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Abstract 

The Boltzmann equation for electrons moving in a neutral gas under the 
influence of an externally applied field is solved by expanding the electron distribution 
function in terms of Legendre and Sonine polynomials. The solution is given in 
terms of infinite matrices which have elements ordered by the Sonine polynomial 
index, and which are dependent upon the field strength. From the structure of the 
formulae, it is possible to infer that truncation of the Legendre polynomial expansion 
after two terms is a good approximation at all field strengths. This is supported 
by calculations of the electron drift velocity at low field strengths, which show 
that the error introduced by making the two-term approximation is small, even 
when the deviation from equilibrium is significant. The convergence of the Sonine 
polynomial expansion is shown to be strongly depende:r;J.t upon field strength, and 
large matrices are required in the drift velocity formula at even small field strengths. 

1. INTRODUCTION 

Theoretical analyses of the mobility and diffusion of electrons in neutral gases 
under the influence of an applied electric field have traditionally relied upon the 
so-called two-term approximation (Lorentz 1916; Davydov 1935; Morse, Allis, and 
Lamar 1935; Margenau 1946; Allis 1956), in which the distribution function is 
approximated by the first two terms of an expansion in Legendre polynomials, 

00 

j(c) = ~ l(c) PI (cos B), 
1=0 

cosB = (E. c)/Ec, 

The Boltzmann equation appropriate to this case, namely 

(e/m)E.oj/oc = J(fjo) 
with 

J(fjo) = I {f(c)jo(Co) -j(c') jo(co)}ga(g, x) d.Qdco, 

(1) 

(la) 

(2) 

(3) 

is thus reduced to two coupled differential equations for jO(c) andJ1(c). In equations 
(2) and (3) the 0 subscripts refer to the neutral gas while the other notation is standard. 
Solving for jO(c) gives the Davydov distribution, which in the limiting case of rigid­
sphere interaction and high fields becomes the Druyvesteyn distribution (Allis 1956). 
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This approximation is usually justified on physical grounds (Chapman and 
Cowling 1970): because of their small mass, electrons suffer relatively large directional 
changes in velocity but lose only l> small fraction (,...." 2 rn/mo) of their energy in colli­
sions with the neutral atoms. (Collisions are assumed here to be elastic.) Thus, while 
the distribution of velocities may be non-Maxwellian, it would be expected to be 
nearly spherically symmetric in velocity space, that is,JO would be the dominant term 
in (1). Although, as is shown in Section II below, the smallness of m/mo provides the 
basic justification for using the two-term approximation, these arguments and others 
(Ginzburg and Gurevich 1960) do not fully justify the omission of higher order terms 
from (1). 

In view of the accuracy of present day experiments (Crompton, Elford, and 
Robertson 1970), it is of interest to estimate the importance ofj2,j3, .... A systematic 
method of approximating these terms is presented here and it is shown that they are 
insignificant. The amount of numerical work required increases with the field strength, 
but the structure of the formulae and the results for low fields, which are presented 
below, suggest that for the electrons the two-term approximation remains valid for 
all values of field strength. 

II. THEORY AND DISCUSSION 

The neutral gas is assumed to be in equilibrium at temperature To, 

jo(Co) = now(ao, co) , (4) 

and j l( c) is expanded further in terms of Sonine polynomials as 

(5) 

where 

The present paper follows the earlier work of Kumar (1967) in notation and in 
the transformation to matrix form. Substituting for j(c) and jo(co) in (2), we 
obtain an (infinite) homogeneous matrix equation for the expansion coefficients 
jvl. The existence of a summational invariant, corresponding to conservation of 
electron number, results in the vanishing of the determinant of the matrix of coeffi­
cients (Kumar 1967), and a non-trivial solution is assured. Using the normalization 
condition 

(6) 

the homogeneous matrix equation is then reduced to a solvable inhomogeneous 
matrix equation of the form 

(7) 

where f is the unknown column vector, d is a known (constant) vector, and J and 
o are matrices labelled by v and l with v, l = 0,1, ... , except that v = 0 = l terms 
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do not occur. The field parameter E is defined in equation (9) below. Equation (7) 
may be written as a series of coupled equations for matrices labelled by v only, 

JO jO-ED!jl = 0, 

J1 jl-ED\J2-ED=-jO = -Ed, 

J2J2-ED~f3-ED~jl = 0, 

L--+w, 

(8a) 

(8b) 

(8c) 

(8d) 

where jl is a column vector with entries jvl, d is a fixed vector, and Jl and D~ are 
matrices labelled by v. These equations are directly comparable with the recurrence 
relations of Kihara (1953) and also have the same formal structure as the coupled 
integro-differential equations for jl(c) of equation (1) (Ginzburg and Gurevich 1960). 
The above matrix form allows calculations of the higher l corrections (dependence 
on cos 0) to be made more easily, although perhaps has some disadvantage as far as 
the determination of c-dependence is concerned. 

The quantities appearing in equations (7) and (8) have been made dimensionless 
by introducing the scale factor r which characterizes the range of the electron-atom 
interaction; their definitions are: 

d = dv = (47T/3)! ovo, 

D~ =0 (D~)VIV2 =0 {(l+I)/(2l+1)} (2vd 8V2 ,vl-1 , 

D"- =0 (D"-)VIV2 =0 -{l/(2l+1)} (2V1 +2l+1)' 8V2V1 ' 

where, for small m/mo, 

and 

l;?ol, 

with 

2 2 2, 2 2 
Y =0 a ao/(a +ao), 

and 

az(g) =0 27T f P1(cosX)a(g,X)sinXdX. 

(9) 

(lOa) 

(lOb) 

(lIa) 

(lIb) 

(12) 

(13) 

Equation (8d) indicates that in practical situations the series has to be terminated 
at some maximum value, L, of l (equivalent to approximating the right-hand side of 
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(1) by the first L+ 1 terms). The first three terms in the formal solution may be written 
aB 

where 

10 = E(JO)-l. D~P , 

P = -EMil . d , 

12 = ENil.D~p, 

and, for successive truncations, 

L;? 1, 

L;? 2, 

(14a) 

(14b) 

(14c) 

(15) 

(16a) 

(16b) 

(16c) 

It should be noted that as E --+ 0, ML --+ Jl so that high l contributions are not 
important in this situation. Furthermore, because of the smallness of m/mo, in the 
second term of (15) the contribution from JO (defined in equation (lla)) always 
overshadows the higher l contributions which enter through N L. Hence, even for high 
fields, the contributions from l ;? 2 will not be important. Then, from (lla) and 
(14a), we may conclude that 110 I is always much larger than IPI. The validity of 
the two-term expansion is thus seen to derive from the smallness of the mass ratio 
m/mo and the form of the solutions (equations (14) and (15)).* 

In numerical calculations with the above equations, it is also necessary to 
truncate the infinite matrices Jl and D~ at some upper value, N, of v. The corrections 
introduced by increasing N are affected in a different way by the Bmall mass ratio. 
They are found to be strongly dependent on the field strength, i.e. the parameter E, 

although they do decrease if N is taken to be sufficiently large. The dimension of 
the matrices (determined by N) required to obtain convergence to a given accuracy 
increases rapidly with the field strength. (This is similar to previous experience in 
matrix calculations of related problems (Pekeris et al. 1962; Hochstim and Massel 
1969).) The physical reason behind this is the well-known non-Maxwellian nature 
of the distribution function in this situation; although it is nearly isotropic, a large 
number of Sonine polynomials are required for a good representation of the velocity 
dependence. 

In the numerical example considered in Section III, because of the slow con­
vergence the whole experimentally available range of energy was not covered, but it 
appears that results of any accuracy could be obtained provided one were prepared 
to use sufficiently large matrices. 

* This conclusion is expected to be valid for the types of cross sections encountered in the 
present problem. The hard.sphere interaction considered in Section III has been used in a case 
where it agrees most satisfactorily with experiment and the results may be considered typical 
for this type of problem. 
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III. NUMERICAL EXAMPLE 

The drift velocity Wand the effective electron temperature T, as conventionally 
defined, are given here by 

W = (3j47T)!{f01(E)jrxE} E (17) 
and 

(18) 

The neutral gas was taken to be helium and a hard-sphere interaction potential of 
radius r was assumed. In this case, the partial cross sections (13) simplify to 
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(19) 

Fig. I.-Drift velocity W of 
electrons in helium at 
To = 77 K calculated from 
truncated matrices for the 
indicated values of N (dashed 
curves) and compared with 
the usual two-term differential 
equation calculation (solid W 
curve). All curves coincide 
for low values of E/no. 
The calculated values of 
electron temperature T for 
N = 19 are also shown. 
(Note that 1 townsend (Td) 

~ = 1O-17Vcm2.) 
~ 

The values of parameters chosen were 7Tr2 = 5·4 X 10-16 cm2, m/mo = 1·371 X 

10-4, and To = 77 K. Figure 1 shows the effect of increasing the order N of the 
" truncation in the two-term approximation (L = 1) and also provides a comparison 
with the usual two-term calculation by numerical solution of differential equations. 
Clearly, the convergence becomes worse for higher values of Ejno, indicating that 
very large matrices would be required to cover the whole of the experimental range. 
Also shown in Figure 1 is a plot of the ratio of the electron temperature to the gas 
temperature for N = 19. It shows that with increasing field strengths the electron 
distribution must deviate strongly from the Maxwellian appropriate to To. 
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Because of the slow convergence with N, the present work was limited to low 
values of E/no in calculations showing the effect of convergence with L. Table 1 
shows the variation of the drift velocity with L = 1,2, and 3 for fixed N and different 
E/no in a region where the deviation from equilibrium is significant. It is seen that 
the relative magnitude of the correction from higher l terms is even smaller than may 
have been anticipated, i.e. less than m/mo. The values change somewhat for different 
values of N but the pattern remains the same. Similar results have been obtained 
for many different sizes of matrices and for different parameters. On this basis, it 
can be conjectured that, although very large matrices in the Sonine polynomial 
index v are needed at high fields, as far as the Legendre polynomial expansion 
(equation (1)) is concerned, inclusion of terms beyond the first two produces corrections 
of a relative order of magnitude not exceeding m/mo. 

TABLE 1 

VARIATION OF DRIFT VELOCITY WITH SUCCESSIVE ORDERS OF TRUNCATION 
IN LEGENDRE POLYNOMIAL INDEX 

Values are for N = 10 

Order of Truncation 
L 

Drift Velocity W (105 cms-1) 
Ejno = 0·01 0·02 0·04 Td 

1 
2 
3 

0·4080835 
0·4080756 
0·4080756 

0·6643601 
0·6643437 
0·6643437 
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