ow 0w\ pH,(0h, 0h,\ pH,(0h, 0oh,) 0
P(55+Uax)— 4#(3:1: %) am\ay ez) = @ e D
ou  Ov  Ow
6_x+@+_a;=0’ (8)
0 0 _ dp
and
0 0 0 0

Analysing the disturbances into normal modes, we seek solutions whose
dependence on z, y, and t is given by

exp{i(k,.x +k,.y +n.1)}, (11)

where k,, k,, and n are constants; k, is the wave number along the z direction, k,
the wave number along the y direction, and k the resultant wave number. Using the
above perturbation, equations (5)-(10) become

ip(n+k, U)u +p(DU)w +(uH | [4w)(ik, . ]y —iky,.h,) = —ik,.8p, (12)
ip(n4-k, Uy —(uH, [4n)(ik,. b, —ik,.h;) = —ik,.0p, (13)
ip(n+k, U)w +(uH, [47)(Dh, —ik,.h,)+(wH  [47)(Dh, —ik,.h,) = —D.3p—g.3p, (14)

ik,.u +ik,. v +Dw = 0, (15)
i(n+-k,U).8p = —w.Dp, (16)
_ kH,+kH ( iDU
he == \“ nrk0") (17a)
and
g keHithHy gk H R (A7)

n+k, U 2T ntk,U

Multiplying equations (12) and (13) by —ik, and —ik, respectively and adding,
and substituting the values of A, and &,, we get

p(n+k, U)Dw —k,p(DU)w = ik2.8p. (18)
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Multiplying equations (12) and (13) by —ik, and ik, respectively and adding,
we obtain the 2 component of vorticity { as

{ =ik,v—ik,u = {ky(DU)/(n+k,U)}w. (19)
Also ,
ik = —(k, Dw +k, ) = —[k, Dw +{kZDU/(n+k, U)}w] (20a)
and
ik = (k,{ —k, Dw) = [{k, k,(DU)/(n+k, U)}w —k, Dw]. (20D)

Eliminating 3p between equations (14) and (18) and using (9), (19), and (20),
we get finally .

D(p(n+k, U)YDw —pk,(DUYw) = Kp(ntk, U)w -+gkt— 22— 1p

— i
() )R (o)
D ()~ ) kD (<n+])lc[jv>2w)
o 2D (L) i) (o) e

Equation (21) is thus a general equation formulating the effects of both
horizontal and vertical magnetic fields on the Kelvin-Helmholtz instability. The
particular cases of horizontal and vertical fields (cf. Chandrasekhar 1961, pp- 510
and 512) can be derived in the limit of vanishing H, and H , respectively.

III. Two UnrrorM FLuips IN RELATIVE MOTION SEPARATED BY A HORIZONTAL
BouNDARY

The two uniform fluids of densities p, and p, and velocities of streaming U,
and U, are supposed to be separated by a horizontal boundary at z = 0. Then,
in the two regions of constant p and U, equations (19) and (21) give

{=0, (22)

and

k2 I-"H% K pHY kiky pH,H, 2_ 72}, —
(P(”‘Lk' U0 4 nik.U & nihT 2o (D —k )“’ =0. (23)

Since w must be bounded both when z — +-co (in the upper fluid) and z - —co
(in the lower fluid), the solutions of equation (23) can be written as

w, = A(n+k, Up)etkz, 2 <0, (24a)
wy = A(n+k, Ug)e*?, 2>0, (24D)

w((n+k, U) being continuous at the interface.
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Integrating equation (23) across the interface at z = 0, we get

_ opHd Dw o uH% Dw
Aotplnt+k, U)bw} = kg A“(n+lc, U)Jrky et P

H H, D
o g (D) e a) (), @9

where 4,(f) is the change that a quantity f experiences at z = 0, and (w/(n+k, U)),
is the unique value that this quantity has at z = 0.

Substituting the values of w; and w, from equations (24) in (25), we obtain
the characteristic equation

po(n—+k, U,)? +pi(n+k, U1)2—97‘7(P1'_P2)+k2 H%/27T +k2 HH [27)+ k. ko, (pH H éQ()i)

Letting o, = py/(py+ps) and ay = py/(p;+ps), the roots of equation (26) are

H? H?
n = —ky(oty Uy +o Uy) ﬂ:(gk(“l %H‘kz 2‘”(’; ‘ﬂpz) + y2‘"'€:71+P2)
H H, 3
ke ko, e 2o an(U; —U,)2) .
+ (P1+p2) H AN 2) ) (27)

The Kelvin—-Helmholtz instability occurs only if n contains a negative imaginary
part. '

(a) Stable Case

In this case o, > «,. It is observed from equation (27) that the combined effect
of horizontal and vertical magnetic fields is to suppress the Kelvin-Helmholtz
instability if

Koy ay(Uy—Uy)? < F, (28a)
where
H? H? H H
Y YR L R N T P 28b
k(e —aa) I277'(P1+P2)+ y2‘”(P1+P2)+ “ Y (pytpo) (285)
In any direction, instability occurs when
Koyay(Uy—Uy)? > F. (29)

Hence for a given difference in velocity U;—U, and a given direction of the
wave vector k, instability occurs for all wave numbers

b > glon— U, —Uyroosto — ooz — L gineg
gl —oa){ 2% U 2)* cos 277(P1+P2) 27"(P1+P2)Sm
_”—H“—H—isin 0 cos 0)_1 30
7(py+pe) ’ 0

where 8 is the angle between the directions of k and U. The minimum wave number
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ki 1s given by
ki = 29(0y —o)[{vG — oy oy(Uy —Uy)2 —03}24- 405 0} !
X ({or %o(Uy —Uy)*—v3+ 3124405 0F + {0 ap(Uy — U,)2—0§ —v}
[{vh—on ao(Uy —Up)2—vg)2 405 03 1)1, 31)
and occurs when 6 is given by

20 = na+- tan= 20, v/ {v;—vE —oy ay(U, —U,)%}], (32)
where

vi = pH} 2m(p;+-py) and v§ = pH3 27(p,+p,) -

The minimum wave number occurs for odd ». Thus it is clear that for a given U, —U,
instability occurs for the least wave number given by equation (31), when k is
inclined at an angle § given by equation (32) with the direction of U for odd n.
We will have instability for & > k.

() Unstable Case

In this case «, > a,. It is clear from equation (27) that the combined effect of
horizontal and vertical magnetic fields will suppress the Kelvin—-Helmholtz in-
stability if

kioayap(U,—Uy)? < F. (33)
Also, if

ki an(U—Up)? = F,
then

n = —k, (o, Uy +o,Uy), (34)

which leads to stability.

In any direction, instability occurs under the condition (29). Here k,,, occurs
for even n and is given by

by = 29(“2_“1)[{03_“1 (U — Uz)z—v%}z‘f“wi 71123]‘1i
X ({“1 ay(Uy— Uz)z—”i —"’%}24‘4”124 vg+ {vi+”§ —ay ap(U; —U,)?}
X[{v —oy oy(Uy —Uy)2—v3 )2 4402 viH1, (35)

for the same value of 6 given by equation (32). We will have instability for k > k.
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