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Summary 

The differential equations for the shock parameters along shock rays in the 
case of propagation of a spherically developed shock wave in a polytrope with a 
toroidal magnetic field, obtained in Part I, have been integrated numerically for a 
particular set of initial values. The results are compared with the corresponding 
results in Part I obtained by neglecting certain small terms and it is found that 
the effect of this omission is not significant. This substantiates the results and 
justifies the simplification made in Part 1. 

1. INTRODUCTION 

The terms neglected in the differential equations (16) obtained for the shock 
parameters along shock rays in Part I, though small compared with the remaining 
terms, involve unknown spatial derivatives of the velocity components. Therefore, 
a method to determine these derivatives at unknown points is required so that the 
differential equations including these terms can be integrated. In the present paper, 
Butler's (1960) method of dealing with such terms has been extended and the relevant 
set of differential equations including these terms has been integrated for a particular 
set of initial values. A comparison of the results obtained with the corresponding 
results of Part I helps to ascertain the error involved as a result of the omission of 
these terms. 

There are available an infinite number of bicharacteristics, the curves of contact 
of the characteristic surfaces with the characteristic conoid, through each point on 
the solution surface for a system of quasi-linear hyperbolic partial differential 
equations in three inof'uendentvariables (Courant and Hilbert 1965). From the point 
of view of wave prop!cc ion, these bicharacteristics define the directions along which 
disturbances are propagated. The compatibility relations, which involve terms con­
taining the spatial derivatives of the velocity components along some of the bicharac­
teristics, are invoked to obtain further equations containing these derivatives. In 
the present case, however, it is found that two of the four spatial derivatives always 
appear, combined only as their sum, both in the differential equations as well as in 
the bicharacteristic relations, leaving only three unknown terms. Thus we require 
compatibility relations only along three bicharacteristics for the evaluation of these 
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terms at a point. The datum region at an initial time to-at is the field of flow bounded 
by the shock front at time to-at. This restricts the domain of dependence of a 
point p* (with t* > to-at; Fig. 1) and, therefore, we have to consider only those 
bicharacteristics of the retrograde characteristic conoid with vertex at p* which 
meet the datum region at real points. Three such bicharacteristics (Butler 1960) 
are chosen and difference relations are employed along them to elicit equations for 
the determination of the three unknown terms. 

to 

to-8t 

Shock surface 
S(t,T,Z )=constant 

Fig. I.-Diagram illustrating 
the segment of the shock ray 
(chained contour) and the 
bicharacteristic segments 1, 2, 
and 3 through a point P* on the 
shock. 

A step-by-step numerical integration scheme is set up at different points on the 
initial shock front to determine their positions after a time at and to determine 
the corresponding values of the shock parameters. The process is repeated to find 
the subsequent positions and orientations of the front. With the knowledge of these 
quantities, the flow immediately behind the front can be determined with the help 
of shock relations. 

II. COMPATIBILITY RELATIONS 

The characteristic surface elements dh(r, z, t) = 0 through any point for the set 
of equations (II) (equations (1) of Part I) satisfy the equation 

(~~r[ (~~r-(b2+c2){ (::r+(~:r)] = 0, 

and represent the possible manifolds of discontinuity or wave fronts associated with 
the motion of the fluid (Courant and Hilbert 1965). We use the same notations as 
in Part I. The characteristic satisfying Dh/Dt = 0 represents a streamline of the 
flow, whereas the second factor in square brackets represents the local normal cone, 
and the corresponding characteristic surface elements envelope the conoid 

(dr-udt)2+(dz-vdt)2 = A 2dt2. 
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The bicharacteristics through any point can now be expressed parametrically as 

dr = (u+A cos 1I)d.t, 

dz = (v+A sin lI)dt, 

(la) 

(lb) 

where 0 ~ II < 217, and they represent the propagation velocities of the wave fronts 
through that point. Let 

d 0 0 . 0 
dt = ot +(u+A cos II) or +(v+A sm II) oz' 

then djdt denotes differentiation along a bicharacteristic. Using this notation, the 
basic equations (11) can be combined to give 

dP du. dv 
dt +pA cosll<it+ pA smll dt 

2{ . 2 ou. (ou ov) 2 ov} 
= -pA sm II or -smllcosll oz + or +cos II oz 

pA ( oPo . oPo) (2 2) cos II 2 U +- cosll-+smll- +pA bo-b ---pa-, 
po or oz r r 

where the relation 

cos II o(/) + sin i(/) = _ (cos II oPo + sin II oPo + cos II b~) , 
or oz poor po oz r 

(2) 

obtained from the equilibrium conditions, has been used. Equation (2) is the com­
patibility relation, a combination of the basic equations which does not contain 
any differentiation in the direction normal to the characteristic surface, along the 
bicharacteristic curve specified by II. 

III. DETERMINATION OF oU ou + oV AND oV AT AN UNKNOWN POINT 
or'oz or' oz 

The numerical integration of equations (116) essentially requires the setting 
up of a numerical scheme which will enable us to find the solution at time t = to, 
if the solution is known at time t = to-!}'.t. As indicated above, this method suffers 
from the lack of knowledge of the terms 

ou 
or' 

ou + ov 
oz or' 

and 
ov 
oz 

involved in equations (116) at a point P*(t*, r*, z*), where t* > to-t:.t. To resolve 
this difficulty, we take three bicharacteristics, given by equations (1) for three 
different values of II, through the point p* (Fig. 1) in the backward direction and 
apply equation (2) along them in difference form between the point p* and their 
points of intersection with the plane t = to-t:.t. The three bicharactertistics that 
we choose correspond to II = w*±x* and w* through the point P*. The asterisk 
superscript denotes the value of a variable at the point P*. The first two of these 
three bicharacteristics lie on the shock surface. This fact can be shown as follows. 
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The shock surface 8(t, r, z) = constant is spanned by the integral curves of 

~~~=dt 
U cos W U sin W ' 

emanating from the initial shock front. Therefore, at any point P(t, r, z) on the shock 
surface, we have 

08 . 08 08 
Ucosw or +USillW Oz +8f = o. (3a) 

If a bicharacteristic direction, given by 

dr dz 
v+A sin 8 = dt, u+Acos8 

through the point P also lies on the surface we have further 

(Vcosw+ACOS8)~~ +(VSinw+Asin8)~~ + ~~ = 0, (3b) 

with the help of equations (19). Now using the relation 

U = - ~{(~~r+(:~rrt 
for the shock velocity, we can eliminate the derivatives of 8 from equations (3) and 
get 8 = w±X specifying the bicharacteristics through the point P which lie on the 
surface. 

IV. NUMERIOAL INTEGRATION 

General details of the procedure followed in this section remain the same 
as in Section VI of Part 1. A polytrope with the same physical properties has been 
considered. We take 10 different points on the initial front and numerically integrate 
the equations (lI6), supplemented by equations (lI7) and (lIS), in conjunction with 
equations (I6)-'(IS) for each of the initial points. The process is iterated and the 
solution obtained at any subsequent time. For the purpose of integration, however, 
a second-order Runge-Kutta method has been used which gives, for the system 
of differential equations 

dxt/dt = !t(Xi> t), i,j = 1,2,3, ... , 

the explicit formula 
x} = x~+Llt!t(x1,t*), (4) 

where 
t* = to+lLlt, xt = x~+lLlt!t(x7,tO), 

and the superscripts 1 and 0 refer to the final point and the initial point respectively. 
In order that the formula (4) may be applied for the integration of equations (lI6)-(lIS), 
we require the values of the unknown quantities 

(:;f, * 
(:; + :) , and (:f (5) 
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correct to O(at). For this, the bicharacteristics 6 = w*±x* and w* through the 
intermediate point, say p* (Fig. 1), are traced back to the initial region. The 
bicharacteristics are labelled 1, 2, and 3 respectively and variables at the points 
where they meet the plane t = to-at are denoted by the corresponding subscripts. 
The points (r(, Zt), i = 1,2,3, are determined from 

r, = r*-lat(u*+A * cos 6t), Zt = Z*-iat(v*+A*sin6t) , 

correct to O(at). The values of '\t, Wt, and all the physical variables can now be obtained 
at these points in the initial region. 

In this paper we have approximated the point (ra, za) with the point (rO, zO) 
itself. This accords with our limit of accuracy, as can be shown following Whitham 
(1958) and is, in fact, similar to his approximation of applying the compatibility 
relation along a characteristic to the flow quantities just behind the shock wave for 
two-variable problems. This simplifies the interpolations at the point (ra, za) to a 
considerable extent. The distributions of ,\ and w at the different points on the 
shock front at an initial time are expressed in terms of respective Chebyshev series, 
so that their values at any other point on the front as well as their derivatives along 
the front can be oonveniently evaluated. The values of other flow variables can now 
be determined with the help of the shock relations (19). Using these relations, the 
respective oompatibility relations along the three bioharacteristicsl, 2. and 3 are 

and 

where 

-sin2(w+x):; +iSin2(w+x)(:; + :)-oOS2(w+X): 

y d'\ y' dw y' +1' 
= .. 1 dt + .. 2sm x dt + .. asmx .. 4, 

-sin2(w-X) Ou +~sin2(w-x)(Ou + Ov)-COS2(w-X) Ov 
Or 2 oz Or oz 

yd'\ y' dw y' 
= .. 1 dt - .. 2sm X dt - .. asmx +'4, 

• 2 Ou+l · 2 (Ou+ ov) 2 Ov sm w- ~sm w - - -cos w-
Or Oz or Oz 

d'\ 
= '5 dt +'6, 

'1 = (3,\2 _3,\_E-1)EU2j,\aA2 , 

'2 = ('\-I)UjM , 

. '\-1 ('\-I)b~sinw 
'a = (-'7 smw +'scosw) '\poA - Ar ' 

( ,\-1) U3 
'4 = 3 T A2 a9 cos w + '10 sin w)+ '16 , 
'5 = {(,\-1)(2U+A,\)E,\-U}Uj,\aA2 , 
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( opO oBo opo) 
~6 = ~12ar +~138r +~148r cosw 

+ ( r opo + r oBo + r opo). + (A-l)b~cosw + r 
.. 12 & .. 13 8Z .. 148z sm w Ar .. 15, 

~7 = (6FU2 _1)BoOBO_(3Fb~+3HC~_I) U20Po+(3yHU2 _1)oPO 
A fLor Aor A or' 

~8 = (6FU2 _1)BoOBO_(3Fb~+3HC~_I) U2opo + (3yHU2 _1)oPO 
A fLoZ ~oz A OZ' 

~9 = 2BoF oBo -(Fb~+Hc~-t)! opo + yH oPo, 
fLPO or po or po or 

~1O = 2BoF oBo -(Fb~+Hc~-t)! opo + yH cpo, 
fLPO OZ po OZ po OZ 

2 2 
~1l = {(A-l)U+AA}/poA A , 

( A-I ) 1 
~12 = y-A-(2U+AA)HU+l ~1l- poA' 

( A-I ) Bo Bo 
~13 = 2-A-(2U+AA)FU+l ~1l-;-- fLpoA' 

( 2 2)A-l ~14= U-(2U+AA)(Fbo+ Hco) -A-U~l1' 

r = ( +A- 1 u2 +1(I_A2)b2 )(A-l)yUCOSW 
.. 15 Po A po 2 0 po 2 2 ' 

poA A r 
and 

r = { + A-I U2 +1(1+ 2A _A2)b2 }(A-l)yU COSW 
.. 16 Po A po 2 0 po 2 2 • 

y poAA r 

If these equations are applied in difference form along the respective bicharac­
teristics, they may be solved for the three terms (5) at any unknown point P*. 

The system of differential equations (Il6)-(IlS) can now be integrated using 
formula (4). The integrations were performed on the CDC 3200 computer of Monash 
University with a time step !1t = 0·1 and were carried nearly as far out as the 
surface. Only the case with Ms,i = 5 and f32 = 0·01 was considered. For the sake 
of comparison, the method discussed in Part I (Section VI) for recording the results 
of integration at any instant was followed. 

V. RESULTS AND DISCUSSION 

The results of the foregoing integration determine completely the position 
and orientation of the shock front at any time as well as the flow behind it as it 
propagates outwards with the initial value of the shock Mach number Ms,i = 5 
in the toroidal magnetic field whose strength corresponds to f32 = 0·01. The varia­
tions recorded for some of the shock parameters are presented in the following figures. 
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The corresponding curves obtained in Part I have also been depicted therein for the 
sake of comparison and they appear as dashed lines. 

(i) Density Ratio 

Figure 2 depicts the variations of AO and A2 as functions of Ro. The nature 
of these variations are similar to those obtained in Part 1. We observe, further, 
that though the values of A obtained in the present case never exceed those obtained 
in Part I, the difference itself is very small and is always less than 0'5%. In fact, 
this difference can be seen to be negligible in the layers beyond 0·6R. 
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Fig. 2.-Profiles comparing the variations of 
density ratio'\ in the present case (solid curves) 
with those obtained in Part I (dashed curves), 

as a function of Ro. 

(ii) Shock Mach Number 

I /i r 27 
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s 
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0-2 0-3 0-4 0·5 0-6 0-7 0-8 0-9 1-0 

Ro 
Fig. 3.-Profiles comparing the variations of 
shock Mach number M in the present case 
(solid curves) with those obtained in Part I 

(dashed curves), as a function of Ro. 

The variations of Mo and M 2 (Fig. 3), and hence of M itself, obtained in the 
present case are also similar to those obtained in Part 1. Though the overall values 
of M in this case are smaller within the region R = 0·7 R and greater outside this 
region than the corresponding values in Part I, it is found that the difference does not 
exceed lO % anywhere inside the region 0·85 R. Beyond this region, the difference 
does grow large; nevertheless, as pointed out in Part I, results obtained for this 
region may not be physically relevant because of the neglect of radiative processes. 

The variations of other parameters and physical variables are also in good 
agreement with those obtained in Part I, as can be expected after comparing respective 
values of A and M, and bearing in mind that the values of the flow variables behind 
the shock can always be expressed in terms of two shock parameters and the values 
of the physical variables in the medium ahead of the shock front. 

The results obtained in the present paper are correct to second order in t:.t 
only, and in view of this the agreement of the results is very good. The inclusion of 
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the terms involving spatial derivatives of velocity components gives rise to consider­
able complexity in integration, which may lead to large computational errors if we 
try to find results correct to higher orders in !l.t. It is possible to minimize these errors; 
but this would involve much computational time. The results of this paper show 
that whilst it is possible to devise computational schemes to deal with equations of 
the type (Il6), the simpler treatment given in Part I is sufficiently accurate to 
determine the essential features of the shock propagation. 
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