SHORT COMMUNICATIONS

TEMPERATURE PROFILES IN SOME HEAT CONDUCTION PROBLEMS WITH SPHERICAL SYMMETRY*

By A. Brown \dagger and G. L. Downes \dagger

Temperature profiles are known for several composite systems involving a sphere losing heat into an infinite surrounding medium. Lovering (1935, 1936) considered the diffusion of heat from a sphere into a cooler medium with the same thermal properties, i.e. the same conductivity K and diffusivity k. The initial temperatures of the two bodies were assumed constant. Further, Philip (1964, 1965) and Brown (1965) have obtained results for the system in which $K_{1} \neq K_{2}$ and $k_{1} \neq k_{2}$, where the suffixes 1 and 2 denote sphere and surrounding medium respectively, again the temperatures being constant initially. Recently Brown (1969) has extended this work to systems in which the temperature within the core at $t=0$ is a function of r, the distance from the centre of the sphere. The present paper evaluates several temperature profiles, given as formal integral solutions in this last paper by Brown.

The functions which Brown (1969) considered were of the forms r^{n} and $r^{-1} \sin k r$ for various n and k. As it is possible to approximate any continuous function, as closely as we wish, with a polynomial or a Fourier series, then once we have solutions for the above forms we can solve the conduction problem for any continuous initial temperature distribution by superposition of the results already obtained. In this paper we tabulate results for $n=0,1$, and 2 and $k=\pi / a$ and $\pi / 2 a$, where a is the radius of the sphere.

Although the problem has many applications (Philip 1964), the geophysical problem of a hot igneous body suddenly intruding into a cooler deposit is most widely known. As a consequence the conductivity and diffusivity, which are assumed constant, have been chosen to represent the intrusion of granite into limestone.

Temperature Integrals

The notation used in this paper is: a, radius of sphere; r, distance from centre of sphere; K_{1} and K_{2}, conductivity in core and outer medium respectively; k_{1} and k_{2}, diffusivity in core and medium respectively; T_{1} and T_{2}, temperature in core and medium respectively; and T_{0}, a constant temperature. We define also

$$
\begin{aligned}
& R=r / a, \quad \quad \quad \quad \sigma=\left(k_{2} / k_{1}\right)^{\frac{1}{2}}, \quad \tau=a^{2} / k_{1}, \\
& L=\left(K_{2}-K_{1}\right) / K_{1}, \quad T(R, t)=T_{1}(R, t) / T_{0} \quad \text { for } \quad R \leqslant 1, \\
& Q=K_{2} / K_{1} \sigma, \quad=T_{2}(R, t) / T_{0} \quad \text { for } \quad R>1 .
\end{aligned}
$$

[^0]The notation differs slightly from that of Brown (1969), as nondimensional quantities are used.

Brown found the solutions were of the form

$$
\begin{array}{rlrl}
T(R, t) & =\int_{0}^{\infty} A(u) F_{1}(u, R, t) \mathrm{d} u, & & R \leqslant 1 \\
& =\int_{0}^{\infty} A(u) F_{2}(u, R, t) \mathrm{d} u, \quad & R>1
\end{array}
$$

where the functions F_{1} and F_{2} were independent of the initial conditions and were found to be given by

$$
\begin{aligned}
& F_{1}(u, R, t)=(Q / R) \sin u R \exp \left(-u^{2} t / \tau\right) \\
& \begin{aligned}
& F_{2}(u, R, t)=(1 / R u)[(u \cos u+L \sin u) \cos \{u(R-1) / \sigma\} \\
&+Q u \sin u \sin \{u(R-1) / \sigma\}] \exp \left(-u^{2} t / \tau\right)
\end{aligned}
\end{aligned}
$$

It remains only to specify the "amplitude factor" $A(u)$ for each initial temperature distribution. Thus if:

$$
\begin{align*}
T(R, 0) & =R^{n}, & & R \leqslant 1 \tag{1}\\
& =0, & & R>1
\end{align*}
$$

then

$$
A(u)=(2 / \pi)\left\{\mathscr{C}_{n}(u)\right\} / D^{2}
$$

where

$$
D^{2}=(u \cos u+L \sin u)^{2}+(Q u \sin u)^{2}
$$

and the $\mathscr{C}_{n}(u)$ are defined by

$$
\begin{aligned}
& \mathscr{C}_{0}(u)=\sin u-u \cos u \\
& \mathscr{C}_{1}(u)=2 \sin u-u \cos u-2 u^{-1}(1-\cos u)
\end{aligned}
$$

and for $n \geqslant 0$

$$
\mathscr{C}_{n+2}(u)=(n+3) \sin u-u \cos u-u^{-2}(n+2)(n+3) \mathscr{C}_{n}(u) .
$$

$$
\begin{align*}
T(R, 0) & =(\pi R h)^{-1} \sin \pi R h, & & R \leqslant 1 \tag{2}\\
& =0, & & R>1
\end{align*}
$$

then

$$
A(u)=2 u^{2} \xi(h, u) / \pi\left(\pi^{2} h^{2}-u^{2}\right) D^{2}
$$

where D^{2} is already defined and

$$
\xi(h, u)=(u \cos u \sin \pi h-\pi h \sin u \cos \pi h) / \pi h
$$

We also use the relations

$$
H(t)=-4 \pi K_{2} a \int_{0}^{t}(\partial T / \partial R)_{R=1} \mathrm{~d} t
$$

for the total heat loss from the core after time t, and

$$
H_{0}=4 \pi a^{3}\left(K_{1} / k_{1}\right) \int_{0}^{1} R^{3} T(R, 0) \mathrm{d} R
$$

for the total amount of heat initially in the core.
Brown (1969) found an asymptotic expansion for the fraction of the total heat content of the system still contained in the core, for large values of the time t. The expansion was

$$
\begin{aligned}
\left\{H_{0}-H(t)\right\} / H_{0} & =\left(a^{3} / 6 \pi^{\frac{1}{2}}\right)\left(K_{1} / K_{2}\right)\left(1 / k_{1} k_{2}^{\frac{1}{2}}\right) t^{-3 / 2}+O\left(t^{-5 / 2}\right) \\
& =\left(1 / 6 \pi^{\frac{1}{2}}\right)\left(K_{1} / K_{2} \sigma\right)(t / \tau)^{-3 / 2}+O\left(t^{-5 / 2}\right) .
\end{aligned}
$$

The leading term of this expression is independent of the initial conditions considered.

Evaluation of Temperature Integrals

The numerical integration was carried out on an IBM 360/50 computer using a program based on Simpson's rule. The approximation used $2^{m}+1$ points, m increasing from 2 to a maximum of 15 , until an accuracy of five significant figures was obtained; the results have been tabulated to four figures only. The upper limit of the integration was reduced from infinity to x, the value of x being taken so that integration from x to infinity gave a result $<10^{-5}$.

Some difficulty was encountered in finding results for the cases $T(R, 0)=R$ or R^{2}; however, immediate solutions were obtained when the forms $2+R$ and $1+R-R^{2}$ were used.

In order that results could be compared directly, a restriction was placed on the initial temperature distributions. We required that the heat content H_{0} was the same for each distribution. The five cases evaluated were for $R \leqslant 1$:
(1) $T(R, 0)=1$,
(2) $T(R, 0)=(4 / 3) R$,
(3) $T(R, 0)=(5 / 3) R^{2}$,
(4) $T(R, 0)=(\pi / 3 R) \sin (\pi R)$,
(5) $T(R, 0)=\left(\pi^{2} / 12 R\right) \sin \left(\frac{1}{2} \pi R\right)$.

Conductivities and diffusivities used were (in CGS units): $K_{1}=0 \cdot 008, k_{1}=0.016$ for granite and $K_{2}=0.005, k_{2}=0.008$ for limestone and a was taken to be 1000 m .

Lovering's (1935,1936) results were also recalculated and tabulated for comparison (case (6), Table 1). For this problem he took $K_{1}=K_{2}=0 \cdot 008, k_{1}=k_{2}=$ $0 \cdot 016$, and again $a=1000 \mathrm{~m}$.

Evaluations at Different K, k

It is clear from the general forms of the integrals that each depends on the ratios of $K_{1} / K_{2}, k_{1} / k_{2}$, and t / τ only. It follows that the numerical results we have

Table 1
temperature distributions $T(R, \alpha)$ for different initial conditions (for $R \leqslant 1$)
For the conditions (1) to (5) $K_{1} / K_{2}=1 \cdot 6$ and $k_{1} / k_{2}=2 \cdot 0$, while for Lovering's problem (6) $K_{1} / K_{2}=k_{1} / k_{2}=1$

r	$t\left(10^{3} \mathrm{yr}\right)=5$	10	15	20	40	60	80	100	120
$(\mathrm{~m})$	$R \quad a=0 \cdot 25$	$0 \cdot 50$	$0 \cdot 75$	$1 \cdot 0$	$2 \cdot 0$	$3 \cdot 0$	$4 \cdot 0$	$5 \cdot 0$	$6 \cdot 0$

(1) $T(R, 0)=1$										
500	$0 \cdot 5$	$0 \cdot 4045$	$0 \cdot 2250$	0•1513	$0 \cdot 1118$	$0 \cdot 0505$	$0 \cdot 0305$	$0 \cdot 0210$	$0 \cdot 0156$	0.0122
1000	$1 \cdot 0$	$0 \cdot 2698$	$0 \cdot 1764$	$0 \cdot 1270$	$0 \cdot 0974$	$0 \cdot 0468$	0.0289	$0 \cdot 0202$	$0 \cdot 0151$	$0 \cdot 0119$
1500	1.5	0.0770	$0 \cdot 0840$	$0 \cdot 0745$	0.0640	$0 \cdot 0372$	$0 \cdot 0246$	$0 \cdot 0178$	$0 \cdot 0137$	$0 \cdot 0109$
2000	$2 \cdot 0$	$0 \cdot 0096$	$0 \cdot 0258$	$0 \cdot 0321$	$0 \cdot 0332$	$0 \cdot 0261$	$0 \cdot 0193$	$0 \cdot 0148$	$0 \cdot 0117$	$0 \cdot 0096$
3000	$3 \cdot 0$	0	$0 \cdot 0006$	$0 \cdot 0024$	0.0045	$0 \cdot 0090$	$0 \cdot 0093$	$0 \cdot 0084$	0.0075	$0 \cdot 0065$
4000	$4 \cdot 0$	0	0	$0 \cdot 0001$	$0 \cdot 0003$	$0 \cdot 0019$	$0 \cdot 0033$	$0 \cdot 0038$	$0 \cdot 0039$	$0 \cdot 0038$
5000	$5 \cdot 0$	0	0	0	0	$0 \cdot 0003$	$0 \cdot 0008$	$0 \cdot 0014$	$0 \cdot 0017$	$0 \cdot 0019$
6000	$6 \cdot 0$	0	0	0	0	0	$0 \cdot 0002$	$0 \cdot 0004$	$0 \cdot 0006$	$0 \cdot 0008$
(2) $T(R, 0)=(4 / 3) R$										
	0.5	$0 \cdot 3847$	$0 \cdot 2194$	0. 1487	$0 \cdot 1103$	$0 \cdot 0501$	$0 \cdot 0303$	$0 \cdot 0209$	$0 \cdot 0156$	$0 \cdot 0122$
	$1 \cdot 0$	$0 \cdot 2638$	0.1732	$0 \cdot 1252$	$0 \cdot 0963$	$0 \cdot 0463$	$0 \cdot 0288$	$0 \cdot 0201$	$0 \cdot 0151$	$0 \cdot 0118$
	$1 \cdot 5$	$0 \cdot 0793$	$0 \cdot 0839$	$0 \cdot 0740$	$0 \cdot 0636$	$0 \cdot 0370$	$0 \cdot 0245$	$0 \cdot 0178$	$0 \cdot 0136$	$0 \cdot 0109$
	$2 \cdot 0$	$0 \cdot 0104$	$0 \cdot 0263$	$0 \cdot 0323$	$0 \cdot 0333$	$0 \cdot 0260$	$0 \cdot 0192$	$0 \cdot 0147$	$0 \cdot 0117$	$0 \cdot 0096$
	$3 \cdot 0$	0	$0 \cdot 0006$	$0 \cdot 0025$	$0 \cdot 0046$	$0 \cdot 0090$	0.0093	$0 \cdot 0084$	$0 \cdot 0075$	$0 \cdot 0065$
	$4 \cdot 0$	0	0	$0 \cdot 0001$	$0 \cdot 0003$	$0 \cdot 0020$	$0 \cdot 0033$	0.0038	$0 \cdot 0039$	$0 \cdot 0038$
	$5 \cdot 0$	0	0	0	0	$0 \cdot 0003$	$0 \cdot 0008$	$0 \cdot 0014$	$0 \cdot 0017$	$0 \cdot 0019$
	$6 \cdot 0$	0	0	0	0	0	0.0002	0.0004	$0 \cdot 0006$	$0 \cdot 0008$
(3) $T(R, 0)=(5 / 3) R^{2}$										
	$0 \cdot 5$	$0 \cdot 3713$	$0 \cdot 2156$	$0 \cdot 1470$	0•1094	$0 \cdot 0500$	$0 \cdot 0304$	0.0209	$0 \cdot 0156$	$0 \cdot 0122$
	$1 \cdot 0$	$0 \cdot 2596$	$0 \cdot 1709$	$0 \cdot 1247$	0.0963	$0 \cdot 0464$	0.0295	$0 \cdot 0201$	$0 \cdot 0151$	0.0119
	$1 \cdot 5$	$0 \cdot 0818$	$0 \cdot 0847$	$0 \cdot 0745$	0.0641	$0 \cdot 0370$	$0 \cdot 0253$	$0 \cdot 0178$	0.0137	$0 \cdot 0109$
	$2 \cdot 0$	$0 \cdot 0118$	$0 \cdot 0276$	0.0333	$0 \cdot 0341$	$0 \cdot 0268$	$0 \cdot 0200$	$0 \cdot 0156$	$0 \cdot 0117$	$0 \cdot 0096$
	$3 \cdot 0$	0	$0 \cdot 0015$	$0 \cdot 0032$	$0 \cdot 0055$	$0 \cdot 0099$	$0 \cdot 0102$	$0 \cdot 0093$	$0 \cdot 0075$	$0 \cdot 0065$
	$4 \cdot 0$	0	$0 \cdot 0001$	$0 \cdot 0002$	0.0004	$0 \cdot 0028$	$0 \cdot 0040$	$0 \cdot 0038$	0.0039	$0 \cdot 0038$
	$5 \cdot 0$	0	0	0	0	$0 \cdot 0003$	$0 \cdot 0010$	$0 \cdot 0014$	$0 \cdot 0017$	$0 \cdot 0019$
	$6 \cdot 0$	0	0	0	0	0	$0 \cdot 0002$	$0 \cdot 0004$	$0 \cdot 0006$	$0 \cdot 0008$
(4) $T(R, 0)=(\pi / 3 R) \sin (\pi R)$										
	$0 \cdot 5$	$0 \cdot 4662$	0.2425	0-1592	$0 \cdot 1165$	$0 \cdot 0516$	$0 \cdot 0309$	$0 \cdot 0212$	$0 \cdot 0158$	0.0123
	$1 \cdot 0$	0.2889	$0 \cdot 1865$	$0 \cdot 1326$	$0 \cdot 1010$	$0 \cdot 0477$	$0 \cdot 0293$	$0 \cdot 0204$	0.0152	$0 \cdot 0119$
	$1 \cdot 5$	0.0697	$0 \cdot 0842$	$0 \cdot 0760$	$0 \cdot 0655$	$0 \cdot 0378$	$0 \cdot 0249$	$0 \cdot 0180$	0.0138	$0 \cdot 0110$
	$2 \cdot 0$	0.0072	$0 \cdot 0240$	$0 \cdot 0316$	$0 \cdot 0332$	$0 \cdot 0263$	$0 \cdot 0195$	$0 \cdot 0149$	$0 \cdot 0118$	$0 \cdot 0096$
	$3 \cdot 0$	0	$0 \cdot 0006$	$0 \cdot 0020$	$0 \cdot 0043$	$0 \cdot 0089$	$0 \cdot 0093$	$0 \cdot 0085$	$0 \cdot 0075$	$0 \cdot 0066$
	$4 \cdot 0$	0	0	$0 \cdot 0001$	$0 \cdot 0003$	0.0019	$0 \cdot 0032$	0.0038	$0 \cdot 0039$	$0 \cdot 0038$
	$5 \cdot 0$	0	0	0	0	$0 \cdot 0003$	$0 \cdot 0008$	$0 \cdot 0013$	$0 \cdot 0017$	$0 \cdot 0019$
	6.0	0	0	0	0	0	$0 \cdot 0002$	$0 \cdot 0004$	$0 \cdot 0006$	$0 \cdot 0008$
(5) $T(R, 0)=\left(\pi^{2} / 12 R\right) \sin \left(\frac{1}{2} \pi R\right)$										
	$0 \cdot 5$	0.4137	$0 \cdot 2276$	$0 \cdot 1525$	$0 \cdot 1125$	0.0506	$0 \cdot 0306$	0.0210	0.0156	0.0122
	$1 \cdot 0$	$0 \cdot 2727$	$0 \cdot 1780$	$0 \cdot 1278$	$0 \cdot 0979$	0.0469	$0 \cdot 0290$	$0 \cdot 0202$	0.0151	0.0119
	$1 \cdot 5$	$0 \cdot 0759$	$0 \cdot 0841$	$0 \cdot 0747$	0.0642	0.0372	$0 \cdot 0247$	$0 \cdot 0178$	$0 \cdot 0137$	$0 \cdot 0109$
	$2 \cdot 0$	$0 \cdot 0092$	0.0255	$0 \cdot 0321$	$0 \cdot 0332$	$0 \cdot 0261$	$0 \cdot 0193$	0.0148	$0 \cdot 0117$	0.0096
	$3 \cdot 0$	0	$0 \cdot 0006$	$0 \cdot 0024$	$0 \cdot 0045$	$0 \cdot 0090$	$0 \cdot 0093$	$0 \cdot 0084$	0.0075	0.0065
	$4 \cdot 0$	0	0	$0 \cdot 0001$	$0 \cdot 0002$	0.0019	$0 \cdot 0032$	$0 \cdot 0038$	$0 \cdot 0039$	0.0038
	$5 \cdot 0$	0	0	0	0	$0 \cdot 0003$	$0 \cdot 0008$	$0 \cdot 0013$	$0 \cdot 0017$	$0 \cdot 0019$
	$6 \cdot 0$	0	0	0	0	0	$0 \cdot 0002$	$0 \cdot 0004$	$0 \cdot 0006$	$0 \cdot 0008$
(6) $T(R, 0)=1$ (Lovering's problem)										
	$0 \cdot 5$	$0 \cdot 3605$	$0 \cdot 1777$	0-1094	0.0758	$0 \cdot 0296$	0.0167	0.0110	0.0080	0.0061
	1.0	$0 \cdot 2196$	0-1312	$0 \cdot 0881$	$0 \cdot 0640$	$0 \cdot 0271$	$0 \cdot 0157$	$0 \cdot 0105$	$0 \cdot 0077$	0.0059
	1.5	$0 \cdot 0935$	$0 \cdot 0790$	0.0614	$0 \cdot 0484$	0.0234	0.0142	$0 \cdot 0098$	0.0072	0.0056
	$2 \cdot 0$	$0 \cdot 0270$	$0 \cdot 0386$	0. 0370	$0 \cdot 0327$	$0 \cdot 0190$	$0 \cdot 0123$	$0 \cdot 0088$	$0 \cdot 0066$	0.0052
	$3 \cdot 0$	$0 \cdot 0006$	0.0048	$0 \cdot 0086$	$0 \cdot 0106$	$0 \cdot 0105$	$0 \cdot 0083$	$0 \cdot 0065$	$0 \cdot 0052$	0.0043
	$4 \cdot 0$	0	$0 \cdot 0003$	$0 \cdot 0011$	$0 \cdot 0022$	$0 \cdot 0046$	$0 \cdot 0047$	0.0043	0.0037	0.0032
	$5 \cdot 0$	0	0	$0 \cdot 0001$	$0 \cdot 0003$	$0 \cdot 0016$	0.0023	0.0025	$0 \cdot 0024$	0.0022
	$6 \cdot 0$	0	0	0	0	$0 \cdot 0004$	0.0010	$0 \cdot 0013$	0. 0014	0.0014

obtained are applicable to all systems in which $K_{1} / K_{2}=1 \cdot 6$ and. $k_{1} / k_{2}=2 \cdot 0$, and for which $t / \tau\left(=t k_{1} / a^{2}\right)$ takes the given set of values, defined by $t / \tau=1 \cdot 0009152 \alpha$, for $\alpha=0.25,0.5,0.75,1,2, \ldots, 6$. For the k_{1} and a we have used in calculations, this results in values of the time t at which temperature distributions are determined of exactly $5000,10000,15000 \mathrm{yr}$. ...

Numerical Results

Results of the calculations are given in Table 1. Profiles for times corresponding to $\alpha=0 \cdot 125,0 \cdot 25, \ldots, 2 \cdot 0$ are shown in Figure $1(a)$ for the case in which the initial temperature distribution is uniform. Profiles for $T(R, 0)(R \leqslant 1)$ of the forms R, $R^{2},(1 / \pi R) \sin (\pi R)$, and $(2 / \pi R) \sin \left(\frac{1}{2} \pi R\right)$ are very similar and for $R>3$ or $\alpha>3$ are indistinguishable within 2% from the case $T(R, 0)=1$. Results for Lovering's problem are also shown (Fig. $1(b)$) for comparison, and as expected it is seen that the temperatures inside the core fall more rapidly than in the problems considered here, as the conductivity and diffusivity in the outer regions have been increased.

Fig. 1.-Temperature profiles for constant initial temperature at times corresponding to the indicated values of α for (a) the present work ($K_{1} / K_{2}=1 \cdot 6, k_{1} / k_{2}=2 \cdot 0$) and (b) Lovering's problem ($K_{1} / K_{2}=k_{1} / k_{2}=1$).

The fraction of the total heat which remains in the core after various times t (or α) was estimated, using Simpson's rule over 10 points in the core, for comparison with results obtained using the asymptotic expansion for large t. It would seem that this approximation is valid for $\alpha \geqslant 4$.

Geophysical Problem: The Laccolith

The present diffusion problem has been considered with the geophysical application in mind; however, by necessity, the conditions have been idealized to produce a system which is mathematically manageable while retaining some degree of applicability. In problems which involve a reasonably low temperature difference the difficulties may not arise. The geophysical case requires temperature differences of perhaps $1000^{\circ} \mathrm{C}$, and as a result it must be taken into account that the core may
be molten. The effects of the latent heat of fusion released when the molten material solidifies, the changes in diffusivity (probably small), and the conductivity (large) with temperature must be averaged out.

Lovering (1935) states that the latent heat of fusion can be as much as 25% of the total heat of the molten core, though in most cases it will be considerably less. Further, he suggests that the error involved in neglecting this quantity can be minimized by increasing the radius of the intrusive material, or by increasing the initial temperature, proportional to the amount of heat released in the form of latent heat of fusion. The latter method is better for large values of α. Errors in using constant conductivity and diffusivity are minimized by averaging over the range of temperatures considered.

It would appear from Table 1, taking an initial temperature difference of $1000^{\circ} \mathrm{C}$, that the heat effects do not extend very far; for $R>3$, where there is at most $10^{\circ} \mathrm{C}$ rise in temperature, effects are negligible.

References

Brown, A. (1965).-Aust. J. Phys. 18, 393.
Brown, A. (1969).—J. Aust. math. Soc. 10, 403.
Lovering, T. S. (1935).-Bull. geol. Soc. Am. 46, 69.
Lovering, T. S. (1936).-Bull. geol. Soc. Am. 47, 87.
Philip, J. R. (1964).-Aust. J. Phys. 17, 423.
Philip, J. R. (1965).-Aust. J. Phys. 18, 393.

[^0]: * Manuscript received February 9, 1970.
 \dagger Department of Applied Mathematics, School of General Studies, Australian National University, P.O. Box 4, Canberra, A.C.T. 2600.

