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Summary 

The hydromagnetio stability of infinitesimally thin, ourrent-oarrying, 
differentially rotating disks is oonsidered. The perturbation theory desoribed is first 
order (linear) throughout. It is shown that azimuthal eleotrio ourrent produoes 
instability for all (radial) wavelengths. The oase of radial equilibrium eleotrio ourrent 
reduoes to the non-hydromagnetio problem treated by Lin and Shu (1964), although 
hydromagnetio effeots are expeoted for a. disk of finite thiokness or to second order due 
to azimuthal perturbation ourrent. 

I. INTRODUCTION 

Calculations for a hydromagnetic analogue of the gas-dynamical stability 
problem considered by both Lin and Shu (1964) and Toomre (1964) are described in 
this paper. A thin, differentially rotating disk is assumed to carry electric current 
which produces a magnetic field. It is shown that the resultant magnetic body force 
in the plane of the disk may significantly influence its stability. 

Since galactic spiral structure was discovered (Lord Rosse 1850), its explanation 
has been one of the outstanding problems of astrophysics. The stability of differentially 
rotating disk systems is relevant to possible theory for the spiral pattern (Lin and 
Shu 1964; Toomre 1964; Goldreich and Lynden-Bell 1965; Julian and Toomre 1966; 
Lin 1966). 

Observations seriously limit the topology of the magnetic field in our Galaxy_ 
The optical polarization measurements of Hall (1949) and Hiltner (1949, 1951, 1956) 
indicate a large-scale average field parallel to the plane of the Galaxy (Davis and 
Greenstein 1951). Both the radio observations (Morris and Berge 1964) and the 
polarization of starlight (Smith 1956; Behr 1959) indicate that the local lines of force 
lie parallel to the direction of galactic longitude III = 70° ±20°, which agrees with the 
direction of the spiral arm determined from the distribution of interstellar gas and 
o star associations (Weaver 1953; van de Hulst, Muller, and Oort 1954; Westerhout 
1957). This feature of the galactic magnetic field is illustrated in figures of Kaplan 
(1966), which compare interstellar polarizations with the line of sight perpendicular 
and parallel to the spiral arm. Morris and Berge (1964) also point out that the 
Faraday rotation indicates a reversal of the field across the plane of the Galaxy. 
With reference to the calculations reported in the present paper, it would appear that 
a radial equilibrium current is appropriate to the case of our Galaxy. 
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The assumption that any magnetic field is due to currents in the disk enables 
one to view the differentially rotating disk as an isolated system. Although the 
alternative open model of the galactic field removes the difficulty of explaining the 
fields of galaxies (and replaces it by the problem of an intergalactic field), the apparent 
requirement that the extragalactic field lines be somewhere attached implies that the 
magnetic field must be rapidly attenuated by the differentially rotating disk and hence 
plays a major role (see, for example, Piddington 1964, 1966, 1967). In the present 
paper, Ohm's law is taken to be (considering a "frozen-in" field) 

E+c-1vxB = 0 

for the hydromagnetic component (the "gas") in the disk, but the local origin of the 
magnetic field permits one to ignore such effects. Numerical calculations reported in 
Section III indicate that the magnetic field becomes small at intergalactic distances. 

The calculations described in this paper apply to the dynamics of the gas over 
the disk as a whole, except that the perturbations considered are restricted to within 
the plane of the disk in the manner of Lin and Shu (1964). These calculations are 
therefore complementary to considerations of the stability of an individual spiral 
arm (Chandrasekhar and Fermi 1953; Simon 1958; Amano 1964; Setti 1965) and 
the universal Rayleigh-Taylor instability (Parker 1966). 

Finally, it may be worth noting at this point that a gravitational "response" 
factor [Jt for the gas is included (Section III); a value of [Jt < 1 implies that the 
gravitation acting on the gas is not entirely self-gravitation but includes a contribution 
from the non-hydromagnetic ("stellar") disk component. Theory for the response 
of the stellar component with stellar dispersion included has been given by Lin 
(1966), so that the present study may lead to an improved general theory for the 
possible total gravitational response of disk galaxies. Since turbulence has been 
ignored in this paper, the hydromagnetic theory given for the gas applies to systems 
in which the magnetic energy exceeds the energy of interstellar gas turbulence. Lin 
and Shu (1966) have considered the opposite situation by representing the effect of 
turbulence as similar to the effect of dispersion on the stellar component. 

II. HYDROMAGNETIC EQUATIONS 

A cylindrical system of coordinates (r, 8, z) is adopted and both mass distribution 
and electric current are restricted to the plane z = 0 throughout the motion. As 
shown in Appendix I, the equation of continuity, the equation of motion, and Ohm's 
law (valid for z = 0) are 

80' 18( ) 18( ) 
8t + r Or rUVr + r 88 uve = 0, (I) 

0'(: +v. vv) = O'V~+c-lJxB, (2) 

8B m= VxvXB, (3) 

where O'(r, 8, t) is the surface mass density of the gas, v(r, 8, 0, t) = (vr, V/J, 0) is its 
material velocity, ~(r, 8, 0, t) is the negative of the gravitational potential, J(r, 8, t) = 
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(Jr, J 0,0) is the surface current density, and B(r, 8, 0, t) is the magnetic field. In 
addition, throughout all space one has the electromagnetic equations 

V.B=O (4) 

and 

v X B = (47T/C)JS(z) , (5) 

together with Poisson's equation 

V2cP = -47TGUtot S(z) , (6) 

where S(z) is the Dirac delta function, G is Newton's universal constant of gravitation, 

2 2 2 

V2 = .£...+!!+-.!:.~ +~, 
Or2 r Or r2 082 oz2 

and utot is the total surface mass density (both gas and stellar components). 
It is convenient to introduce the vector potential A such that 

B= VxA, 

so that equation (5) may be written 

where V.A =0, 

2 20Ao Ar 
V A r-"2 08 - 2" = -(4rr/c)Jr S(z) , 

r r , 
2 2 oAr Ao 

V AO+"2 08 - 2" = -(4rr/c)Jo S(z) , 
r r 

V2Az = 0. 

(6a) 

(7a) 

(7b) 

(7c) 

In the following two sections, these equations are used in discussion of the cases 
of azimuthal equilibrium current and radial equilibrium current respectively. 

III. AzIMUTHAL EQUILIBRIUM CURRENT-POLOIDAL FIELD 

The situation in which the equilibrium current is azimuthH 1 is HOW considered. 
One may imagine a series of concentric current-carrying rings. In this case, one 
expects both radial and axial magnetic field components, whereas in the complemen­
tary case of radial current discussed in the following section the magnetic field is 
azimuthal. Accordingly, the initial state of equilibrium is described by u = uo(r), 

Vr = 0, Vo = rQ(r), Jr = 0, J o = Joo(r), cP = cPo(r,z), and B = (Bo,(r,z),O,Baz(r,z»). 
Reference to equations (4) and (5) shows that the equilibrium magnetic field 

must satisfy 

!~(rBor) + oBoz = ° rOr az' (8) 

oBo, oBoz & - Tr = (4rr/c)Joo(r) S(z) . (9) 

The elimination of Bo, between (8) and (9) yields 

( 02 10 ( 2 ) 4rrIO( ) - + --+ - Boz = - --- rJoo(r) S(z) 
Or2 ror az2 c rOr ' 
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which has as solution 

i oo ( 2 2)-ll (] ( ) {( 4pr )l} Boz(r, Z) = 4 dp (p+r) + I z I -8 pJo(J(p) K 2 2' 
o C p (p+r) + I z I 

(10) 

where K denotes the complete elliptic integral of the first kind. This integration is 
given in Appendix II. A convenient dimensionless function with which to characterize 
the equilibrium is 

I-'(r, z) = 27TJo{}(r)/cBoz(r, z) . (ll) 

1'4 
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Fig. I.-Spatial variation of the ratio of the equilibrium azimuthal disk electric current to the 
generated axial field for uniform current distribution ((a) and (b)) and when the current varies 
inversely exponentially with radius ((0) and (d)): 

(a) a = 1, b = 10, JOB = const.; (b) a = 0, b = 10, JOB = const.; 
(0) a = 1, b = 10, JOB = Oexp(-r/b); (d) a = 0, b = 10, JOB = Oexp(-r/b). 

In Figure 1, I-'(r, z) is plotted against log I z I for the cases 

and 

JO(J(r) = const. > 0, 
= 0, 

JO(J(r) = const. exp( -rib) , 
=0, 

a < r < b, 
otherwise, 

a < r < b, 
otherwise, 



HYDROMAGNETIC STABILITY OF THIN DISKS 509 

using equation (A22), Appendix II. The limiting values p,(r, 0+ ) have been confirmed 
from equation (A24). The form of Bor follows from equation (10); it is sufficient, 
however, to note that Bor(r,O) = O. 

The equilibrium equation of motion requires that 

-rQ2 = (84)0/8r)z=0+Joo(r) Boz(r, O)/cao (12) 

and 
o = (84)0/8z)z=0. (13) 

From equation (6) one has 

( 82 18 ( 2 ) tot 2 + --8 + -2 4>0 = - 47rGao (r) 8(z) , 
8r rr 8z 

so that from Appendix II 

100 P tot {( 4pr )i} 4>o(r,z) = 4G dp 2 2 0'0 (p)K 2 2' 
o {(p+r) + Izl }l (p+r) + Izl 

In particular, equation (13) is satisfied and equation (12) relates Q(r), atot(r), andJoo(r). 
The instability of the disk to motions in its plane is now considered. Distin­

guishing perturbation quantities by the subscript 1, it may be first observed that if 

al(r, 0, t; oc) = al(oc) Re{Hm(ocr)}exp{i(wt-mO)}, 

then the solution of the Poisson equation 

"724>1 = - (47TG/~)aI8(z) 
is 

4>1(r, 0, z, t; oc) = (27TG/~oc)al(r, 0, t; IX) exp( -oc I z i) 
and for ocr ~ 1 

(84)I/Or)z=0 = ±27TiGal/~' (84)1/80)z=0 = O( aI/d) (14) 

(cf. Appendix II), where ~ - aI/aiot defines the gas fraction of the total self­
gravitating mass. Similarly, if 

J1(r, 0, t; oc) = JI(oc) Re{Hm(ocr)}exp{i(wt-mO)}, 

then the solution of the perturbation equation corresponding to equations (7) is 

Al(r,O,z,t;oc) = (27T/lXc)J1(r,0,t;lX)exp(-oclzi) 

(cf. Appendix III), so that 

BIr = (27T/C)Sgn(z) J IO exp( -oc I z I), 

BI0 = -(27T/c)sgn(z) JIrexp( -oc I z I), 

BIZ = !:{~ !(rJIO) - ~ :o( Jlr) }exP( -oc I z I) • 

(15a) 

(15b) 

(15c) 
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In this paper, the perturbation problem is solved in a "local approximation" 
characterized by eigensolutions approximated on z = 0 by 

h(r, 8, t; a) = h(a) Re{Hm(ar)}exp{i(wt-m8)} , 

,...." exp{i(wt-m8±ar)} , 

aR';P 1, 

where R is the reference radius. In this local approximation, the system of simultaneous 
equations derived from equations (1), (2), (3), (14), (15), and V. J1 = 0 reduces to 

i(w-mQ)al = -aoDVlr, (16a) 

. 27Ti Boz Joe 
I(W-mQ)Vlr-2Qvle = ±/iiJGal+ -J1e+ -BIZ, (16b) 

3£ cao cao 

i(w-mQ)Vle+(K2/2Q)Vlr = -(Boz/cao)Jlr, (16c) 

i(w-mQ)BIZ = -BozDvlr, (16d) 

BIz = (27T/ac)Dhe, (16e) 

DJlr-(im/R)Jle = 0, (16f) 

where 
K2 = (4Q2{1 + (r/2Q)dQ/dr})r=R , 

D = d/dr ,...." ±ia, and it has been assumed that VIr""'" VIe. Elimination between 
equations (16) yields 

( 27Ti JoeBoz) 2 ( 2 2 B~z) ± 8jGao+ ~ D Vlr+ K -(w-mQ) + 27Taoa DVlr = O. (17) 

Setting D = ±ia in equation (17), one has that equations (16) define a self­
consistent problem provided that 

w~-(wr-mQ)2+K2-(27TGao/Bl)a+(B~zl27Tao)a = 0 (18) 

and 
±(JoeBoz/cao)a-2wi(Wr-mQ) = 0, (19) 

where Wr and Wi are the real and imaginary parts of the eigenfrequency. 
In the corresponding gas-dynamic calculation (Boz == 0), from equation (18) it 

follows that 
K2+W~-(wr-mQ)2 > 0, 

which is inequality (13) of Lin and Shu (1964). From equation (19), either 

Wr-mQ = 0 or Wi = 0 (neutral stability), 

when either 

W: = (27TGao/Bl)a-K2 or (wr-mQ)2 = K2_(27TGao/Bl)a 

respectively. There is instability only for sufficiently small wavelength (sufficiently 
large a). The case m = 0 was first considered by Toomre (1964). 
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When Boz =F 0, one has immediately 

( 2 2 2) (2mGao B~z )-1 
K +W1-(Wr-mQ) -- - -- > 0 

fR 21Tao 
(20) 

from equation (18) and 

W1 =F 0, Wr-mQ =F 0 

from equation (19). The growth rate of the instability is the negative root of 

2wr = (21TGa°a._K2_ ~)+{(~_K2_ B~z a.)2 + (Joo Boza.)2}i , (21) 
fR 21Tao fR 21Tao cao 

which exists for all values of the radial wave number IX. In particular, there is 
instability at wavelengths that are neutrally stable according to gas-dynamic theory. 

Mter noting that 

1 J Of) Boz/cao 1-;-1 B~z/21Tao 1 = tL, 

where the ratio tL - tL(R,O) = 0(1), one may consider some limiting cases of the 
hydromagnetic calculation: 

(i) when 
(21TGao/f1l)a.-K2_(B~z/21Tao)1X ~ 0, 

the instability has growth rate 

-WI ~ (Jof}BOz/2cao)1; 

(ii) when the impressed gravitational force is large relative to the magnetic 
(Lorentz) force such that 

21TGa°a._K2 _ B~z IX ~ / JOf}Boz IX I, 
fR 21Tao cao 

(22) 

one has 
2 

2 21TGao 2 Boz 
w1 "'---K-~ - fR 21Tao 

and 

rl (J Of) Boz ) (21TGao 2 B~z) -I . 
Wr-m~4 ~ ---a. -=-IX.-K - --a. , 

2cao fR 21Tao 

(iii) when the rotational force is large relative to the magnetic force such that 

one has 

and 

2 2mGao + B~z ""-/ JooBOz I 
K -~a. 2~~ -or; , 

vr; 1TaO CaO 

-Wi ~ (JOf) Boza.) (K2_ 2mGaolX+ B~z a.)-i 
2cao fR 21Tao 

(Wr-mQ)2 ~ K2 -(21TGao/fR)a.+(B~z/21Tao)a.. 

It is noteworthy, however, that when 

Boz ~ (41T2G~/f1l)1 

(23) 

(24) 
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inequality (22) is contravened. Further, if 

Boz?> (47T2Gu~/9l)!, 

none of the above three limiting cases are appropriate and 

W~ ~ (B~z/47TUO)<x{(1+/k2)l_1}, 

(wr-mQ)2 ~ (B~z/47Tuo)<x{(1 +/k2)i+1}. 

Certain aspects ofthese results may be inferred from reference to equations (16) 
and physical argument. The essential hydromagnetic aspect of the present problem 
is represented by the radial Lorentz force (cf. equation (16b». One may first note that 

IJO(JB I . IBoz J I-I ±27TiJo(J 1-- lz -;- - 18 - -- - /k 
CUO CUO C Boz 

and that 

IBoz Jl(J I 
CUo I 27Ti I ~ ± gj""Gul 

requires inequality (24). When 

Boz <{ (47T2Gu~/9l)i 

the dominant radial force is gravitation; inequality (22) is valid in this case and the 
growth rate differs only slightly from the value predicted by gas-dynamic theory. 
Secondly, neither contribution to the radial Lorentz force is in phase with the radial 
gravitational force. Consequently, one might anticipate both a growth rate lower 
than that predicted by gas-dynamic theory when gravitation is dominant and also 
a destabilization at wave numbers for which the gas-dynamic theory predicts neutral 
stability when it is not. 

In summary, a poloidal magnetic field can provide a destabilizing mechanism 
associated with a shift in phase (alteration of wr). This result is similar to the effect 
of a magnetic field on thermal convection, where a state of neutral stability becomes 
overstable when a magnetic field is introduced (Chandrasekhar 1961). 

With respect to the relevance of the present hydromagnetic calculation to the 
dynamics of disk galaxies, three remarks may be made. In the first place, the 
magnetically responsive interstellar gas has a spiral pattern which differs in phase 
from that of the stars by an amount determined by the magnitude of the equilibrium 
magnetic field (cf. equations (17) and (18». Secondly, inequality (24) defines when 
hydromagnetic effects must be considered. Finally, reference to inequality (20) 
indicates that 

K2+W~-(wr-mQ)2 :; 0 
according as 

Boz :( (47T2Gu~/9l)!· 

For the parameters 9l = 0·1, uo = 10-3 g cm -3, the critical magnitude of the magnetio 
field defined by the last two remarks is about 5/kG. (Note, however, that the preoise 
value for 9l at any reference radius depends both on the relative response maxima of 
the gas and the stars and the phase difference mentioned in the first remark.) 
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IV. RADIAL EQUILIBRIUM CURRENT-TOROIDAL FIELD 

Suppose now that the initial state of equilibrium is described by a = ao(r), 
Vr = 0, V8 = rQ(r), Jr = JOr(r), J 8 = 0, cp = cpo(r,z), and B = (0,Bo8(r,z),0). Since 
the divergence of equation (5) gives 

d(rJOr)/dr = 0, 
one has 

JOr = M/r, 

where the constant M may be considered to be the strength of a current source located 
at z = O. From the viewpoint of the application to galactic forms, such a radial 
current may be supposed to be supplied to the disk-like part of the galaxy from the 
central bulge and returned via the halo. 

Reference to equation (5) shows that the equilibrium magnetic field must 
satisfy 

whence 

-8Bo8/8z = (47T/c)JOr(r) 8(z) , 

r-l8(rB08)/8r = 0, 

B08(r, z) = -(27T/c)JOr(r) sgnz. (25) 

Note that the topology of the magnetic field described by equation (25) is consistent 
with the observations for our Galaxy. 

From equations (25) and (15) one has that 

B08 = Blr = Bl8 = 0 on z=O; 

the nontrivial linear perturbation equation derived from equation (3) is therefore 

i(w-mQ)Blz = 0 on z=O. 

It follows that one has to solve equation (1) and 

8v/8t +v. Vv = Vcp 

on z = 0, together with equation (6). The problem reduces to the gas-dynamic one 
treated by Lin and Shu (1964). 

It must be emphasized that this conclusion applies strictly on the plane z = 0 
only, and then only to first order. For a real galactic disk of finite thickness, hydro­
magnetic effects may be significant for z =1= 0 (when B08 =1= 0). Moreover, to second 
order Blz =1= 0 and there is a nonzero Lorentz force on z = O. The perturbation theory 
described in this paper is first order (linear). 

V. CONCLUSIONS 

The stability of thin, differentially rotating disks which initially carry either 
azimuthal or radial current has been considered. Significant azimuthal current 
produces a poloidal magnetic field, whereas significant radial current produces a 
toroidal magnetic field with a null at the centre of the current layer. Both the radial 
and azimuthal magnetic field components change rapidly across a thin current layer. 
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Indeed, in the mathematical description adopted in which the disk is considered 
infinitesimally thin, the radial and azimuthal magnetic fields have an appropriate 
discontinuity; only the axial magnetic field is significant for motions within the plane 
of the disk. 

The systems are subject to instabilities that can produce density distributions 
of spiral fOlm, as first demonstrated in gas-dynamic theory by Lin and Shu (1964). 

By means of a "local approximation" related to that used by Lin and Shu 
(1964), it has been shown that an equilibrium azimuthal electric current can provide 
a destabilizing mechanism associated with a shift in phase (Section III). The character 
of the magnetogravitational instability differs significantly from its gravitational 
counterpart for magnetic fields greater than about (47T2Ga~/[fl)! gauss, which is of the 
order of 5 fLG for the parameters of the Galaxy. 

For our Galaxy, however, the equilibrium current appropriate to the observed 
topology of the magnetic field would appear to be radial. In the first-order (linear) 
theory considered in this paper, in Section IV it is shown that on z = 0 this case 
reduces to the purely gas-dynamic discussion (Lin and Shu 1964; Toomre 1964; Lin 
1966). Any hydromagnetic modification requires finite disk thickness or nonlinear 
theory. 

The gravitational response of a possible stellar component has been allowed for 
through the "response" factor [fl. Lin (1966) has provided theory for the stellar com­
ponent in which the effect of stellar dispersion is considered. 

The radical differences between the behaviour of the two systems with signifi­
cant poloidal and toroidal field respectively may prove important in galactic dynamics. 
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ApPENDIX I 

Hydromagnetic Equation8 for Infinite8imally Thin Di8k 

515 

The appropriate hydromagnetic equations for the interstellar gas are derived 
here. Both mass and electric current distributions are considered restricted to the 
plane z = O. Accordingly, the mass and current densities may be written as 

p(r, 8, z, t) = a(r, 8, t) o(z) and j(r, 8, z, t) = J(r, 8, t) o(z) 

respectively, where a(r, 8, t) denotes the surface mass density and J(r, 8, t) denotes 
the surface current density. 

The three-dimensional equation of continuity is 

op/ot + V .pv = 0 (AI) 
or 

{oa I 0 ( ) I 0 ( ) (7 ()} , ot + r or ravr + r 08 av(} + OZ avz o(z) +avz 0 (z) = 0, (A2) 

so that 

oa I 0 ( ) I 0 ( ) ot + r or ravr(r, 8,0, t) + r 08 av(}(r, 8, 0, t) = 0, vz(r, 8,0, t) = 0 (A3) 

with the help of an appropriate choice of trial functions for the distributions o(z) and 
o'(z) and the property 

f(z) o(z) = f(O) o(z) . (A4) 

In passing, one may note that in like manner 

V.j=O (A5) 
yields 

~:r(rJr) +~:8(J(}) = 0, Jz = O. (A6) 
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The three-dimensional (pressureless) equation of motion is 

p(ovjot +v. Vv) = p V4> +c-1jxB (A7) 
or 

a(ovjot +v. Vv)8(z) = a V4> 8(z) +c-1Jx B 8(z). (AS) 

Using (A4) and (A3), one therefore has 

a(ovjot +v. Vv) = a ( V4> )z=o+c-1JX B(r, fJ, 0, t), (A9) 

where v now denotes v(r, e, 0, t). 
Finally, one has Ohm's law 

E(r, e, 0, t)+c-1v(r, e, 0, t) X B(r, e, 0, t) = 0, (AlO) 
or equivalently 

{E(r, e, z, t)+c-1v(r, e, z, t) X B(r, e, z, t)}8(z) = O. (All) 

The curl of equation (All) yields 

(oBjot+VxvxB)8(z)+{-(E+c-1vxB)lIr+(E+c-1vXB)rO}8'(z) = 0, (A12) 

whence 
oBjot+VX(vxB) = 0 on Z = O. (A13) 

ApPENDIX II 

Solution of Poi880n'8 Equation 

The boundary value problem which recurs throughout this paper is of the form 

V2V(r, e, z) = -47Ta(r, e) 8(z), 

where V2 is given by equation (6a), 

V(r, e, 0-) = V(r, e, 0+) , 
and 

V--+O as (r2+z2)! --+ 00 • 

Since the problem is linear, one may Fourier analyse: 

00 foo V(r, e, z) = ~ e -1mll V m(r, z; oc) doc 
m=O 0 

00 foo a(r, e) = ~ e -1mll am(r; oc) doc 
m=O 0 

and consider 

2 V 2 o2V , 
o Vm+lo m_ "!!:.,.V + ~ = -47Tam o(z) -- - 2 m 2 

or2 r or r OZ 

subject to 
V m(r, 0-; oc) = V m(r, 0+; oc) 

and 
Vm--+O as (r2+z2 )! --+ 00 . 

(AI4) 

(AI5) 

(A16) 

(AI4a) 

(A15a) 

(AI6a) 

'. 
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One has 

V m(r, z; a) = A(a) J m(ar) exp( -a j z i) 

= A(a) Re(Hm(ar) )exp( -a I z i), 
provided that 

2aA(a)Jm(ar) = 417am(r;a), 

where J m and Hm denote respectively the mth order Bessel function of the first kind 
and the mth order Hankel function. Thus, if one writes 

am(r; a) = S(a) Jm(ar) , 
it follows that 

A(a) = (217/a)8(a) 
and 

Vm(r,z;a) = (217/a)am(r;a)exp(-ajzi). 

Parenthetically, we may note from equation (A17) that 

(8(e-lmO V m)/88)z=0 = O( am/a) , 

(8(e- lmO V m)/8z )z=o = 0, 
together with 

(8(e-lmO V m)/Or)z=o = ±217ie-lmO am 

for ar ~ 1, where we have used 

Hm(ar) ,....., (2/17ar)!exp{±i(ar-tm17-!17)} 

with + and - corresponding to Hg,> and H~) respectively. 
The complete solution may be written 

00 (00 
V(r,8,z) = m'2::.o exp(-im8) Jo (217/a)8(a)Jm(ar)exp(-alzl) da. 

If one defines 

am(r) = Loo am(r;a) da = Loo 8(a) Jm(ar) da, 

by the Hankel inversion theorem (Sneddon 1951) 

8(a)/a = Loo ram(r) Jm(ar) dr 

so that 

(A17) 

(A18a) 

(A18b) 

(A18c) 

(A19) 

00 foo foo V(r, 8,z) = 217 ~ exp(-imO) da exp(-a I z I) Jm(ar) dp pam(p) Jm(ap) 
m~ 0 0 

or, interchanging the order of integration, 

00 foo foo V(r,O,z) = 217 ~ exp(-im8) dp pam(p) daexp(-alzI)Jm(pa)Jm(ra). 
m=O 0 0 

(A20) 
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Reference to Erdelyi (1954) gives (provided z =F 0) 

00 foo ()t ( 2+ 2+ 1 12) V(r, 0, z) = 2 ~ exp( -imO) dp!!. um(P) Qm-t p r2 z , 
m=O 0 r pr 

(A21) 

where Qm-t is the m-i order associated Legendre polynomial. When there is no 0 
dependence (m = 0 only), the solution reduces to (cf. Abramowitz and Stegun 1964) 

V(r,z) = 4 dp p u(p)K pr , fOO {( 4 )t} 
o {(p+r)2 + 1 z 12}t (p+r)2 + 1 z 12 

(A22) 

where K denotes the complete elliptic integral of the first kind. 
The exceptional value z = 0 corresponds to the potential in the plane of the 

disk distribution. Gubler (1897) has shown that 

fOO rm r(m+i) 2 2 
Jm(poc)Jm(roc)doc= +1 2FI(m+l,i;m+l;r/p), 

o pm r(m+l) r(l) 

where r < p and rand 2FI denote the gamma and hypergeometric functions 
respectively, 

= r(m+l) 1 p=m(p2 +r2) 
r(1) (2 2)t t 2 2' 

2" P -r p-r 

where P denotes the Legendre function. Consequently, 

V 0 ~ . r(m+1){f' 1 _m(r2+/) (r, ,0) = 27T ~ exp(-lmO) r(l.) dp pum(p) 2 2 P-t -2-2 
m=O 2 0 (r _p )t r -p 

fOO (2 2)} 1 -m p +r + dp pum(p) 2 2 t P -I 22 . (A23) 
r (p -r ) p -r 

The physical interpretation of the discontinuity in the integrand at p = r is that all 
disk elements except that at p = r contribute to the potential V(r, 0,0). When there 
is no 0 dependence (m = 0 only), the solution reduces to 

V(r,O) = 4(J: dp (p/r)u(p) K(p/r)+ 5,00 dp u(p) K(r/ p)) , (A24) 

since (Abramowitz and Stegun 1964) 

P _ (p2 +r2) = ~ (p2 _r2)t K(!:.) , 
t p2_r2 7T p P 

r < p. 

APPENDIX III 

Perturbation Magnetic Vector Potential 

The perturbation magnetic vector potential Al is defined by 

BI = VxAI . 

Equation (5) gives the perturbation equation 

V X V X Al = (47T/C)JI 8(z) 

(A25) 

(A26) 
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or 

( 2 I) 2oAl(J 
V - ~ Alr - ~eo = -(47r/c)Jlr(r, 8) 8(z), 

( 2 I) 20AIr 
V - ~ A IO+ ~ B8 = -(47r/c)JIO(r, 8) 8(z) , 

V2AIZ = 0, 

where V2 is given by equation (60,) and 

V.AI = O. 
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(A27a) 

(A27b) 

(A27c) 

(A28) 

In the nonrelativistic approximation, equation (A28) corresponds to the Lorentz 
gauge condition 

V.A+c-IOX/at = 0, 

where X denotes the electric scalar potential. This follows since 

!OX ~!K~!LjEj ,...,.!.LVjBj ~ V2 jBj 
c at c T c T c2 T c2 ' 

(A29) 

where L, T, and V denote characteristic length, time, and velocity respectively; 
since V ~ c, one has approximately 

V.A=O. 

As indicated in Appendix II, one may Fourier analyse: 

JI(r, 8; IX) = JI(IX) Re(Hm(lXr) )exp( -im8), 

AI(r, 8, Z; IX) = Al(lX) Re(Hm(lXr) )exp( -IX I Z l-im8). 

Substitution into (A27) gives 

whence 

-21X8(z) AIr(r, 8, Z; IX) -(I/r2)Alr(r, 8, Z; IX) + (2im/r2)AIO(r, 8, Z; IX) 

= -(47T/c)Jlr(r, 8; IX) 8(z), 

-21X8(z) AIO(r, 8, Z; IX) -(I/r2)AIO(r, 8, Z; 1X)-(2im/r2)Alr(r, 8, Z; IX) 

= -(47T/c)JIO(r, 8; IX) 8(z), 

-21X8(z)Alz(r,8,z;lX) = 0, 

A 1r(r, 8, 0; IX) = (27T/IXC)JIr(r, 8; IX) , 

AIO(r, 8, 0; IX) = (27T/lXc)JIO(r, 8; IX), 

A1z(r, 8, 0; IX) = o. 
Consequent~y, 

AIr(r, 8, Z; IX) = (27T/IXC)Jlr(r, 8; IX) exp( -IX I Z D , 
AIO(r, 8, Z; IX) = (27T/lXc)JU (r, 8; IX) exp( -IX I Z D, 
A1z(r, 8, z; IX) = o. 

(A29a) 

(A30a) 

(A30b) 

(A3Ia) 

(A3Ib) 

(A3Ic) 




