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Summary 

The cross section for inelastic scattering of neutrons by medium and heavy 
target nuclei is derived using the quasi-compound nucleus theory. Calculations are 
carried out for 56Fe and 60NL The results of these calculations are compared with 
experiment. Agreement between theory and experiment is quite good for scattering 
to the continuum of high levels and to discrete levels with small spins. On the 
other hand the theory underestimates the scattering to levels with large spin values. 

I. INTRODUCTION 

In Part I (present issue, pp. 135-43) a formalism, the so-called quasi-compound 

nucleus (QCN) theory, was developed to describe inelastic scattering of neutrons. 
It was found that, with the expression obtained for the scattering amplitude, cross 
sections were rather difficult to evaluate. 

In the present work certain assumptions concerning the nature of the nucleus 
make it possible to write the scattering cross sections in a form more amenable to 
numerical evaluation. These cross sections are calculated for 56Fe and 60Ni targets 
and are compared with the experimentally observed values. 

II. SCATTERING CRoss SECTION 

In the centre-of-mass frame the QCN contribution to the inelastic scattering 
amplitude is (see Part I) 

where 

Mu = (4Tr)3/2 ~ X(JA,Jl,h,JB,l:!,J2,JAIMA'fLn,MA'fL~)i"-I' 
v 

J"J. 
1,,1. 

x (:!: Eni +(8: -8t)) (f G~\J'*(r) jl,(k1r)i dr) 

X (f G~'/'(r) j'2(kfr) r2 dr) Yl.m (0), 

X(.T A, Jl,h, J B,l2, J2, J A I MA'fLn,MA'fL~) 

= (2h+l)i<J A,MA,I,fLn I Jl,MA+fLn><J1,MA+fLn,h,O I JB,MA+fLn> 

x<J2,MA+fL~,l2,m I JB,MA+fLn><JA,MA,I'fL~ I J2,MA+fL~>' 

* Part I, Awt. J. PhY8_, 1969, 22, 135-43. 
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kl and kr are the momenta, in the centre-of-mass frame, of the incident and outgoing 
neutrons, 

Q = kf-ki, and 

The functions Gt~, which are solutions of a set of coupled differential equations, 
can be replaced by single-particle wavefunctions 

(3) 

The radical wavefunctions Rt~ are real and are normalized to unity, and the quantities 
0t~ are complex factors known as reduced width amplitudes. 

The scattering cross section, integrated over all angles, is then (see e.g. Tobocman 
1961) 

(4) 

where, owing to orthogonality of the spherical harmonics and to the presence of 
the factor il,-ll in the amplitude, 

II Mn 12 dQQ = (477ll:: X(J A, J1, h, J B, l2, J2, J A 1 M A, /Ln, M A, /L~) 
X X(J A, Ji,h, J B,l2, J2, JA 1 MA,/Ln,MA,/L~) 

*' '* ' , 
OllJl OllJI Ol2J2 Ol2J2 Fl,J'(E) Fl,J'(E ) Fl2J2(E ) Fl2J2(E ) X vi wi vf wf vi i wi i vf r wf f· 

(5) 

The summation is to be taken over the set of indices (h, l2, V,Jl,J2, w,J~,J;), and 

Ft~(E) = I R~~(r)jl(r(2MnE)i)idr. (6) 

We shall assume that, owing to randomness of the phases of O~ in the summations 
over v, w, J 1, J2, J~, and J;, the total contribution due to the terms with (V,J1,J2) =1= 

(w,J~,J;) can be neglected. The cross section (4) can be written as 

M~n k f (A_)3 
11ft = - =r 

2(2J A + 1 )(2TT1i,2)2 ki 

X l:: l:: 1 X (J A,J 1, h, l2, J 2, JA 1 M A, /Ln, M A, /L~) 12 
I I v,J1,J2 ,Zl,l2 

M A,.un,M A,.un 

X ~(Jl,J2, h, l2, J B; E i , E r, If:) , (7) 

where 

~(J1, J2, l1, l2, J B; Ei, Er, If:) = IO~\Jl 1210~1/212 

X {(:~: Ei + (If: -1ft) )F~\Jl(Ei)F~1J2(Ef)}2 (8) 
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When the number of levels per unit excitation energy is very large in the intermediate 
nucleus B, as is usually the case in medium and heavy nuclei, the sum over v in 
(7) may be replaced by an integral after inserting a suitable level density p on the 
right of (7). Thus, 

~B 

X J~; ff'(Jl, J2,h,l2, J B;Ei,Er, tff:) p(J B, tff:) dtff:. (9) 

tfft is the ground state binding energy of B. The lower limit of the integration is 
determined from the condition that all single-particle wavefunctions Rt~ that occur 
in (9) must represent bound states. This also ensures that the singularities of the 
amplitude are confined to the negative part of the real Ei axis, i.e. the unphysical 
region. 

For regions of excitation energy of the nucleus A, where the level density is 
large, we can write the cross section for scattering of neutrons with incident energy 
Ei to outgoing energies lying between Ef and Er+dEf as 

u(EI, Ef) dEf = ~ un p( J A, tfft) dEl . 

J~ 

The level density formula used here is one given by Gilbert and Cameron 
In their notation 

(E, J) = 1Tt exp{2(aU)'}(2J +l)exp{-(J +W/2u2}. 
p 12 a1/4 U5/4 2(21T) t u3 

(10) 

(1965). 

(ll) 

In our work it is advantageous to express p as a function of binding energy tff through 
the relation 

E = tffo-tff, 

where tffo is the ground state binding energy. 

III. REDUCED WIDTHS 

The eigenfunctions Pv(X) of the total Hamiltonian of the system (A+n), which 
correspond to bound states B, can be expanded in terms of the eigenfunctions cps 
of the Hamiltonian HA for the internal motion of A: 

(12) 
and 

(13) 
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The quantum number 8 is understood to include the spin quantum numbers J A, M A, 

andp.n. 
The reduced width amplitudes 8~~ were introduced by replacing !f~r:J by the 

normalized single-particle wa vefunctions 

!f~r:J(r) = 8t~ R~~(r) Y1m(r). (14) 

The magnitude of 8~~ indicates the extent to which the wavefunction IJfIl is represented 
by the single-particle wavefunction Rt~ Y1m. 

When dealing with nuclei containing large numbers of nucleons, we assume 
that all single-particle states are equally represented in the compound nucleus B. 
We may then replace the quantities 8~~ in (9) by an average reduced width 8v for 
each level v of the nucleus B. 

From the condition 

* IJfv (X) IJfv(X) dX = 1, (15) 
we find 

~ J 2 
~ (2JB+l)18vs l = 1. (16) 

s'!J 

The summation over 8' is just the sum over 8 without the summations over 
the magnetic quantum numbers MA and p.n. The average reduced width 18v 12 is 
defined as 

(17) 

where N v is the total number of single-particle states with quantum numbers J A, 

J, and l in the expansion of IJfv. The number of states of the core nucleus A of given 
spin J A which can exist in B when B is in the state IJfv of energy 0-: is 

.g>A 

N(v, J A) = 2 L i p(J A, o-A) dO-A. (18) 

Using an approximate level density formula (Gilbert and Cameron 1965) 

p(J, 0-) = K(2J+l)U-2exp{2(aU)i} , (19) 
we find 

(20) 

where 0' is some constant factor that is independent of v and J A. The quantity N v 

can now be expressed as 

N v = 0' ~ (2J A+l){Nl(J A) +N2(J A)}, (21) 
JA 

where Nl(JA) and N2(JA) are the numbers of states of given J A with J =JA+! 
and J = J A-t respectively, i.e. 

2(JA+l), if J B > JA+t, 
N 1(JA) = 

if JB~JA+t, 2JB+l, 
(22a) 

2JA• if JB > J A-!, 
N2(JA) = 

if JFI ~JA-I. 2JB+l, 
(22b) 
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Using these, (21) becomes 

with 

and 

N v = 2C'{P(JB) +(2JB+l)Q(JB)} , 

P(J B) = 1(2J B+3)(2J~+6J B+4) 

149 

(23) 

where J M is the upper limit of the summation over JAin (21). If we denote N v by 
N(J B), we find 

P(J B) +(2J B+3)Q(J B) +2(2J B+l)(J B+l) 
P(J B) +(2J B+l)Q(J B) 

If J M is large compared with J B this can be written approximately as 

N(JB+l) _ 2JB+3 
N(JB) - 2JB+l . 

The average reduced width is thus of the form 

18v 12 = C(2J B+l)-2, 

where C is some constant factor. 

IV. RADIAL INTEGR.ALS 

(24) 

(25) 

The radial wavefunctions Rt~(r) which are required for the evaluation of the 
integrals (6) can be obtained by solving the equation 

(26) 

where n is the principal quantum number of the wavefunction v. We assume that 
spin-orbit coupling effects are negligible so that v(r) is a central potential, which we 
shall take to be of the Wood-Saxon form 

v(r) = - Vo[l +exp{(r-ro)!a}]-l, (27) 

where ro and a are the radius and diffuseness parameters. The depth of the potential 
is variable so that wavefunctions for any given binding energy 

Iff = Iff~-Iff: 
can be obtained. 

For different values of the principal quantum number n, the radial integrals 
were found to differ from each other by factors that were almost independent of 
Iff, E, and l. It is therefore possible to evaluate (6) using 

for a fixed value of n. 
Cross sections thus calculated will differ from the correct values by a constant 

factor, but their dependence on incident and outgoing energy is not affected. 
One further assumption must be made concerning the parameters of the 

Wood-Saxon potential. We shall assume them to be independent of the state of the 
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TABLE 1 

ENERGY LEVELS OF 56Fe 

Energy (MeV) J1T Energy (MeV) J1T Energy (MeV) J1T Energy (MeV) J1T 

0-0 
0-846 
2-084 
2-654 

0+ 
2+ 
4+ 
2+ 

2-939 
2-957 
3-119 
3-122 

0+ 
2+ 
5-
3+ 

TABLE 2 

3-368 
3-388 
3-445 
3-450 

2+ 
6+ 
3+ 
1+ 

3-600 
3-605 
3-829 
3-856 

THEORETIOAL O'th AND EXPERIMENTAL O'exp = 4170' (50°) OROSS SEOTIONS FOR 56Fe 

In the calculations the parameters of the potential were '-0 = 6 f and a = 0 -5 f 

Incident 
Energy 
(MeV) 

3-00 

3-50 

4-00 

4-50 

Level 
(MeV) 

0-845 
2-084 
2-654 

0-845 
2-084 
2-654 

~:::~} 
3-119 
3-122 

0-845 
2-084 
2-654 

~:::~} 
3-119 
3-122 

:::~:} 
3-445 
3-450 

3-600} 
3-605 

0-845 
2-084 
2-654 

aexp 

(bn) 

0-96 ±0-08 
0-161±0-013 
0-09 ±0-045 

0-54 ±0-08 
0-190±0-013 
0-225±0-010 

0-205±0-008 

0-08 ±0-04 

0-47 ±0-08 
0-150±0-013 
0-167±0-01O 

0-173±0-008 

0-197±0-01O 

0-247±0-012 

0-068±0-035 

0-50 ±0-08 
0-165±0-013 
0-132±0-010 

O'th 

(bn) 

1-030 
0-002 
0-042 

0-689 
0-001 
0-106 

0-364 

0-001 

0-502 
0·006 
0·138 

0·393 

0-013 

0-235 

0·117 

0-356 
0-008 
0-143 

Incident 
Energy 
(MeV) 

4-50 

5-00 

Level 
(MeV) 

2-939} 
2-957 
3-119 
3-122 

3-368} 
3-388 
3-445 
3-450 

3-600} 
3-605 
3-829 
3-856 

0-845 
2-084 
2-654 

~:::~} 
3-119 
3-122 

:::~:} 
3-445 
3-450 

:::~~} 
3-829 
3-856 

Gexp 

(bn) 

0-166±0-008 

0-148±0-01O 

0-244±0-012 

0-178±0-01l 

0-153±0-016 

0-43 ±0-08 
0-116±0-013 
0-1l6±0-010 

0-102±0-008 

0-126±0-01O 

0-180±0-012 

0-166±0-01l 

0-130±0-016 

0+ 
2+ 
2+ 
3+ 

O'th 

(bn) 

0-343 

0-018 

0-289 

0-188 

0-025 

0-197 
0-007 
0-104 

0-205 

0-016 

0-221 

0-144 

0-036 

core nucleus, the integrals F!;: being calculated using fixed values of the parameters 
of the potential. From simple physical considerations one might expect the radius 
of the nucleus to increase with increasing excitation energy; however, such variations 
are proba.bly small compared with the nuclear radius_ 



INELASTIC SCATTERING OF NEUTRONS. II 151 

V. SCATTERING TO DISCRETE LEVELS 

The cross sections for the excitation of the discrete levels of a nucleus are given 
by equation (9). Calculations were carried out for the low lying levels (up to 4 MeV 
excitation energy) of 56Fe, with incident neutron energies between 3 and 5 MeV. 
The spin and parity assignments of the levels were taken to be the same as those 
used by Towle and Owens (1967) and are given in Table 1. 

The results of these calculations and the experimentally observed cross sections 
(Hopkins and Silbert 1964) are listed in Table 2. The calculated cross sections were 
normalized to the correct total cross sections from Hopkins and Silbert: 

Incident energy (MeV) 3·00 3·50 4·00 4·50 5·00 

1·49±0·09 Total cross section (bn) 1· 21 ± 0·09 1·27±0·09 1·50±0·09 1·74±0·09 

3·0 

(a) 

2·0 

]·0 

>" <1i 
:::;: 

0 c 
~ 

4·0 

~ 3-~ 

:g 
c (e) 

2·0 

]-0 

-- Experimental 
----- Theoretical 

r' 
I' 
, I 

I' 
I I 
I I 
, I 
, I 
, I 
I I 
I I 
, I , 

3'0 2-0 ]'0 

3'0 2·0 1'0 

Excitation energy (MeV) 

(b) 

Cl 

1 
I 

i 
I , 

2'0 ]'0 

Fig. I.-Histogram representa. 
tions of the results for inelastic 
scattering of neutrons by 56Fe 
with incident neutron energies 
Ei of 

(a) 4·0 MeV, 
(b) 4·5 MeV, 
(e) 5·0 MeV. 

The experimental values are 
from Hopkins and Silbert (1964). 

The outstanding features of the results in Table 2 (see also Fig. 1) are the 
large differences between the calculated and observed cross sections for scattering 
to the 2·084 MeV (4+) and the 3·119 (5-) plus 3·122 (3+) MeV levels. On the other 
hand, the cross sections for scattering to the 2·939 (0+) plus 2·957 (2+) levels are 
overestimated. It is perhaps of some interest to observe that the amount by which 
the cross sections for the 2·939 plus 2·957 levels are overestimated is almost exactly 
equal to the amount by which the scattering to the 3 ·119 plus 3 ·122 levels is under
estimated. The total cross sections for scattering to the 2 ·939 --+ 3 ·122 MeV levels 
are very close to the observed ones. 

The discrepancy between the calculated and observed cross sections for the 
first excited state when the energy of the incident neutrons increases has also been 
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noted by other authors when analysing scattering data with the Hauser-Feshbach 
method (see e.g. Towle and Owens 1967). This has been attributed to the rapid 
onset of a direct reaction mechanism when the energy of the incident neutrons is 
between 4 and 7 MeV. 

VI. SCATTERING TO THE CONTINUUM 

When we are considering scattering to final states where individual levels can 
no longer be resolved it is necessary to use a statistical model of the final nucleus to 
describe the scattering. The scattering cross section is then given by equation (10). 

Cross sections were calculated for 56Fe and 60Ni with 7 MeV incident neutrons 
and were compared with the experimentally observed values of Towle and Owens 
(1967). The statistical model was used for scattering to levels above 3·7 Me V excitation 
energy for 56Fe and 3 . 2 MeV excitation energy for 6oNi. The parameters of the level 
density formula (11) were taken from the tabulations of Gilbert and Cameron (1965) 
and Cook, Ferguson, and Musgrove (1967). 

0-6 

-- Experimental 

----- Theoretical (ro=6 n 
0-5 --- Theoretical (ro=5 f) 

II 
I 

0-1 

(a) 

o 1-0 2-0 3-0 5-0 6-0 

Ef (MeV) 

Fig. 2.-Results of calculations of atE!. Er} for (a) 56Fe and (b) 60Ni compared with the experi
mentally observed values of 41Ta(Eio Ed at 90° by Towle and Owens (1967). 

The calculated cross sections were found to be in good agreement with experi
ment (Fig. 2) except at very low outgoing neutron energies. The calculated cross 
section decreases when the excitation energy exceeds 5·5 MeV for 56Fe and 5·3 MeV 
for 6oNi. It is interesting to observe that the experimental values have peaks at almost 
precisely these energies, and decrease until the excitation energy reaches a value of 
about 5·8 MeV. The present calculations give an almost exact fit to the cross sections 
in those regions. It is also worth noting that the position of the peak in the theoretical 
cross section is almost independent of the parameters of the potential used for 
calculating the radial integrals (6). 

The large values of the observed cross sections for scattering to levels beyond 
5·8 Me V excitation energy is probably entirely due to the levels with large spin 
since, as we have observed in the previous section, it is for these levels that the 
QCN theory is inadequate, producing cross sections that are far too small. 
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VII. DISCUSSION 

It was observed in Section V that the QCN theory underestimates the scattering 
to high spin levels. The radial integrals Ft~ decrease rapidly with increasing l; there
fore, since levels with large spin values require incident or outgoing neutrons with high 
orbital angular momenta to excite them, the cross sections for the excitation of these 
levels will also be very small. It may be possible, by introducing a spin-orbit inter
action in the potential (27), to eliminate some of the discrepancy between theory and 
experiment. The effect of an attractive spin-orbit potential would be to increase 
Ft: for higher orbital angular momenta, but it is doubtful that the inclusion of 
I. s coupling will be sufficient to account for the difference between the calculated 
and the observed cross sections for, say, the 2 ·084 MeV (4+) level of 56Fe. 

Another point worth commenting on is the good agreement between theory and 
experiment for scattering to levels in the continuum region between 5·3 and 5 . 8 MeV 
excitation energies. The results are quite remarkable in view of the already mentioned 
shortcomings of the theory. Although this agreement may be purely coincidental 
it appears from our results for 56Fe and 60Ni that at a certain excitation energy the 
distribution of levels in the nucleus undergoes a sudden change. It would be of 
great interest to see whether other nuclei in the medium to heavy region display 
similar behaviour. 
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