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Ab8tract 

A one· dimensional spin system with the following Hamiltonian is considered. 

N N N 

H = - ~ J(l+y) S, S'H +J(l-y) sf SfH +hSj -(J1/N) ~ ~ S~ Sj. 
j~ i~j~ 

The partition function and the Gibb's free energy are calculated exactly in the 
thermodynamic limit, using techniques which are well known in the theory of 
superconductivity. This calculation illustrates explicitly the similarity between 
the phase transition in superconductivity and the molecular field transitions in spin 
systems. The model is a generalization of the molecular field Ising model and it is 
shown that the presence of the x-y interaction reduces the critical temperature. 
It is conjectured that this is a general result, i.e. adding a perpendicular interaction 
to the Hamiltonian of the Ising model tends to disorder the spins and hence lower 
the critical point. 

1. INTRODUCTION 

The study of the phenomena of phase transitions can be approximately divided 
into two categories. The first category deals with "classical theories" or "molecular 
field theories" and includes such studies as the Van der Waal's theory of liquid-gas 
transitions, the Weiss theory of ferromagnetism, and the BCS theory of superconduct­
ivity. These apparently different physical phenomena can be classified together, since 
their solutions are found to have many common properties at the critical point. In 
fact Brout (1965) has discussed these phenomena by looking at the formal similarities 
that exist amongst them. The second category of models can be regarded as those 
that can be solved exactly, or those models whose critical-point properties can be 
obtained by series expansions (for reviews of these results see Fisher 1967 and 
Lebowitz 1968). These models have made it clear that the molecular or mean field 
theories of magnetism are quantitatively inaccurate near the critical point. 

In this paper we are concerned with studying a model that belongs to the 
molecular field theory category. The model is a one-dimensional spin! system with 
long-range z-z interactions and short-range x-y interactions. We show that by 
transforming the spin operators into Fermi operators the Hamiltonian resembles the 
reduced Hamiltonian of superconductivity. The thermodynamic properties can then 
be obtained exactly in the thermodynamic limit using the Bogoliubov, Zubarev, 
and Tserkovnikov (BZT) technique. 
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Although molecular field models are not quantitatively correct at the critical 
point, the model which we are studying is useful for several reasons. Firstly, we can 
show explicitly the similarity between the BCS mechanisms of superconductivity 
and the molecular field model of ferromagnetism. Emch (1967) has given a discussion 
of the similarity between the mean field Heisenberg model and the BCS model. The 
present work can be regarded as an explicit example of the general ideas discussed by 
Emch. Secondly, this model has interest as it can be regarded as an extension of the 
X-Y model, discussed first by Lieb, Schultz, and Mattis (1961) and Katsura (1962). 
The X-Y model has attracted a great deal of attention recently through its time­
dependent properties (Niemeijer 1967; Barouch and Dresden 1969; Girardeau 1969) 
and its analogies to the two-dimensional Ising model (Barouch and McCoy, personal 
communication). It is hoped in the future to extend the X-Y calculations to the 
model considered here. Finally, this model is of interest because of its relation to 
recent inequalities demonstrated by Griffiths (1967). Griffiths has shown rigorously 
that if one increases the z-z interactions of the Ising model the new critical tem­
perature will be equal to or greater than the original critical temperature. From this 
model, the present paper calculates what happens to the critical temperature of the 
Ising model if x-x or y-y interactions are also present. The critical point is lowered 
and it is conjectured that perhaps this is a general result for all Ising models. 

II. CALCULATION OF THE PARTITION FUNCTION 

We consider a one-dimensional spin t system with the Hamiltonian 

where 
N 

Ho = - ~ J(l+y) sj sj+1 +J(l-y) Sf sf+1 +hSj, 
j~I 

N N 

HI = -(JI/N) ~ ~ S~ sj . 
i~I j~I 

(1 ) 

The symbols Sj, Sf, and S] are the Pauli spin operators, h is the external magnetic 
field, and N is the number of spins. The part of the Hamiltonian in the single sum­
mation Ho corresponds to the X-Y model, which has been solved exactly by Lieb, 
Schultz, and Mattis (1961) and Katsura (1962). The terms in the double summation 
HI represent infinite long-range z-z interactions, which correspond to the Weiss 
model of ferromagnetism. We shall see that the addition of the term HI does not 
make the model impossible to solve, although if there were only finite range inter­
actions the problem would be insoluble. 

We write HI as 

(2) 

To calculate the partition function of this model, it is necessary to write the spin 
operators in terms of Fermi operators. The required transformations have been well 
developed (e.g. Katsura 1962) and we use the following results, which hold for a cyclic 
chain with an even number of spins: 
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N iN 
~ sf sf+! +sf sf+! = ~ (bk bk +b!.kb-k)cos(27rk/N) , (30,) 
"~1 " k~l 

N tN ' 

~ sf sf+! -sf sf+! = i ~ (bh!.k'+bk b-k)sin(27rk/N) , (3b) 
i~l k~l 

N iN 
~ s: = ~ bk bk +b!'kb-k -IN, (3c) 
"~1 k~l 

where bk and bk are Fermi creation and annihilation operators. Substituting equations 
(3) into (2) and (1), ~e obtain 

tN 
H = ~ [{Jl-h-J cos(27rk/N)}(bk bk +b!.kb-rc)-iJysin(27rk/NHbk b!.k +bkb-k)] 

k~l 

N N 
-(Jl/N) ~ ~ bk.bk,bk,bk,-!J1(N-l)+INh. 

k,~l k,~l 

(4) 

The transformed Hamiltonian is now similar in appearance to the reduced Hamiltonian 
of superconductivity, and we shall calculate the partition function by the BZT 
technique (for a good review of this technique see Blatt 1964, Ch. 6). The BZT 
technique consists of introducing constants Wk and then rewriting the quartic part of 
the Hamiltonian H as 

(5) 

where 

If the first term on ~he right-hand side (the double summation) of equation (5) 
is ignored, the resulting Hamiltonian is quadratic and the partition function can be 
calculated. The aim of the BZT method is to adjust the constants Wk in such a way 
that the correction arising from the neglected term becomes completely neglible in 
the thermodynamic limit. Bogoliubov (1960) has shown that this is possible if we 
define Wk by equation (7) below. The partition function Z is defined as 

Z = Trace{exp( -,8H)} , 

where, using equations (5) and (4), H is given by 

iN 
+ ~ [{J1-h-J cos(27rk/N) -2L1}(bk bk +b!.kb-k) 

k~l 

(6) 
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and Wk is given by 
(7) 

To calculate the partition function we diagonalize fi, using the Bogoluibov­
Valatin transformation. Defining new Fermi operators by 

(8) 

we substitute equations (8) into the expression for fi and choose Uk and Vk such that 
the coefficients of the non-diagonal elements are zero. We obtain after some standard 
algebraic manipulations . 

where 

iN 

= tNh-th(N -1)+(NjJ)Ll 2 + ~ (ak ak -t)Ak+lAk , 
k~-!N 

Ak = h -h-2Ll-J COS(27TkjN), 

Bk = -iJysin(27TkjN) , 

(9) 

Now that the Hamiltonian is diagonalized we can evaluate the partition function 
trivially to give 

where 

iN 
Z = c II {exp(t,BAk)+exp(-t,BAk)}exp(-l,BAk) 

k~-'N 

iN 
= 2N C II cosh(t,BAk ) exp( -t,BAk) ' 

k~-.N 

This expression is only exact in the thermodynamic limit and so we define the thermo­
dynamic free energy as 

F = lim N-1logZ 
N-.oo 

where 

A(O) =h-h-2LJ-JcosO, B(O) = -iJysinO. 
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We note the similarity of the expression (10) to the solution of the X-Y model, 
the main difference being that A( 8) in this case is a function of the, as yet undetermined, 
constant ,1. It is also intriguing to note the similarity of (10) with Onsager's (1944) 
solution of the two-dimensional Ising model. 

To obtain an expression for the consta.nt ,1, we use equations (5) a.nd (7) and the 
diagonal representation for 11. We obtain 

Substituting in equation (7) and taking the thermodynamic limit gives 

,1 = ~t(J1/21T) f~" dO {A (8)/A(8)}tanh{t,BA(8)} +tJ1. (11) 

Thus ,1 is determined by an integral equation (since A(8) is a function of ,1) 

and, as would be expected, it closely resembles the integral equation for the energy 
gap parameter obtained in the solution of the superconductivity problem. Un­
fortunately there does not exist a solution to this equation. However, it can be 
studied in several limiting cases. Firstly, in the X-Y model limit (J1 = 0), we obtain 
,1 = 0 and the solution in equation (10) reduces to that given by Katsura (1962). 
Secondly, in the Weiss model limit (J = 0), we obtain 

B(8) = 0 and. 'A(O) = A(8) = J 1-h-2L1. 

Thus equation (11) becomes a simple transcendental equation, typical of molecular 
field models, 

(12) 

In the theory of superconductivity, ,1 is often called the energy gap parameter. 
For our model it is easily shown that ,1 is related to the z component of the magnetiza­
tion of the spin system. We define the magnetization M as 

N N 
M = N-1 ~ (81) = N-1 ~ <bk bTl; -t) = L1/J1 -t, 

1=1 k=1 (13) 
where 

< ... ) = Tr{ ... exp(-,BI1)}Z-l. 

This same relation between M and ,1 can be obtained by defining M = ,B-1 oF/oh. 
Substituting (13) into (11) we obtain 

M = -t(21T)-1 f~" dO {A (O)/A(8)}tanha,BA(8)} , (14) 

where A (8) can now be written as 

A(O) = -h-JcosO-2J1M. 
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We also note that equation (12) can be written as 

which is the well-known molecular field result (Brout 1965). 

III. EVALUATION OF THE CRITICAL POINT 

Although the integral equation (14) makes it difficult to calculate the thermo­
dynamic quantities, we can calculate the critical point for a few special cases. For 
the system to have a critical point, we first require that the external field h be zero. 
To determine the critical point f3e, we assume that M tends to zero as f3 --+ f3e from 
above (f3 = IjkT). Thus we can take M arbitrarily small as f3 --+ f3e and can expand 
the integrand of (14) in powers of M. This will give us a relation which determines 
f3e. We shall do the calculations for the explicit case when y = 0 as it simplifies the 
algebra. In this case, equation (14) becomes 

M = -t(27T)-1 f~1T dBtanhaf3(JcosB+2hM). 

Retaining only the terms of order M we obtain 

M = -t(27T)-1 f~1T dB {tanh(tf3J cos B)+f3JI M} 

X {1-f3JI M tanh (tf3J cos B)} 

= -t(27T)-1 f~1T dB f3hM{I-tanh2(tf3J cosO)}. 

Hence, we obtain the relation detennining f3e, 

(f3eh)-1 = t(27T)-1 f~1T dBsech2(tf3eJcosB). 

(15) 

(16) 

If J = 0, we obtain (hf3e)-1 = t, which is the molecular field result. With a negative 
or positive J, we obtain (JI f3c)-1 < t, since sech2x ~ 1. Thus, the critical tem­
perature Te decreases when the X-Y interaction is present. From equation (16) one 
can calculate the dependence of the critical temperature on J and show that Te is a 
monotonically decreasing function of J. As J --+ 00, T e --+ 0 which corresponds to 
the absence of a critical point in the X-Y model. 

One can calculate the critical temperature for all values of y, and the result for 
y = 1 is worth noting as this corresponds to the addition of only the x-x interaction. 
The critical temperature is again lowered, but not so quickly as in the case y = o. 
Thus, the disordering effect of the x-x and y-y interaction is greater than just the 
x-x interaction. If this were a general result, we would expect the Ising, X-Y, and 
Heisenberg models in two and three dimensions to have critical temperatures TI, 
T x-y, and TH such that TJ ;;::0 T X-y ;;::0 TH. According to series expansion results 
(Fisher 1967; Stanley 1967, Betts, Elliot, and Lee, personal communication) this 
appears to be the case. 



ONE-DIMENSIONAL SPIN SYSTEM 933 

Griffiths (1967) has shown that for Ising ferromagnets the correlation function 
is a monotonic increasing function of the interactions. Hurst and Sherman (1969, 
1970) have enquired whether the corresponding assertion is correct for the Heisenberg 
ferromagnet. They have shown that the correlations are not monotonic increasing 
for a three-spin Heisenberg system. In the present model, we are able to produce a 
direct counter-example of the extension of the Griffiths inequality to Heisenberg-like 
systems with an infinite number of spins. Using equation (15) we can show that 

for 

Although the straightforward generalization of the Griffiths inequalities to more 
general systems is not correct, this model may be fruitful in suggesting whether 
additional conditions can be imposed to restore the inequalities. 

IV. CONCLUSIONS 

The present paper has introduced a model of a spin system which has allowed 
an exact solution. This model has intrinsic interest not only because it is exactly 
soluble, but also because it can be used to study the effect of non-commuting operators 
in the Ising spin Hamiltonian. We have seen that the critical temperature is lowered 
although the critical indices remain the same as the molecular field values. In 
particular, it provides a convenient example of how the generalization of the Griffiths 
(1967) inequalities does not hold. In the future it is hoped to produce some calcu­
lations of time-dependent properties of this model. 
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