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TEMPERATURE PROFILES IN SOME HEAT CONDUCTION PROBLEMS 

WITH SPHERICAL SYMMETRY* 

By A. BRowNt and G. L. DowNEst 

Temperature profiles are known for several composite systems involving a 
sphere losing heat into an infinite surrounding medium. Lovering (1935, 1936) con
sidered the diffusion of heat from a sphere into a cooler medium with the same thermal 
properties, i.e. the same conductivity K and diffusivity k. The initial temperatures 
of the two bodies were assumed constant. Further, Philip (1964, 1965) and Brown 
(1965) have obtained results for the system in which K1 -=1= K2 and k1 -=1= k2, where the 
suffixes 1 and 2 denote sphere and surrounding medium respectively, again the 
temperatures being constant initially. Recently Brown (1969) has extended this 
work to systems in which the temperature within the core at t = ° is a function 
of r, the distance from the centre of the sphere. The present paper evaluates several 
temperature profiles, given as formal integral solutions in this last paper by Brown. 

The functions which Brown (1969) considered were of the forms rnand 
r-1 sinkr for various nand k. As it is possible to approximate any continuous function, 
as closely as we wish, with a polynomial or a Fourier series, then once we have solu
tions for the above forms we can solve the conduction problem for any continuous 
initial temperature distribution by superposition of the results already obtained. 
In this paper we tabulate results for n = 0, 1, and 2 and k = Tr/a and Tr/2a, where 
a is the radius of the sphere. 

Although the problem has many applications (Philip 1964), the geophysical 
problem of a hot igneous body suddenly intruding into a cooler deposit is most 
widely known. As a consequence the conductivity and diffusivity, which are assumed 
constant, have been chosen to represent the intrusion of granite into limestone. 

Temperature Integrals 

The notation used in this paper is: a, radius of sphere; r, distance from centre 
of sphere; K1 and K2, conductivity in core and outer medium respectively; k1 and 
k2, diffusivity in core and medium respectively; T1 and T 2, temperature in core and 
medium respectively; and To, a constant temperature. We define also 

R = ria, 

L = (K2-K1)/K1, 

Q = K 2/K1 u, 

T(R, t) = T 1(R, t)/To for R:( 1, 

= T 2(R, t)/To for R > 1 . 
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The notation differs slightly from that of Brown (1969), as nondimensional quantities 
are used. 

Brown found the solutions were of the form 

T(R,t) = L'CJJ A(u) F1(u,R,t) du, R ~ 1, 

= foro A(u)E'2(U,R,t) du, R> 1, 

where the functions Fl and F2 were independent of the initial conditions and were 
found to be given by 

F1(u,R,t) = (QjR)sinuRexp(-u2tjT), 

F 2(u, R, t) = (I/Ru)[(u cosu +Lsin u)cos{u(R-l)ja} 

+Qu sin u sin{u(R-l )ja}]exp( -U2tjT). 

It remains only to specify the "amplitude factor" A(u) for each initial temperature 
distribution. Thus if: 

(1) T(R,O) = Rn, R ~1, 

=0, R>I, 
then 

A(u) = (2j7T){'6' n(u)}jD2, 
where 

D2 = (ucosu +Lsinu)2+(Qusinu)2 

and the '6' n(u) are defined by 

'6'o(u) = sinu-ucosu, 

'6'l(U) = 2 sin u -u cosu -2u-1(1- cosu) , 

and for n ~ ° 
'6' n+2(U) = (n+3)sin u -u cos u -u-2(n+2)(n+3)'6' n(u) • 

(2) T(R,O) = (7TRh)-l sin7TRh, R ~ 1, 

=0, R> 1, 
then 

where D2 is already defined and 
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We also use the relations 

H(t) = -47TK2a f: (8T/8R)R~1 dt 

for the total heat loss from the core after time t, and 

for the total amount of heat initially in the core. 
Brown (1969) found an asymptotic expansion for the fraction of the total heat 

content of the system still contained in the core, for large values of the time t. The 
expansion was 

{Ho-H(t)}/Ho = (a3/67T!)(Kl/K2)(I/klk~)t-3/2 +0(t-5/2) 

= (1/67T!)(K1/K2 u)(tjT)-3/2 +0(t-5/2) . 

The leading term of this expression is independent of the initial conditions 
considered. 

Evaluation of Temperature Integrals 

The numerical integration was carried out on an IBM 360/50 computer using 
a program based on Simpson's rule. The approximation used 2m+ 1 points, m increas
ing from 2 to a maximum of 15, until an accuracy of five significant figures was 
obtain~d; the results have been tabulated to four figures only. The upper limit of 
the integration was reduced from infinity to x, the value of x being taken so that 
integration from x to infinity gave a result < 10-5. 

Some difficulty was encountered in finding results for the cases T(R,O) = R 
or R2; however, immediate solutions were obtained when the forms 2+R and 
I+R-R2 were used. 

In order that results could be compared directly, a restriction was placed on the 
initial temperature distributions. We required that the heat content Ho was the 
same for each distribution. The five cases evaluated were for R ~ 1: 

(1) T(R,O) = 1, (2) T(R,O) = (4j3)R, (3) T!R,O) = (5/3)R2, 

(4) T(R,O) = (7T/3R)sin(7TR), (5) T(R, 0) = (7T2/12R)sin( t7TR) . 

Conductivities and diffusivities used were (in CGS units): Kl = 0·008, kl = 0·016 
for granite and K2 = 0'005, k2 = 0·008 for limestone and a was taken to be 1000 m. 

Lovering's (1935, 1936) results were also recalculated and tabulated for com
parison (case (6), Table 1). For this problem he took Kl = K2 = 0·008, kl = k2 = 

0'016, and again a = 1000 m. 

Evaluations at Different K, k 

It is clear from the general forms of the integrals that each depends on the 
ratios of Kl/K2 , kl/k2' and t/T only. It follows that the numerical results we have 
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TABLE 1 

TEMPERATURE DISTRIBUTIONS T(R, "') FOR DIFFERENT INITIAL CONDITIONS (FOR R <; 1) 

For the conditions (1) to (5) Kl/K2 = 1·6 and kl/k2 = 2'0, while for Lovering's problem (6) 
Kl/K2 = k 1/k2 = 1 

r t (10' yr) = 5 
(m) R a = 0'25 

(1) T(R,O) = 1 

500 
1000 
1500 
2000 
3000 

0·5 
1'0 
1·5 
2·0 
3'0 

0'4045 
0'2698 
0'0770 
0'0096 

4000 4'0 
o 
o 
o 
o 

5000 5'0 
6000 6'0 

(2) T(R,O) = (4/3)R 

0'5 
1·0 
1·5 
2'0 
3'0 
4·0 
5·0 
6'0 

0'3847 
0·2638 
0'0793 
0'0104 

o 
o 
o 
o 

(3) T(R,O) = (5/3)R' 

0·5 
1·0 
1·5 
2'0 
3'0 
4·0 
5·0 
6'0 

0'3713 
0'2596 
0'0818 
0'0118 

o 
o 
o 
o 

(4) T(R,O) = ("/3R)sin(,,R) 

0·5 0·4662 
1·0 0·2889 
1·5 0·0697 
2·0 0'0072 
3·0 0 
4·0 0 
5'0 0 
6·0 0 

10 
0'50 

0'2250 
0·1764 
0'0840 
0'0258 
0'0006 

o 
o 
o 

0·2194 
0·1732 
0'0839 
0·0263 
0·0006 

o 
o 
o 

0·2156 
0·1709 
0·0847 
0·0276 
0·0015 
0·0001 

o 
o 

0·2425 
0'1865 
0·0842 
0·0240 
0·0006 

o 
o 
o 

(5) T(R,O) = ("'/12R)sln(!,,R) 

0·5 
1·0 
1·5 
2·0 
3·0 
4·0 
5·0 
6·0 

0'4137 
0·2727 
0'0759 
0'0092 

o 
o 
o 
o 

0·2276 
0'1780 
0·0841 
0'0255 
0'0006 

o 
o 
o 

(6) T(R,O) = 1 (Lovering's problem) 

0·5 0'3605 0'1777 
1·0 0·2196 0·1312 
1'5 0·0935 0'0790 
2·0 0·0270 0·0386 
3·0 
4'0 
5·0 
6'0 

0·0006 
o 
o 
o 

0'0048 
0·0003 

o 
o 

15 
0·75 

0·1513 
0·1270 
0'0745 
0'0321 
0·0024 
0·0001 

o 
o 

0·1487 
0'1252 
0'0740 
0·0323 
0'0025 
0'0001 

o 
o 

0·1470 
0'1247 
0·0745 
0·0333 
0·0032 
0'0002 

o 
o 

0'1592 
0·1326 
0'0760 
0'0316 
0·0020 
0'0001 

o 
o 

0'1525 
0·1278 
0'0747 
0·0321 
0·0024 
0'0001 

o 
o 

0'1094 
0·0881 
0·0614 
0'0370 
0·0086 
0·0011 
0·0001 

o 

20 
1'0 

0'1118 
0·0974 
0·0640 
0'0332 
0'0045 
0·0003 

o 
o 

0·1103 
0·0963 
0'0636 
0·0333 
0·0046 
0'0003 

o 
o 

0·1094 
0·0963 
0'0641 
0·0341 
0·0055 
0·0004 

o 
o 

0·1165 
0·1010 
0·0655 
0·0332 
0·0043 
0·0003 

o 
o 

0·1125 
0·0979 
0'0642 
0·0332 
0·0045 
0·0002 

o 
o 

0·0758 
0·0640 
0·0484 
0·0327 
0·0106 
0'0022 
0·0003 

o 

40 
2'0 

0·0505 
0·0468 
0·0372 
0'0261 
0·0090 
0·0019 
0'0003 

o 

0·0501 
0·0463 
0'0370 
0·0260 
0·0090 
0'0020 
0·0003 

o 

0·0500 
0·0464 
0'0370 
0·0268 
0·0099 
0·0028 
0'0003 

o 

0·0516 
0'0477 
0·0378 
0'0263 
0·0089 
0·0019 
0'0003 

o 

0·0506 
0'0469 
0·0372 
0·0261 
0·0090 
0·0019 
0·0003 

o 

0·0296 
0·0271 
0'0234 
0·0190 
0'0105 
0·0046 
0·0016 
0·0004 

60 
3'0 

0'0305 
0·0289 
0·0246 
0'0193 
0'0093 
0·0033 
0·0008 
0'0002 

0'0303 
0·0288 
0·0245 
0'0192 
0·0093 
0·0033 
0'0008 
0·0002 

0'0304 
0·0295 
0'0253 
0'0200 
0·0102 
0·0040 
0·0010 
0'0002 

0'0309 
0·0293 
0'0249 
0'0195 
0·0093 
0'0032 
0'0008 
0·0002 

0·0306 
0·0290 
0·0247 
0'0193 
0'0093 
0·0032 
0'0008 
0·0002 

0·0167 
0'0157 
0·0142 
0'0123 
0·0083 
0'0047 
0·0023 
0'0010 

80 
4·0 

100 
5'0 

0·0210 0'0156 
0'0202 0'0151 
0·0178 0'0137 
0'0148 0'0117 
0·0084 0'0075 
0·0038 0'0039 
0·0014 0·0017 
0'0004 0'0006 

0·0209 
0·0201 
0'0178 
0'0147 
0·0084 
0·0038 
0·0014 
0·0004 

0'0209 
0'0201 
0·0178 
0'0156 
0'0093 
0'0038 
0·0014 
0'0004 

0'0212 
0·0204 
0·0180 
0'0149 
0·0085 
0·0038 
0'0013 
0'0004 

0·0210 
0·0202 
0·0178 
0·0148 
0·0084 
0'0038 
0·0013 
0'0004 

0'0110 
0·0105 
0'0098 
0·0088 
0·0065 
0·0043 
0·0025 
0'0013 

0'0156 
0'0151 
0'0136 
0'0117 
0'0075 
0'0039 
0'0017 
0'0006 

0'0156 
0'0151 
0'0137 
0'0117 
0'0075 
0'0039 
0'0017 
0'0006 

0'0158 
0'0152 
0'0138 
0'0118 
0'0075 
0'0039 
0'0017 
0'0006 

0'0156 
0'0151 
0'0137 
0'0117 
0'0075 
0'0039 
0·0017 
0'0006 

0'0080 
0'0077 
0'0072 
0'0066 
0·0052 
0'0037 
0'0024 
0'0014 

120 
6'0 

0'0122 
0'0119 
0·0109 
0·0096 
0'0065 
0·0038 
0'0019 
0·0008 

0·0122 
0'0118 
0'0109 
0·0096 
0·0065 
0'0038 
0·0019 
0·0008 

0·0122 
0'0119 
0·0109 
0·0096 
0·0065 
0·0038 
0'0019 
0·0008 

0·0123 
0·0119 
0·0110 
0·0096 
0'0066 
0'0038 
0·0019 
0'0008 

0·0122 
0·0119 
0·0109 
0·0096 
0'0065 
0·0038 
0'0019 
0'0008 

0'0061 
0·0059 
0·0056 
0·0052 
0·0043 
0'0032 
0·0022 
0·0014 
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obtained are applicable to all systems in which KIIK2 = 1·6 and kl/k2 = 2'0, and 
for which tIT (= tkl/a2) takes the given set of values, defined by tIT = 1'0009152a:, 
for a: = 0'25, 0·5, 0'75,1,2, ... , 6. For the kl and a we have used in calculations, 
this results in values of the time t at which temperature distributions are determined 
of exactly 5000, lO 000, 15000 yr .... 

Numerical Results 

Results of the calculations are given in Table l. Profiles for times corresponding 
to a: = 0'125, 0'25, ... ,2·0 are shown in Figure l(a) for the case in which the initial 
temperature distribution is uniform. Profiles for T(R,O) (R ~ 1) of the forms R, 
R2, (1 I7fR)sin(7fR) , and (2/7fR)sin(i7fR) are very similar and for R > 3 or a: > 3 are 
indistinguishable within 2% from the case T(R, 0) = l. Results for Lovering's problem 
are also shown (Fig. l(b» for comparison, and as expected it is seen that the tempera
tures inside the core fall more rapidly than in the problems considered here, as 
the conductivity and diffusivity in the outer regions have been increased. 

0·7 <>=0·125 <>=0·125 

0·6 

0·5 

0·4 

T 
0·3 

0·2 

0·1 

(a) (b) 

0 1·0 2·0 3·0 3·0 

R 

Fig. I.-Temperature profiles for constant initial temperature at times corresponding 
to the indicated values of <X for (a) the present work (Kl/Ks = 1'6, kl/k2 = 2·0) and 

(b) Lovering's problem (Kl/K2 = kl/k2 = 1). 

The fraction of the total heat which remains in the core after various times t 
(or a:) was estimated, using Simpson's rule over lO points in the core, for comparison 
with results obtained using the asymptotic expansion for large t. It would seem 
that this approximation is valid for a: ~ 4. 

Geophysical Problem: The Laccolith 

The present diffusion problem ~s been considered with the geophysical applica
tion in mind; however, by necessity, the conditions have been idealized to produce 
a system which is mathematically manageable while retaining some degree of 
applicability. In problems which involve a reasonably low temperature difference 
tlJ.e difficulties may not arise. The geophysical case requires temperature differences 
of perhaps lOOO°C, and as a result it must be taken into account that the core may 
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be molten. The effects of the latent heat of fusion released when the molten materia.l 
solidifies, the changes in diffusivity (probably small), and the conductivity (large) 
with temperature must be averaged out. 

Lovering (1935) states that the latent heat of fusion can be as much as 25% 
of the total heat of the molten core, though in most cases it will be considerably less. 
Further, he suggests that the error involved in neglecting this quantity can be 
minimized by increasing the radius of the intrusive material, or by increasing the 
initial temperature, proportional to the amount of heat released in the form of latent 
heat of fusion. The latter method is better for large values of a. Errors in using 
constant conductivity and diffusivity are minimized by averaging over the range of 
temperatures considered. 

It would appear from Table 1, taking an initial temperature difference of 
1000°0, that the heat effects do not extend very far; for R > 3, where there is at 
most 10°0 rise in temperature, effects are negligible. 
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