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Summary 

The Feynman propagator formalism is used to derive a theory for the inelastio 
soattering of neutrons, in whioh the soattering amplitude oontains direct and com­
pound nucleus-like parts. The relation between this and the Feynman-diagram 
method of Shapiro is established. 

Difficulties associated with the evaluation of the scattering amplitudes are 
discussed. In its present form the theory cannot be used to calculate cross sections 
owing to the large number of parameters in the expressions. 

1. INTRODUCTION 

There are two distinct theories to describe the scattering of neutrons by nuclei 
when the energy of the incident neutrons is sufficiently high for individual resonances 
not to be important (En :G 1 MeV). For incident neutrons above approximately 
10 MeV the direct reaction theory (e.g. Tobocman 1961) has been fairly successful. 
For neutron energies between 1 and 10 MeV, the compound nucleus theory of Hauser 
and Feshbach (1952) has been used. 

The basic assumption of the compound nucleus theory is that the compound 
nucleus which is formed during the scattering process may be regarded as a real 
physical state so that the cross section for the reaction is the product of the cross 
sections for the formation and decay of the compound nucleus. 

In this work we present a theory that incorporates features of both the direct 
reaction and the compound nucleus theories. The compound nucleus aspect of this 
theory differs from the conventional compound nucleus theory in that the intermediate 
nucleus no longer has any physical significance; in other words it is a virtual inter­
mediate state and is therefore called a quasi-compound nucleus (QCN). The new 
theory also resembles the Feynman-diagram method of Shapiro (1961) which, however, 
lacks a sound theoretical foundation (Dar and Tobocman 1964). 

The main disadvantage of the present theory is that, except perhaps for scatter­
ing of low energy neutrons by light nuclei, the amplitudes are difficult to evaluate 
owing to the presence of a large number of parameters. To make the theory useful 
it is necessary to find methods, probably based on statistical considerations, to 
reduce the number of parameters. 
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II. PROPAGATORS AND THE S-MATRIX 

Suppose the Hamiltonian of a system is H and the time-dependent wave­
function is lJI(x, t) such that 

(1) 

then the wavefunction at time t = t2 can be related to the wavefunction at time 
t = tt (tl < t2) by the relation 

lJI(X2' t2) = f K+(X2, t2; Xl, tl) lJI(Xl' tl) dxl dtl . (2a) 

The kernel K+(X2, t2; Xl, tl), which is defined by (2a), is known as the propagator of 
the system (Feynman 1948, 1949; Feynman and Hibbs 1965). 

It is convenient to introduce the notation 

xl~1, 

so that (2a) now reads 

lJI(2) = f K+(2; 1) lJI(1) d1. 

The propagator K+ satisfies the equation 

(-i ~2 +H(2))K+(2; 1) = 8(2; 1). 

In particular, when H(2) is the single-particle kinetic energy operator T(2), 
propagator is denoted by K~(2; 1) and has the form 

K~(2; 1) = - 2M: f exp{!(p. r2l - Et2l)} dp dE , 
(.->0) (277) p -2ME-i€ 

(2b) 

(3) 

the 

(4a) 

where M is the mass of the particle, r2l = r2- rl, and t2l = t2-tl. It is obvious 
from (4a) that K~(2; 1) = 0 when t2 < tt. We may also define a propagator K_(2; 1) 
which is nonzero for t2 < h; then 

K':(2; 1) = 2M~ f exp~(p.r2l-Et2l)} dpdE. 
(277) P -2ME+i€ 

(4b) 

We now omit the plus or minus suffix from the kernel and assume it to be plus 
when t2 > tl and minus when t2 < tt. 

When a particle has internal structure, i.e. when its Hamiltonian is of the 
form 

where HI is the Hamiltonian for the internal motion of the particle, the propagator 
becomes 

(5) 

where KO(2; 1) is the free-particle propagator (4) for the motion of the centre of mass 
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of the particle, and cf>v are the eigenfunctions of HI 

HIcf>v = Ev4>v. 

If we separate the Hamiltonian of a system into two parts 

H=Ho+V, 
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(6) 

where V is usually some interaction between the various members of the system, 
the differential equation (3) may be expressed as the integral equation 

K(2; 1) = KO(2; 1) -i f KO(2; 3) V(3)K(3; 1) d3, 

or, equivalently, 

K(2; 1) = KO(2; 1) -i f K(2; 3) V(3)KO(3; 1) d3, 

where KO satisfies 

(780) 

(7b) 

(8) 

Assuming that as t --0>- ± 00 the particles of the system are sufficiently far removed 
from each other then, asymptotically, 

H--o>-Ho. 

If in the remote past, t = tt, the system was in an eigenstate Xi of Ho then the 
amplitude for finding the system in an eigenstate Xl in the distant future, t = t2, is 

(9) 

The matrix S, whose elements are Sn, is just the S-matrix (Eckstein 1956; Brenig 
and Haag 1959; Newton 1966). 

The transition matrix T, defined by the relation 

Sn = oU+(21T)4iTfi , 

is related to the scattering amplitude Mu by 

Tn = Mno(Ki-Kr)8(Ei-Er), 

(10) 

(11) 

where KI, EI, Kr, and Er are the total momenta and energies of the system in the 
incident and exit channels respectively. 

When the scattering process under consideration is of the type 

A+x--o>-A'+x', 

the differential cross section in the centre-of-mass frame is 

::;; = (2J A+l)-1(2Jx+l)-lMAXM2A'X' ~x' I Mfi 12 , 

(21T) x 
(12) 

where it is assumed that the incident particles are not polarized, and 
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III. INELASTIC SCATTERING 

Consider the inelastic scattering process 

A+n -+A'+n', (13) 

where A is a nucleus consisting of several nucleons and n is a neutron. The Hamil­
tonian of this system can be written as 

(14) 

where T A and Tn are the kinetic energy operators for A and n, H A is the Hamiltonian 
for the motion of the nucleons within A, and V describes the interaction between 
A andn. 

Combining equations (7a) and (7b) the propagator for this system can be 
written in the form 

K(2; 1) = KO(2; 1) -i f KO(2;3) V(3)KO(2; 1) d3 

- f KO(2;3) V(3)K(3;4) V(4)KO(4; 1) d(3,4). (15) 

Initially A is assumed to be in an eigenstate 4>1 (usually the ground state) of H A, 

and after the reaction in some eigenstate 4>r, such that in the construction of the 
S-matrix, the functions Xi and xr are given as 

Substituting (15) and (16) in (9) we see that the first term on the right of (15) 
yields On, and thus from (lO) the transition matrix is 

1 f*- ° ° ---Tn = -4 Xl (2) K (2; 3) V(3) K (3; 1) Xi(l) d(l, 2, 3) 
(27T) 

- ~ fXf(2) KO(2; 3) V(3) K(3; 4) V(4) KO(4; 1) xi(i) d(l, 2, 3, 4). 
(27T) 

From the definition of the propagators KO it follows that 

* f * - -Xf (3) = Xr (2) KO(2; 3) d2, 

and therefore the transition matrix can be written in the form 

(17) 

Tn = -(27T)-4(f x;(3) V(3)xi(3) d3 -i f x;(3) V(3)K(3;4) V(4)xI(4) d(3,4)) . (18) 

The first term on the right of (18) is just the first Born approximation and can for 
example be calculated using a single-particle excitation model. It represents the 
direct reaction contribution to the scattering amplitude. The second term, which is 
of more importance at low neutron energies, contains compound nucleus-like 
contributions. 
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IV. QUASI-COMPOUND NUCLEUS TERM 

The second term on the right of (18) can be evaluated using Xi and Xf as given 
by (16) and using the form (5) for the propagator K(3; 4). 

2MB I * [. A nAn A ] Tn = --8 4>dxs)exp -1{Kf.rS +kf.rs -(Er +Ef -tfff )ts} 
(217) 

* B B An "'" 'Pv(XS) 'PV(X6)exp[i{PB.r56 -(EB-tffv )tS6}] 
XV(xS,r5 )~ 2 

v PB -2MBEB -i€ 

X V(xa,rtn) exp[i{Ki. rt +ki.r: -(Et+Ef-tfft)ta}] 

X 4>i(Xa) d(5, 6) dPBdEB, (19) 

where -tfft (tfft > 0) denotes the binding energy of A. 
The functions 'Pv, which are eigenfunctions of the total Hamiltonian (14), can 

be expanded in terms of the eigenfunctions 4>8 of HAas 

'Pv(X) = ~ tfrvs(rAn) 4>s(x) , (20) 
s 

where tfrV8 satisfies the equation 

(21) 

with 

and V st( r) is defined as 

Vat( r) = I 4>: (x) V(x, r) 4>t(x) dx . (22) 

Ifwe change the variables of integration to r = rAn and R = rB, then the integ­
rations over ts, ta, E B, Rs, R6, and P B can be seen to yield 8-functions expressing 
conservation of energy and momentum. Therefore (19) becomes 

where 

Tn = 2M B ~ (I ~ tfrvt(r) Vft(r) exp(iq2. r) dr) 

X{(Ki+kl -2MBEB-i€}-1(I ~ tfr:s(r) V8i(r)exp(-iql.r) dr) 

X 8(Ein-Eout) 8(Kin-Kout}, 

The potentials Vft and Vai can be eliminated by using (22) and the relation 

I V2tfr( r) exp(ip. r) dr = _p2 I tfr( r) exp(ip. r) dr. 

(23) 

(25) 
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Thus the scattering amplitude is 

Mu = - ~ (ftPvr(r)eXP(iQ2.r) dr) (!M;;1q~+(c:-ct») 
v(bound) 

x (ftP:i(r)eXP(-iQl.r)dr) +2MB ~ ( ... ). (26) 
v (unbound) 

The summation over v(bound) is to be taken only over those terms containing 
tPVf and tPvi for which the eigenfunctions lJIv correspond to bound states. The summa­
tion over v(unbound) contains all the terms that correspond to unbound states of 
B. The reason for this separation is that the relation (25) is valid only if tP(r) -;.. 0 as 
r -;.. 00; it can therefore not be applied to unbound states. 

The contributions to the scattering due to terms in (23) that correspond to 
unbound lJI's contain the higher order scattering terms of the Born expansion. 
They are probably important if one wished to describe resonance phenomena. 
However, as the evaluation of these terms presents even greater difficulties than the 
evaluation of the bound state terms, we shall assume that they can be neglected, 
even though this assumption is very difficult to justify. 

It may be worth noting that (26) can also be obtained using the time-independent 
Green's function or the Green's operator formalism (see e.g. Wu and Ohmura 1962). 

V. INCLUSION OF INTRINSIC SPIN 

So far we have completely ignored the intrinsic spins of the particles involved 
in the reaction. The introduction of spin is in this case fairly straightforward. Suppose 
the spins of A before and after the reaction are J A and J A with corresponding z 
components of M A and M A. The scattering amplitude may now be evaluated as 
before. However, in this case the wavefunctions CPn(x) (see equations (16», which 
previously were the wavefunctions for the internal motion of A, are now assumed 
to include also the spin wavefunctions of both A and n. 

The expression of the wavefunction lJIv(X) in terms of CPn (equation (20» is 
then 

lJIv(X) = ~ <J A,MA, t,/Ln I J,MA+/Ln><J,MA+/Ln,1, m 1 J B,MA+/Ln+m ) 
s,l,m,J 

(27) 

where J is the channel spin and J B is the spin of the intermediate particle B. The 
summation over 8 does of course imply summation over J A, M A, and /Ln, since CPs(x) 
contains these spin wavefunctions. The equation satisfied by tP~r:J is found to be 

= ~ <JA,MA, t,/L~ I J',MA+/L~><J',MA+/L~,l,m 1 JB,MA+/L~+m) 
ImJ't 

(28) 
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Writing 

.I.lmJ G1J 
'j-'V8 (r) = V8 (r) Y1m(r), 

and using the expansion 

00 L * 
exp(iq. r) = 4rr L L i L jL(qr) Y Lm(r) Y Lm( q), 

L~O m~-L 

the scattering amplitude becomes 

Mu = (47T)3/2 L <JA,MA,!,fLnIJ,MA+fLn)<J,MA+fLn,h,OIJB,MA+fLn) 
v 

J J' 
ll',Z2 

X <J',MA+fL~,l2,m I J B,MA+fLn) 

X <JA, MA, t, fL~ I J', MA+fL~)ill+12(2h +l)t 

X (tM~~q~ +(C: -c:»)(f G~1J(r)jll(ql r) r2 dr) 

X (f G~2t(r) jI2(q2r)r2 dr) YI2m(Q). 

141 

(29) 

(30) 

(31) 

We have taken the z axis along the direction of the incoming beam so that Q is the 
momentum transfer vector, 

Q = ki-kr, 

and, if we assume that the potential V(x, r) is spherically symmetric, 

Then 

= L <JA,MA'!'fL~ I J',MA+fL~)<J',MA+fL~,l,ml JB,MB) 
tJ' 

ZJ' 
X Gvt (r) V8t(r) . 

VI. CONNECTION WITH FEYNMAN-DIAGRAM METHOD 

In the centre-of-mass frame, 

and 

Ei = tM~~qr 

is the total kinetic energy of the particles in the incident channel and 

Er = !M~lq; 

is the kinetic energy in the exit channel. 

(32) 
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The amplitude Mu has a series of poles in the complex Ei plane lying on the 
negative part of the real Ei axis. To see this we note that if in (28) the potentials 
Vst approach zero faster than r-1 as r --+ 00, then asymptotically 

(33) 

where hl(Z) is the spherical Hankel function of the first kind, Nt~ is a complex con­
stant closely related to the reduced width (Dullemond and Schnitzer 1963), and 

KVS = 2MnA(tB':-tB';4). 

The integrals in (31) therefore give rise to a factor (q~+K~i)-l(~+K~f)-l, but 

and 

Also, from conservation of energy it follows that 

Ei+tB':-tB't = Er+tB':-tB't. 

Thus the amplitude has poles at 

A 

B 

n 

2 

rI 

Fig. I.-A pole diagram corre­
sponding to a term in the quasi. 
compound nucleus part of the 
scattering amplitude. 

(34) 

(35) 

In fact (31) is identical with the amplitude corresponding to the sum of pole 
graphs (Fig. 1) of the dispersion theory of nuclear reactions (Shapiro 1961), this 
process being known as the quasi-compound nucleus process (Schnitzer 1965). 

The summation extends over all internal states of B. In the dispersion theory 
of nuclear reactions the amplitude corresponding to a single pole graph is 

Mu = r vr(q2) r:i(ql)f{!M~~ q~ +(tB'~-tB't)}, (36) 

where rvi and rvr are the vertex parts corresponding to the vertices 1 and 2 
respectively, 

rvm(q) = {!M~~ q2 +(tB':-tB';i)} f Gtm(r) j!(qr) r2 dr, (37) 

and the denominator is the propagator for the motion of B from 1 to 2. 
We have, for the sake of simplicity, omitted the angular momentum and spin 

quantum numbers from (36) and (37). When these are included (see e.g. Shapiro 
and Timashev 1965) it is easily verified that, after the summations over all internal 
states of B have been performed, the amplitude given by (36) is identical to (31). 

It is important to note that we have derived (31) directly from SchrOdinger's 
equation, whereas the Feynman-diagram method of dispersion theory lacks a sound 
theoretical basis in that it cannot be related to the many-body SchrOdinger equation. 
It is instead based on a number of assumptions that are difficult to justify (Dar and 
Tobocman 1964). 
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VII. EVALUATION OF AMPLITUDE 

The main disadvantage of the theory is that the amplitude (31) is very difficult 
to evaluate numerically. Difficulties arise in the determination of the functions 
GVi and Gvf which are solutions of the set of coupled differential equations (32). 
It is possible to replace (32) by a set of uncoupled single-particle equations by intro­
ducing suitably parameterized "optical" potentials V;j(r) such that Gt~ is a solution 
of 

{_1_!~(r2~)_l(l+1) _ V~J(r) -(@"~-@"ih}Gt~(r) = O. (38) 
2MnA r dr dr r2 

The functions Gt~ are then single-particle wavefunctions. They are not normalized 
but are subject to the condition 

J 'P:'PwdX = Svw. 

Gt~ may also contain a phase factor that can only be determined by solving the 
original differential equations (32). 

For scattering by heavy target nuclei certain assumptions about the statistical 
nature of the nuclei involved can be made in order to determine the functions Gti 
and thus make it possible to use (31) for the calculation of scattering cross sections. 
These assumptions and various other approximations are discussed in the following 
paper (present issue, pp. 145-53). 
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