
"PARALLEL" VISCOUS MODIFICATION OF THE RESISTIVE "TEARING" 

INSTABILITY IN A CARTESIAN MODEL OF THE HARD-CORE PINCH* 

By G. M. MARINOFFt 

There is continuing interest in the possibility that a diffuse pinch may be used 
to achieve plasma containment in the laboratory, and ultimately lead to a successful 
thermonuclear reactor. Such a system is likely to be stabilized against hydromagnetic 
modes by strong magnetic field shear, but the question of stability against resistive 
modes remains. In this note, a Cartesian model is adopted, and the influence of 
"parallel" viscosity (Stringer 1970) on the resistive "tearing" instability in the 
hard-core pinch is examined. Previously, purely resistive calculations of growth 
rates in this configuration have been reported by Hosking (1967) and Lister and 
Hosking (1970). 

The particular configuration of interest is that described by Hosking (1967), 
except that in the Cartesian model one adopts Cartesian coordinates (x,y,z) so that 
the equilibrium magnetic field is 

Ho = Hoy(x) ey +Hoz ez , (1) 
where 

Hoy(x) = Ax+O/x, Hoz = const. , 
and 

A=O, ro < x < a, } = -JO/27T(b2-a2) , a<x<b, 

=0, b<x<l; 

(2a) 

0= eJO/27T, ro < x < a, } = {E+a2/(b2-a2)}Jo/27T, a < x < b, 

= (E-1)Jo/27T, b<x<l. 

(2b) 

The notation adopted here is analogous to that used by Hosking (1967) and similar 
physical parameters are also used. Again, resistivity gradients and "gravity" are 
neglected, so that "rippling" and "gravitational" modes are precluded. The energy 
source for the tearing mode lies in the magnetic field; energy is released when the 
field lines shorten in length. 

It is assumed that the configuration is stabilized against hydromagnetic modes. 
For the hard-core pinch, in the case of static equilibrium the sufficiency condition is 
E ~ 1, corresponding to a positive equilibrium pressure gradient. Assuming physical 
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quantities of the form 

f(x, y, z, t) = fo(x) +!I(x) exp(wt +ikyy +ikz z), 

the linearized perturbation equations for an incompressible viscous plasma are 

pwvIX+D1TI = fJ-iFHIx-pllD(iFHo2VI.Ho), (3a) 

pWVIy +iky1TI = fJ-iFHIy +fJ-D(Hoy)Hlx -pll(iky -3HoyiFH(2)(iFHo2VI.Ho), (3b) 

pWVIz +ikz1Tl = fJ-iFHIz -pll(ikz -3HoziFH(2)(iFHo2VI' Ho) ; (30) 

Y)(D2_k2-wjY))HIX = -iFvIx, (4a) 

Y)(D2_k2-wjY))HIY = -iFvIY +D(Hoy) VIx, (4b) 

Y)(D2_k2-wIYJ)HIz = -iFVlz ; (4c) 

where 
D = djdx, 

and ky represents the cylindrical wave number mjRo. In particular, it should be noted 
that D2F i= 0. 

Proceeding to the discussion of the resistive modes, we note that the equations 
(4) are approximately given by 

(4') 

for sufficiently small Y), except in the neighbourhood of F = 0, that is, the resistive 
region. Elimination between equations (3), (4'), (5), and (6) yields 

where 
1jI" +f(x)IjI' +g(x)1jI = 0, 

f(x) = -2F'jF +R'jR +N'jN, 

g(x) = -1X.2jN -F"jF -f(x)F'jF, 

IX. = k(b-a) , x = xj(b-a) 

are dimensionless quantities, and 

N= l+M-G, 

M = G(l+JHoyjkyHo) 2 ' 

l-kz(Hoz -kzHoyjky)Jjk Ho 

G = {1-k2Hoz jkzF}-I, 

J = 3pll(FjHo)3 
RG 

(7) 
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In the above equations, the primes denote differentiation with respect to x and the 

term 
-2F'/F +R'/R = -2F'/F(I+fLF2/pw2) 

is retained, since pw may be comparable with fLF2/w for the chosen parameters. 

As v -+ 0, equation (7) reduces to the form given by Furth, Killeen, and Rosenbluth 

(1963), provided that pw < fLF2/w: 

ifi"-(a2 +F"fF)ifi = 0. (7') 

The growth rates of the tearing modes were calculated by computing the 

increment in the logarithmic derivative of ifi, 

LI' = (ifi'+-ifi'-)/ifi, 

across the resistive region from equation (7), and matching it with the form derived 

by Furth, Killeen, and Rosenbluth (1963) for the inner (resistive) region, namely 

LI' = 30w, 

where 
w = W7'R, 

with 
F =F/kHo, 7'R = (b-a)2/7]. 

The detailed iterative matching procedure was similar to that used by Hosking (1967). 

The maximum calculated growth rates occur when the resistive layer is adjacent 

to the outer edge of the current layer, and the values are given in Table 1. It is 

apparent that when parallel viscosity becomes significant (T ~ 106 K), the tendency 

is for the growth rate to increase relative to the value given from inviscid (v = 0) 

theory. The greater stability at higher temperature appears to be due only to the 

correspondingly lower resistivity. 

It is noteworthy that the Cartesian model adopted is not fully justified unless 

I D(Hoy) I ~ I Hoy/x I, 

corresponding to sufficient magnetic field shear. Although this criterion is satisfied 

in the plasma current layer a < x < b, it is clearly important to extend the present 

work to include geometrical effects, particularly in the outer plasma regions. 
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