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Abstract 

A new non-perturbative method is developed for deriving the energy of inter­
action between molecules represented as polarizable dipoles. The method is applied 
to obtain the exact energy of interaction for two anisotropic electric dipoles and for 
three dipoles in the isotropic case. The results of London and of Casimir and Polder 
are special limiting cases. Deviations of the London energy from the exact result are 
investigated. A new feature which emerges is that the potential energy becomes 
repulsive at very small distances of separation. 

r. INTRODUCTION 

The first calculations of the interaction energy V between two nonpolar 
molecules or atoms as a function of separation r were made by London (1942), who 
found V"", r-6 . Subsequently Casimir and Polder (1948) showed that for very large 
r this result breaks down. For r?> cfvo, where vo is the principal absorption frequency 
of the interacting atoms, V "'" r-7. Their expression has since been rederived by a 
number of authors using quantum mechanical perturbation theory (see e.g. Craig 
and Power 1969, where references to earlier work are given). Our purpose here is to 
draw attention to a different procedure which can be used to calculate interaction 
energies between two or more atoms represented as polarizable dipoles. The method 
is extremely simple, is not based on perturbation theory, and gives the energy exactly 
for all distances of separation of the dipoles. The application of this technique to the 
two-dipole problem was reported briefly earlier (Mitchell, Ninham, and Richmond 
1971). It was first developed by Mitchell and Ninham (1972) to calculate interaction 
energies between macroscopic bodies (i.e. those with a well-defined electromagnetic 
susceptibility) in the non-retarded limit. To illustrate the method here we solve 
two specific problems. The first deals with the exact interaction energy of two dipoles 
with anisotropic polarizabilities. From the general formula the results of London 
(1942), Casimir and Polder (1948), and Craig and Power (1969) emerge as special 
limiting cases. Secondly, we solve the corresponding three-body problem exactly. 
Here, to avoid unnecessarily cumbersome algebra, we restrict the analysis to isotropic 
dipoles. We would hope that this last problem has some interest simply because 
it is an exact solution of a three-body problem. 
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II. INTERAOTION ENERGY FOR Two ANISOTROPIC DIPOLES 

(a) General Formulation 

Consider first two dipoles and choose a cartesian coordinate system with origin 
at dipole 1. Suppose that the positive z axis is in the direction joining the origin to 
dipole 2. The principal axes of the polarizability tensors of the dipoles have arbitrary 
orientation with respect to the space coordinates. The interaction energy arises due 
to the mutually induced polarization which we must first calculate as follows. 

Suppose that the instantaneous dipole moment of dipole 1 is 

P(1, t) = P exp( -iwt). 

The vector and scalar potentials A and ep generated at an arbitrary point distant r 
from the dipole are 

and 

A() iw P (.) exp(iwr/c) r,t = -- exp -lwt -----
C r 

ep(r, t) = P ~ r (! _ iW)exp( -iwt) exp(iwr/c) . 
r r c 

The associated electric field is 

E(r, t) = -c-1 8A/8t -"'Yep. 

Consequently we have E(r,t) = Eexp(-iwt) where 

(
W2 iw 1) . 

E = P '2 +- - 2" exp(lwr/c) 
c cr r 

r (w2 3iw 3) . -(P • r)"3 2' + - - 2 exp(lwr/c). 
r c cr r 

(1) 

(2) 

(3) 

(4) 

Hence if I r I is the distance between the dipoles, and r is in the direction of the 
z axis, the components of E(1) generated by dipole 1 at the position of dipole 2 are 

Ex(1) = f(r)Px(l) , Ey(1) = f(r)Py(I) , E z(1) = h(r)Pz(1) , (5) 
where 

f(r) = exp(iwr/c) (w2 + iw _.!.) , 
r c2 cr r2 

(6) 

This field polarizes the second dipole whose polarization will be given by 

P(2) = a(2) E(1), (7) 

where a(2) is its polarizability tensor. This induced polarization in turn produces 
the electric field at the first dipole responsible for its own polarization, so that 
corresponding to equation (7) we have 

P(l) = a(1) E(2). (8) 



INTERACTION ENERGY BETWEEN DIPOLES 

It follows from equations (5), (7), and (8) that 

P(2) = X(2) P(I), 

where the matrices X are defined by 

(

rxUf 

X = rx2If 

rxsIf 

P(I) = X(I) P(2) , 

rxl2 f rxIS h) 
rx22 f rx2S h 

rxs2f rxssh 

35 

(9) 

(10) 

and the rxik represent the matrix elements of the polarizability tensors 0.(1) or 0.(2) 
respectively. Together equations (9) provide a condition for consistency on allowed 
modes which is 

P(I) = Y P(I), Y = X(I) X(2). (11) 

The frequencies of the allowed modes are therefore given by a "dispersion" relation 

D{w) = det(l-Y) = o. (12) 

From equations (1O) and (11) the matrix Y has components 

Yu = {rxu(l) rxu(2) +rxI2(1) ct:21(2)}f2 +ct:Is(l) ct:sI(2)fh, (13a) 

Y22 = {rx2I(I) rxI2(2) + rx22(1) rx22(2)}J2 + rx2s(1) ct:s2(2)fh, (13b) 

Yss = {rx3I(1) ct:13(2) +rxs2(1) ct:23(2)}fh +ct:33(1) rx33(2) h2, (13c) 

YI2 = {rxu{l) ct:12(2) +ct:12(1) rx22(2)}f2 +ct:13(1) rxs2(2)fh, (13d) 

YI3 = {ct:u{l) ct:Is(2) +ct:12(1) rx23(2)}fh +ct:13(1) ct:33(2) h2, (13e) 

Y23 = {rx2I{I) rxIs(2) + rx22(1) rx2s(2)}fh +rx2s(1) rxss(2) h2. (13f) 

The elements Y2I, Y31. and YS2 follow from (13d), (13e), and (13f) by interchanging 
dipole indices 1 and 2, e.g. Y2I = YI2{(1) ~ (2)}. 

The energy of interaction can now be written down immediately as 

(14) 

A derivation and discussion of this expression has been given by Ninham, Parsegian, 
and Weiss (1970) and Richmond and Ninham (1971). 

(b) Reduction to Known ResuUs 

The integrand of the general expression (14) simplifies considerably in the 
limit of large r, that is, in the London (1942) or Casimir and Polder (1948) limits. 
This follows from the observation that f{r) and h{r) defined in equations (6) are 
O(r-S). Therefore the matrix elements Yik of Yare O{r-6 ) and we have 

D{w) = det(l-Y) = (1- 7 Yii +O(r-12 )). (15) 
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To terms of lowest order in r-1 the dispersion relation is then 

where 
D(w) = l-q(w) +O(r-12) , 

q(w) = [{al1(l) al1(2) +a22(1) a22(2) +2a12(1) a12(2)}f2 

+{a13(1) a13(2) +a23(1) a23(2)}fh +a33(1) a33(2) h2]. 

(16) 

This result has been obtained using equations (13) and the symmetry of a, namely 
atj = ajt. 

(c) Retarded Potential for Anisotropic Dipoles 

Previous results now follow immediately. For large r we can expand the 
logarithm in (14) and keep only the leading term in (16). Thus 

(17) 

It is convenient to introduce the dimensionless variable x = grjc. From equations 
(6) and (15)-(17) we then obtain 

lie JOO 22 V(r) '"'"' - -7 dx [{a11(I) a11(2) +a22(1) a22(2) +2a12(1) a12(2)}(I+x+x ) 
27Tr 0 

-2{ a13(1) a13(2) +a23(1) a23(2)}(l +x)(1 +x+x2) 

+4a33(1) a33(2) (l+x)2]exp( -2x). (18) 

Note that the components of the polarizability tensor are evaluated at imaginary 
frequencies, that is, a = a(ig) = a(ixcjr). In the limit r ?> cjwo, where Wo is a charac­
teristic frequency for absorption of electromagnetic radiation by the dipoles, the 
components ajk(ig) in approximation (18) can be replaced by their zero frequency 
static values aJk' The remaining integrals over x can now be evaluated giving 

lie ( V(r) = - -" -7 13{a11(I) a11(2) +a22(1) a22(2)}+20a33(1) a33(2) 
87Tr 

+ 26a12(1) a13(2) -30{a23(1) a23(2) +a13(1) a13(2)} t . (19) 

The ajk here refer to static values. This expression is identical with one deduced 
by Craig and Power (1969) using perturbation theory. For isotropic polarizabilities 
atj = aDij, equation (19) reduces to the result of Casimir and Polder (1948), namely 

V(r) = -?;[ lie a(l) a(2)jm7 . (20) 

(d) Non-retarded Potential 

In the opposite limiting case r ~ cj go the interaction potential becomes 
non-retarded. We consider only a simple form for the polarizability, namely 

(21) 
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If we specialize further to the case where the polarizabilities for the dipoles are 
identical, we can expand the integrand in (IS) in powers of x and keep only the 
leading terms. This yields 

V(r) r-.; - liw6o(0(11(1) 0(11(2) +0(22(1) 0(22(2) +40(33(1) 0(33(2) 
Sr 

+20(12(1) 0(12(2) -2{0(13(1) 0(13(2) +0(23(1) 0(23(2)}) o. (22) 

For isotropic polarizabilities, equation (22) reduces to the London (1942) potential 

V(r) = -(3liwo/4r6)0(~. (23) 

III. VALIDITY OF LONDON POTENTIAL 

From the preceding analysis it is clear that both the London (1942) and Casimir 
and Polder (194S) potentials are very simple and special asymptotic expressions for 
the general potential energy of interaction given by equation (14). While it is clear 
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Fig. I.-Ratio of the exact 
dipolar interaction potential to 
the London potential as a 
function of the dipole separa· 
tion r. The effects of retarda· 
tion are clearly evident at 
r ;0; 50A. 

that the Casimir potential is correct for distances r ~ c/wo and the London potential 
in the opposite limit r ~ c/wo, the actual potential in the intermediate region which 
joins their separate regimes of validity has never been investigated. We now study 
this problem, and consider for simplicity the special case of isotropic polarizabilities 
O(jle = O(Djle. Again suppose that both dipoles are identical with absorption frequency 
woo 

The ratio of the actual potential (14) to the London potential (23) is plotted 
in Figure 1 for values of 0(0 and wo characteristic of helium, namely 0(0 Ri 0·21 A3 
and wo = 3·7 X lO16 rad s-l. We remark on several features of the curve. 

(1) Over the range 2-30 A, where the dipole approximation should be an excellent 
one in modelling the interaction between two atoms, the London potential is 
an extremely good approximation. Retardation becomes significant at much 
smaller distances than one might have expected. 

(2) At smaller separations r ;:; 2 A, deviations from the London potential are quite 
substantial. However, in this regime the dipole model for atoms is certainly 
inappropriate. 
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At very small distances the potential becomes repulsive! To understand the 
origin of this result we re-examine the small-distance limit in more detail. In the 
non-retarded limit (c ~ 00) equations (5) take the simple form 

(24) 

Repeating the analysis after equations (5), we then have corresponding to (9) 

P (2) = _ oc(2)Pz(l) P (2) = _ oc(2)Py(l) P (2) = 2oc(2)Pz(l) (25) 
z 3' Y 3' z 3' 

r r r 

where again we consider only isotropic polarizabilities, (a(I))jk = oc(l) Ojk. The 
dispersion relations corresponding to equations (12) now become 

1- oc(2)oc(l) = 0 
6 ' r 

1- oc(2) oc(l) = 0, 
r6 

TABLE 1 

1- 4oc(2)6oc(l) = O. 
r 

INTERACTION ENERGY OF TWO DIPOLES AS FUNCTION OF SEPARATION 

Note the repulsive behaviour for r ;5 O' 5 A 

Separation r Energy V(r) Separation r Energy V(r) 
(A) (erg) (A) (erg) 

1·6 -7.72x 10-14 0·5 -1'25xl0-11 

1·4 -1· 72 X 10-13 0·4 l'73x1O-11 

1·2 -4.39x 10-13 0·3 7·70x 10-11 

1·0 -1·35x 10-12 0·2 2·29x 10-10 

0·8 -6'17x 10-12 0·1 8.50x 10-10 

0·6 -2·23x 10-11 

(26) 

For identical isotropic dipoles with polarizability given by equation (21), the allowed 
frequencies are 

(27) 

The first two roots each occur twice, and only real frequencies contribute to the 
interaction energy. If all roots are real, that is, 2oco/r3 > 1, the energy of interaction is 

V(r) = ! ~ {liw-liw(r -+ oo)} 

= !liwo{2(1 +oco/r3)1+2(I-oco/r3)1+(1 +2oco/r3)!+(1-2oco/r3)i-6}. (28) 

This expression goes over to the London result for 2oco/r3 ~ 1. On the other hand, 
in the range 2oco/r3 > 1 the mode w = wo(I-2oco/r3)i becomes purely imaginary and 
cannot contribute to the (real) dispersion energy. We therefore omit this term. 
At still smaller distances oco/r3 > 1 the mode w = wo(l-oco/r)l also becomes imaginary 
and must similarly be omitted. Consequently, for r ~ oco1 the energy has the form 

V(r) = !liwo{2(1 +oco/r3)1+(1 +2oco/r3)1-6} 

= !liwo{(2+J2)oc6/2/r3/2 -6+0(r3/2)}. (29) 



INTERACTION ENERGY BETWEEN DIPOLES 39 

The freezing out of some modes at distances of the order of the dimensions of the 
dipoles which leads to a repulsive energy instead of an attractive energy is an entirely 
natural result. The phenomenon is analogous to a ferroelectric phase transition in 
solids (Kanzig 1957; Mahan 1965) and reminiscent of the change in state of two 
hydrogen atoms interacting to form a molecule. For completeness, numerical results 
for V(r) in the short-distance regime, calculated using the procedure outlined here, 
are given in Table 1. 

IV. THREE-BODY FORCES 

We now illustrate the further application of the method to the corresponding 
three-body problem. Suppose that the three dipoles form the triangle in Figure 2, 
and choose coordinate axes as shown. To avoid cumbersome algebra we restrict 
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B 

Fig. 2.-Coordinate system for 
three-dipole interaction. 

solution to the isotropic case. If the instantaneous dipole moments are 

P(A, t) = P(A) exp( -iwt) 

with similar definitions for dipoles Band C, then the instantaneous field at A generated 
by Band Cis 

E(A, t) = E(A) exp( - iwt) , 

where the components of E(A) are 

Ex(A) = P x(B) h(r3) +P x(C) f(r2) -{P x(C) cos (h +Py(C) sin 81}cos 81g(r2) , (30a) 

Ey(A) = P y(B) f(r3) +Py(C) f(r2) -{P x(C) cos 81 +Py(C) sin 81}sin 81 g(r2) , (30b) 

Ez(A) = P z(B)f(r3) +Pz(C)fh). (30c) 

Here f and h are defined by equations (6) and g = f-h. The induced polarization 
of dipole A is then given by 

P x(A) = oc(A) Ex(A) , P y(A) = oc(A) Ey(A) , Pz(A) = oc(A) Ez(A) . (31) 

Similarly the fields at Band C are given by 

Ex(B) = P x(A) h(r3) +P x(C) fh) -{P x(C) cos 82 --Py(C) sin 82}COS 82g(r1) , (32a) 

Ey(B) = P y(A)f(r3) +Py(C)f(r1) +{Px(C) cos 82 --Py(C) sin 82}sin 82g(r1) , (32b) 

Ez(B) = Pz(A)f(ra) +Pz(C)f(r1) ; (32c) 
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Ex(C) = Px(A) f(r2) +Px(B)f(r1) -{Px(A) cos 81 +Py(A) sin 81}cos 81 g(r2) 

-{P x(B) cos 82 -Py(B) sin 82}cos 82g(r1), 

Ey(C) = P y(A)f(r2) +Py(B)f(r1) -{Px(A) cos 81 +Py(A) sin 81}sin 81g(r2) 

+{Px(B) cos 82 -Py(B) sin 82}sin 82 g(r1), 

Again, corresponding to equations (31) we have 

P(B) = a(B) E(B), P(C) = a(C) E(C) . 

(33a) 

(33b) 

(33c) 

(34) 

Consider first the z components of the polarization. Substituting for Ez(A), Ez(B), 
and Ez(C) in equations (31) and (34), we have 

Pz(A) = a(A){Pz(B)f(r3) +Pz(C)f(r2)} ' 

Pz(B) = a(B){Pz(A)f(r3) +Pz(C)f(r1)} ' 

Pz(C) = a(C){Pz(A)f(r2) +Pz(B)f(r1)}. 

These equations lead to one dispersion relation 

or 

( 

1 -a(A) f (r3) 

Dz(w) = det -a(B) f(r3) 1 

-a(C)f(r2) -a(C)f(r1) 

Dz(w) = 1-{a(A)a(B)f2(r3) +a(B)a(C)f2(r1) +a(A)a(C)f2(r2) 

+2a(A)a(B)a(C)f(r1)f(r2)f(r3)} = 0. 

(35a) 

(35b) 

(35c) 

(36) 

(37) 

The corresponding equations linking x and y components of the polarization are 
coupled. We have, after a little algebra, 

Px(A) rpx(A) 

Py(A) I. 
Px(B) = M I 
Py(B) I 
Px(C) 

Py(C) l Py(C) 

(38) 

with M now a 6 X 6 matrix, and corresponding to equation (36) we have the further 
dispersion relation 

Dx,y(w) = det(l-M) = 0, (39) 

where the matrix (l-M) is given by the array 

(l-M) = (~ :} 
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with 

( 

1 

S = 0 

-<>«B)h(ra) 

o _<>«A)h(ra)) 

o , 

1 o 

- <>«A) {f (r2) - cos2 B1 gh)} 

<>« A) cos B1 sin B1 g( r2) 

-<>«B) {f(rIl-cos2 B2g(rIl} 

<>«A) cos B1 sin B1 g(r2) ) 

<>«A) {-f(r2) +sin2 B1g(r2)} , 

-<>«B) sin B2 cos B2g(rIl 

-<>«B)f(ra) 

<>«C) sin B1 cos 01g(r2) 

-<>«C) {f(r2) -sin 2 B1g(r2)} 

( 

1 

V = - <>«C) cos B2 sin B2 g(rIl 

-<>«C) {f(rIl-sin2 B2g(r1)} o 

-<>«B) {f(r1) -sin2 /J2g(r1)}) 

o . 

1 

Corresponding to equation (14) we now have the complete energy of interaction as 

V(r) = (n/27T) foC1J dg In{Dz(ig) +Dx.y(ig)}. (40) 

To recover known results, we proceed as before and expand the logarithms and 
determinants to terms of order r-9 • Thus 

InDz(ig) """" -a(A) a(B) p(r3) -a(B) a(C) p(r1) -a(A) a(C) p(r2) 

- 2a(A) a(B) a(C) f (r1) f (r2) f (r3) +O(r-12) 
and 

InDx,y(ig) """" -a(A) a(B){p(r3) +h2(r3)}-a(B) a(C) {f2(r1) +h2(r1)} 

-a(A) a(C) {Ph) +h2(r2)} 

-2a(A) a(B) a(C){2bhh -bhg3 -hf1g2 -hhg1 

+g1g3!2cos2 (lz +g1g2hcos2 83 +g2g3b cos2 81 

+g1 g2 g3 cos 81 cos 82 cos 83} . 

(41) 

(42) 

Substitution of the approximations (41) and (42) into the exact result (40) gives the 
energy as a sum of two-body interactions and a "three-body" potential. We use the 
relations 

cos 81 cos 82 cos 83 = t{1-cos2 81 - cos2 82 - cos2 83} (43a) 
and 

cos2 81 + cos2 82 + cos2 83 = 1-2 cos 81 cos 82 cos 83 (43b) 

to carry out necessary algebraic manipulation. In the non-retarded limit, this three­
body potential coincides with the well-known result given by Bell (1970) 

V 3(rl, r2, r3) """" -9nwo(1 +3 cos 81 cos 82 cos 83)/16(rl r2 r3)3. 
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The important point, however, is that the whole energy of interaction, including 
retardation, is given exactly by the general expression (40). Extension of the method 
to include higher order multipole interactions is immediate. However, it can be 
shown that extension to include, for example, quadrupole interactions by perturbation 
theory is inconsistent, as the finite extent of the quadrupole must be taken into 
account. Such investigations are deferred to a later paper. 
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