
THE DETERMINATION OF STACKING FAULT ENERGY BY THE 

TETRAHEDRON METHOD* 

By P. HUMBLEt and C. T. FORwooDt 

At present there are three methods for obtaining values of the stacking fault 
energy y of face-centred cubic (f.c.c.) materials by direct observation of dislocation­
stacking fault configurations in the electron microscope. These are based on meas­
urements of extended three-fold dislocation nodes (e.g. Whelan 1958; Brown and 
ThOlen 1964), faulted dipole configurations (e.g. Haussermann and Wilkens 1966; 
Steeds 1967), and triangular Frank dislocation loops and stacking fault tetrahedra 
(e.g. Silcox and Hirsch 1959; Loretto, Clarebrough, and Segall 1965). The main 
advantages of the third method over the other two are that it is applicable to 
materials of a very wide range of stacking fault energy and involves only simple 
length measurements of defects that are easily recognized. However, it has suffered 
from the disadvantage that the values of y deduced from these measurements relied 
on an incomplete theory. The present authors have reconsidered this problem and, 
subject to the limitations of isotropic linear elasticity, have taken into account the 
major variables that may affect the values of y. It is the purpose of this note to 
present the results of this theory in a form in which values of y may easily be 
obtained from measurements of Frank dislocation loops and stacking fault tetra­
hedra without the resources of a large digital computer. 

Loretto, Clarebrough, and Segall (1965) have shown that triangular Frank 
dislocation loops and stacking fault tetrahedra are formed in f.c.c. metals and alloys 
when these are plastically deformed. Their experiments indicated that a dislocation 
mechanism was responsible for the formation of the triangular Frank loops and that 
all the stacking fault tetrahedra were formed by the dissociation of these in the 
manner originally suggested by Silcox and Hirsch (1959). Thus, by observing the 
size of the largest tetrahedron and the smallest Frank loop in a given plastically 
deformed material, it is possible to determine the critical edge length lc above which 
the transformation of loops to tetrahedra is energetically unfavourable. 

Several authors (Czjzek, Seeger, and Mader 1962; Jossang and Hirth 1966; 
Humble, Segall, and Head 1967) have computed the energy balance between tri­
angular Frank loops and stacking fault tetrahedra as a function of defect size, but 
they have considered only the terms in the dislocation interaction energy and 
stacking fault energy. We have recently reformulated the problem considering the 
total energy of the defect (Humble and Forwood 1968). This formulation includes 
terms such as the kinetic energy of the moving Shockley dislocations T, the energy 
dissipated to the crystal lattice fL, and the work done by the stress W, as well as 
terms in the interaction energy Etd and fault energy E ty • The potential energy of a 
crystal containing the defect Etd + E ty - W was plotted as a function of dissociation, 

* Manuscript received August 21, 1968. 
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and any decrease in the potential energy from its value at zero dissociation (the 
Frank loop) corresponds to an equivalent increase in T+/L. By considering the 
maximum kinetic energy available to the Shockley dislocations for the cases of 
copper, silver, and gold, it was possible to estimate their maximum velocity and 
thus show that very little energy is lost to the crystal lattice. It is possible, there­
fore, to consider the transformation to be conservative. 

For a given critical size of defect 10 , the stacking fault energy was determined 
by finding that value of y at which the total drop in potential energy from the value 
for the undissociated Frank loop, A, to the minimum in the curve, B, was equal to 
the increase from B to a maximum at C, which took place during the later stages 
of dissociation. This procedure for determining stacking fault energy by equating 
the potential energy at A to that at C was shown to be reliable, since, within the 
limitations of the model, these two points are independent of the exact detail 
involved in the dynamics of the transformation. 

On the basis of these considerations, curves of stacking fault energy y/Gb 
(where G is the shear modulus and b the interatomic distance) have been calculated as a 
function of the critical edge length 10/b. Three such curves are shown in Figure 1. 
They were calculated on the basis of a three-parameter model for the way in which 
triangular Frank loops dissociate (Humble, Segall, and Head) and on the assumption 
that all the kinetic energy of the moving dislocation is conserved. 

In calculating the curves in Figure 1, the inner cutoff radius E for a particular 
dislocation has been taken to be directly proportional to the Burgers vector B of 
that dislocation, that is, E = niB I. The three curves in Figure 1 correspond to 
values of n = 0·5, 1, and 2. 

The value of the shear stress used in the calculations was 1· 57 X 1O-5G. This 
corresponds to a tensile stress a of 0·5 X 1O-3G in the metal acting normal to the 
plane of the Frank loop. This is of the order of the flow stress for most metals. To 
indicate the variation in the value of y with variation in stress, the values of y/Gb 
for three values of 10/b at tensile stresses of 0, 0·5, and 1· 0 X 1O-3G for n = 1 are 
given in Table 1. 

100 
400 

1000 

TABLE 1 

V ARlATION OF Y WITH VARIATION IN STRESS FOR n = 1 

(y/Gb) X 103 at: 
u=O u = 0·5xlO-3G u = 1·0 x 10-3G 

4·54 4·63 4·72 
1·58 1·67 1·76 
0·75 0·84 0·93 

The value of Poisson's ratio v used throughout the calculations was 0·4. To 
within 1%, the 10 versus y curves for other values of v may be obtained from the 
curves in Figure 1 by multiplying the values of y/Gb for a particular 10 by the factor 
(1-0·4)/(I-v). 

It may be seen from Table 1 that the values of y/Gb show a different depend­
ence on 10 from that deduced using previous theories. For example, the values 
deduced on the theory of Humble, Segall and Head (1967) using the same model 
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as that used here with the energy criterion of Czjzek, Seeger, and Mader (1962) for 
values oflo equal to 100b, 400b, and 1000b are 4·37 X 10-3,1'33 X 10-3 , andO'60 X 10-3 

respectively. 
The curves given in Figure 1, together with the variations indicated above, 

provide a means of estimating the stacking fault energy of a wide range of f.c.c. 
metals under varying conditions whenever the determination of a critical edge 
length for the transformation of triangular Frank loops to stacking fault tetrahedra 
is possible. 
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CORRIGENDUM 

VOLUME 21, NUMBER 2 

"Inelastic scattering of deuterons from 56Fe." By A. R. Majumder and 

H. M. Sen Gupta. pp.235-7 

Throughout the paper replace 2 ·077 MeV by 2 ·081 MeV for the energy of the 
second level. 


