
SOLUTIONS OF THE RELATIVISTIC TWO-BODY PROBLEM 

II.* QUANTUM MECHANICS 

By J. L. COOKt 

[Manuscript received 10 August 1971] 

Abstract 

This paper discusses the formulation of a quantum mechanical equivalent 
of the relative time classical theory proposed in Part 1. The relativistic wavefunction 
is derived and a covariant addition theorem is put forward which allows a covariant 
scattering theory to be established. The free particle eigenfunctions that are given 
are found not to be plane waves. A covariant partial wave analysis is also given. 
A means is described of converting wavefunctions that yield probability densities 
in 4-space to ones that yield the 3·space equivalents. Bound states are considered and 
covariant analogues of the Coulomb potential, harmonic oscillator potential, inverse 
cube law of force, square well potential, and two-body fermion interactions are 
discussed. 

1. INTRODUCTION 

In Part I (Cook 1972, present issue pp. 117-39) the relativistic two-body 
problem was discussed and a system of calibrating proper times was proposed which 
permits the simple evaluation of many standard problems in a fully covariant way. 
The present paper deals with the Schrodinger quantization of the proper time theory 
and examines the properties of various relativistic models whose classical covariant 
solutions were obtaiued. 

Section II is concerned with the derivation of the relativistic two-body wave 
equation and the properties of angular momentum operators. A covariant addition 
theorem is then derived which permits the configuration space and momentum space 
eigenfunctions to be coupled to give a covariant wavefunction. This theorem is 
applied to the construction of the two-body free particle wavefunction, which is 
found not to be a plane wave. This relativistic wave formalism is used to define the 
covariant cross section and scattering matrix and an expansion into covariant partial 
waves is derived. 

Usually relativistic wavefunctions cannot be interpreted as defining probability 
densities in ordinary space. It is shown that this is because one is working in a 
4-space of hyperbolic symmetry where features of wave propagation are unfamiliar. 
If the wavefunction is converted to those eigenfunctions appropriate to spherical 
symmetry in 3-space with an additional time coordinate, familiar and meaningful 
wavefunctions are obtained. A general symmetry conversion procedure is given in 
Section V and this is shown to yield plane waves in 3-space for the case of free 
particles. The conversion is applied to general scattering from potentials and 
formulae for the scattering matrix are derived. 
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The problem of bound states is considered in Section VI. Four standard models 
are treated: the covariant Coulomb field, the harmonic oscillator, motion under the 
influence of the inverse cube law of force, and the square well potential. Only the 
boson-boson model of these interactions is solved, but a model for the boson-fermion 
and fermion-fermion systems is proposed. 

II. SCHRODINGER QUANTIZATION 

The notation of Part I is used throughout the following work. Let us now 
examine the form of the proper time calibration theory when Schrodinger quantiza­
tion is applied. The quantized relative 4-momentum of the two-body system is 
(Schiff 1949) 

(1) 

and when this is substituted into the component of the Hamiltonian which describes 
the relative motion, 

(2) 

such that the equation becomes an operator equation acting on a covariant wave­
function lJI(R), we find the covariant two-body wave equation 

(3) 
where 

Gw is the metric tensor, p. is the reduced mass, and j/ is the covariant interaction. 
Using the coordinates (30) of Part I and assuming hypercentral forces such that 

j/ is a function only of the hyper-radius S, we can separate (3) into the component 
eigenfunction equations 

(4a) 

(4b) 

(4c) 

(4d) 
where 

and Heaviside units have been introduced (Ii = c = 1). Putting 

A2 = ,\(,\+2), L2 = l(l+I) , (5) 
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we find the free particle eigenfunctions with 1/ = 0 as 

Ps = ASJH1(QS)(S +BsNH1(QS)(S, 

P y = {AyPt+l(tanhy) +By Qt+l(tanhy)}sechy, 

Po = Aopr(cos 8), 
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(6a) 

(6b) 

(6c) 

(6d) 

where J v and N v are Bessel functions of the first and second kind, P p and Q pare 
Legendre functions of the first and second kind, the A's and B's are constants, and 
the solutions (6c) and (6d) are chosen to be the same as in non-relativistic theory. 
In the following work Ii and c are shown explicitly wherever their significance in 
equations is considered to be important. 

The wave equation (3) and solutions such as (6) are valid across the surface of 
equal proper time and are independent of proper time in systems where the centre· 
of-mass motion can be factorized from the total wavefunction. It is most important 
to realize that the relative time coordinate implicit in the definitions of S and I' applies 
only to ordinary times lying on the surface of equal proper time and that the wave­
function defines wave propagation relative to that particular coordinate. Therefore 
the wavefunction and its eigenvalues have a quite different significance from those 
used by Tomonaga (1946) and Feynma.n (1949), in which the particle times, wave· 
functions, and eigenvalues apply to all possible surfaces and not just to one special 
surface. 

The operators 

and 

2 2{ 1 8 (. 8 ) 2 82 } 2 2 2 
L = Ii sin888 sm() 8() +cosec () 8~2 = Qo +Q",cosec () 

involve no derivatives with respect to Sand 1', and 

L2 P(R) = l(l+1)1i2 P(R) , (7) 

as in non·relativistic theory. The polar operator 

satisfies 

2 2{ ( 82 8 ) 2 2} A = Ii 8l +2 tanh I' 81' +tanh yL , 

so that the operator 

2 2 2 2 2 2( 82 8) 2 2 2 A = L -A = L sechy+1i 8l+2tanhY8y = L sechy-Qy 
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has eigenvalues ;\(;\+2) when acting on P"(R). Neither L nor A contain derivatives 
with respect to S. Hence 

A2 P"(R) = {l(l+1)-;\(;\+2)}li2 P"(R) = a2 P"(R). (8) 

If the Bohr correspondence principle (Schiff 1949) is to hold we should choose A 2 

to have positive eigenvalues, and so l > ;\. 
Now consider the mathematical situation of the theory concerning the expansion 

of plane waves 
P" = B exp(iQ . R) = B exp(iQSZ) (9) 

into pseudospherically symmetric eigenfunctions. The following formulae are given 
by Erdelyi et al. (1953). The first is 

00 

exp(iQSZ) = 2VF(v) ~ (it(v+n)(QS)-V Jv+n(QS) O~(Z), (10) 
n~O 

where v is arbitrary and O~ is the Gegenbauer function. Comparing (10) with the 
solutions (6), it is seen that n = ;\, v = 1 are the appropriate choices for a plane 
wave solution. Furthermore 

Z = (coshycosh o)z-sinhysinho , (11) 

where sinh 0 = E/Q, cosh 0 = q/Q, and z = q . R/qR, and therefore one can use the 
Gegenbauer addition theorem to define solutions in terms of the Qt+1(tanhy). 
However, these solutions have eigenvalues a2 from (8) which are negative and must 
therefore be rejected as not satisfying the correspondence principle. What then is 
the alternative to the plane wave expansion? 

III. COVARIANT ADDITION THEOREM AND FREE PARTICLE SOLUTIONS 

The volume element in the hyperspace is 

d V = S3 cosh2ysin (JdSdyd(Jd,p 

and, using the Pt+l solution, we have 

(12) 

(13) 

from Erdelyi et al. (1953) and therefore these eigenfunctions form an incomplete 
orthonormal set with l ~ ;\+1, and hence a2 > O. 

From the expansion properties in the three-dimensional case, we expect an 
expansion of the form 

P"(Q, R) = ~ ~ ± a).lm J ).+l(QS) 
).=-11=).+1 m=-l QS 

xpt+1(tanhy) sechy PY'(cos(J) exp(im,p) (14) 
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to represent the free particle eigenfunction that is Lorentz invariant. The aAlm 
are functions of the components of the relative momentum Q. In order to carry 
out the summations in (14) it is necessary to establish a covariant addition theorem, 
and this is indicated in a semi-rigorous way. 

The spherical harmonic eigenfunctions 

qjjlm(8,</» = (-I)m{(2l+1)(l-m)!j4?T(l+m)!}Pr(cos8)exp(im</» (15) 

(Edmunds 1957) simplify calculations in non-relativistic theory. To this end, we 
define their covariant equivalents 

qjjnlm(Y' 8, </» = {n(l-n)!j(l+n)!}Wlm(8, </»Pf(tanhy) sechy, (16) 

which satisfy 

(17) 

where we have used n = ,\+1. The integral is taken over the whole physical relative 
4-space and is easily proved using the orthogonality relation (Edmunds 1957) 

(18) 

together with the integral (13) and the volume element (12), which gives 

dQ = cosh2ysin 8dyd8d</>. (19) 

The components of R are chosen to be (8, Yl, 81, </>1) and those of Q to be (Q, Y2, 82, </>2) 
for the purpose of the following argument. The object is to determine a Lorentz­
invariant eigenfunction gn(Z) where 

Z = Q.RjQ8, 

which is a superposition of the angular components of the wavefunction (6): 

00 I 

gn(Z) = ~ ~ bnlm(Y2, 82, </>2) qjj nlm(Yl, 81, </>1) . 
l~n m~-l 

(20) 

However, we will postulate that because Z is invariant under the transformations 
Yl +-> Y2, 81 +-> 82, </>1 +-> </>2, the eigenfunctions on the right-hand side of (20) must 
be similarly invariant, provided we assume gn(Z) to be a real function. We therefore 
put 

00 I * 
gn(Z) = ~ ~ anlm C:Y nlm(Y2, 82, </>2) qjj nlm(Yl, 81, </>1) . 

l~n m~-l 

The usual addition theorem (Edmunds 1957) 

(21) 

(22) 



146 J. L. COOK 

can be used to carry out the summation over m in (21) which yields 

x pf(tanh Y2) sech Y2 Pz(z) , (23) 

where z = cos wand anZ = anZm, as required by invariance under rotations in 
3-space. 

It was found in all applications in Part I that the geometrical physical region 
is defined by I Z I ~ 1. Regions where I Z I > 1 are actually accessible from the usual 
physical ranges of (Yl, (h, (/>1) and (Y2, 82, rp2) unless the restriction on Z is taken as a 
separate kinematic condition. The sum on the right-hand side of (23) is therefore 
explicitly limited to the region I Z I ~ 1. Inserting a Heaviside function we have 

2 1 00 (n(l-n)!) 
gn(Z) 8(I-Z ) = 417 i~~n (2l+ I)anl (l+n)! 

X pf(h) (I-ti)t pf(t2) (I-t~)t PI(Z) 8(I_Z2) , (24) 
where 

8(X) = 1 for X>O, 

=0 X<O, 

and h = tanhYl and t2 = tanhY2. Multiplying both sides by Pz-{z) and integrating 
over 3-space, we obtain 

fa (Z,Z2) 

X Pl(z') Pz,(z') dz' , 
a(Z,z,) 

(25) 

where a(Z, z) are the limits imposed by Zl ~ Z ~ Z2, since I Z I ~ 1. Now 

(26) 

and behaves somewhat like a cosine of an azimuthal angle with respect to z-space. 
However, the well-known addition theorem (22) can be written 

~ r(l-n+I) n n 
Pz(z) = Pl(h) P I(t2) +2 n~l r(l+n+I) PI (h) PI (t2) cos(n arccos Z) , (27) 

provided equation (26) is satisfied. Therefore, if equation (27) is substituted into the 
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left-hand side of (25) we obtain 

! Ja(Z,Z2) 
~ On'!' pf-' (tl) pf-' (t2) dz' Yn(Z') cos(n' arccos Z') 8(I-Z,2) 

n'=O a(z,zl) 

(28) 

where 
On! = hnr(l-n+I)jr(l+n+I) , ho=I, hn=2,n*0. 

Now the eigenfunctions Pf form an orthonormal set, so the expression (28) cannot 
equal the right-hand side of (25) unless we choose rJn(Z) as orthogonal to 
cos(n' arccosZ). It follows that rJn(Z) must be a member of this latter set with an 
appropriate weight function. Hence 

rJn(Z) = (I-Z2)-i cos(n arccos Z) . (29) 

The Chebyshev polynomial 
Tn(Z) = cos(narccosZ) 

satisfies (Gradshteyn and Ryzhik 1965) 

(30) 

It is apparent that for the special case where h = t2, we have a(I,z2) = 1, 
a(-I,zl) = -1, and therefore 

(31) 

Although the series (28) diverges in the limit h ---7- t2, Z ---7- ±I, the constant an is 
correctly projected from the equation, as a factor (I-z'2) that arises from the process 
of evaluating the integral cancels the infinity in the limit. Obviously, the n = ° 
case must be dealt with separately. One finds the eigenfunction expansion as a 
result of (31) 

The second expansion is used for n = 0. 
To find the equivalent to the plane wave expansion we consider the form of 

(10) normally used in two dimensions: 

00 

exp(iQSZ) = ~ (i)nhnJn(QS)cos(narccosZ). (33) 
n=O 
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The wavefunction that is a superposition of free particle solutions is 

P(Q R) = £ a In(QS)cos(narccosZ) 
, n=O n QS (1_Z2)t 

(34) 

Comparing (33) with (34) we see that a choice of an = (i)n hn leads to 

IZI ~ l. (35) 

This wavefunction has a plane wave period but is distorted by an amplitude that 
depends upon both Sand Q. To test if (35) is a solution to the wave equation (3), 
we note that 

D2{f exp(iQ. R)} = _Q2j exp(iQ. R) +i(Q. Dj)exp(iQ. R) +exp(iQ. R)( D2j). 

The factor {Q2S2_(Q. R)2}-t satisfies 

Q. D{S(1-Z2)l}-1 = 0, (36) 

It is the n = 0 eigenfunction of the homogeneous equation 

D2jnlm = o. 

The c.m. motion factors from the complete wavefunction. Combining all of these 
results leads to a physically meaningful two-boson wavefunction without interaction of 

R1 = (m1/M)r1 + (m1/M)r2 , 

Q1 = P1+P 2, 

IV. CROSS SECTIONS 

Having established an analogy between the relativistic kinematics in terms of 
relative coordinates and non-relativistic theory in general, one can almost write 
down the covariant quantities without proof. To show that this analogy holds for 
the scattering of bosons, covariant cross sections for scattering are derived. These 
are not the conventional cross sections associated with two-dimensional areas in 
three-space, but are three-dimensional cross sections of the volume in relative four­
space. The expansion (35) is used for this purpose. The Bessel functions behave 
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J n(QS) ~ (2/7TQS)1 coS(QS-!WIT-i'rr) , 

N n(QS) '" (2/7TQS)1 sin(QS-!n7T-!7T) , 

or in terms of Hankel functions 

H~l)(QS) = In(QS)+iNn(QS) 

~ (2/7TQS)1 exp{i(QS-ln7T-f7T)}' 

H~2)(QS) = H~l)*(QS) . 

The free particle wave behaves as 

00 
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(38a) 

(38b) 

(39a) 

(39b) 

~ N :L (i)n hn(QS)-3 f2[exp{ -i(QS-ln7T-b)}+exp{i(QS-in,7T-i'rr)}] 
n~O 

x (cosnw)/sinw, (40) 

where N is a normalization constant and Z = cos w. The first term in square brackets 
on the right-hand side of (40) describes an incoming wave and the second an outgoing 
wave, propagating through the four-dimensional space-time. The presence of a 
scattering and reacting source modifies the outgoing component. The wavefunction 
for such a process becomes 

00 

lJ' ~ N ~ (it Hn(QS)-3/2[exp{-i(QS-!n7T-!7T)}+'I}nexp{i(QS-!n7T-b)}] 
n~O 

x (cos nw)/sin w , (41) 

where 'l}n is a complex amplitude. Equation (41) holds in the asymptotic region 
where QS is large and where it is assumed that no interaction takes place. The 
scattered component of the wave is therefore 

00 

lJ'sc ~N ~ (ithn(QS)-3/2(1-'I}n)exp{i(QS-in,7T-trr)}(cosnw)/sinw. (42) 
n~O 

Suppose we confine the region of interaction to a hypersphere of radius So, 
whose surface defines a Lorentz-invariant boundary in 4-space. With reference to 
the c.m. proper time T, as defined in Part I, the number of particles F s, scattered 
per second into the solid angle dQ, is the number scattered through sg dQ. Hence 

(43) 
where 
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is the current out of the 4-sphere. Substituting the scattered component (42) into 
the equation (43) for the scattering rate, one finds 

(44) 

Put V = Q/p., as the magnitude of the relative 4-velocity, and define the covariant 
cross section as 

(45) 

Using (42), (44), and (45), one obtains a cross section 

N 2
1 00 cosnw 12 L'se = 3" 2: hn(I-7Jn)-. -

Q n~O smw 
(46) 

It is clear that equation (46) for the covariant , cross section behaves as if there 
were a kinematic singularity at w = 0, on the boundary of the physical region. This 
singularity is cancelled by the zero in the Jacobian of the volume element; showing 
this explicitly, 

L', dQ = N 2: h (1- )cos(narccosZ) (I-Z2)tdZdzdq) , 31 00 12 ' 

se Q3 n~O n 7Jn (I_Z2)t 

(47) 

Once again We note how the system behaves as if there were an additional azimuthal 
angle ·w. The form of the cross section (47) applies in any frame of reference. A 
partial wave analysis of this type, when carried out in the laboratory system, has the 
same form in the c,m. system, or in any other frame of reference. The total scattering 
cross' section is 

(48) 

A completely analogous derivation of the reaction cross section yields 

00 

22/S""h' 2 L'r = (477 N Q) kJ n(l-l7Jn I ). 
n~O 

(49) 

The normalization constant N could be chosen to be proportional to Q, giving L' the 
same dimensions as ordinary cross sections. 

The first term in n = 0 in (49) contains all of the s-wave, since '(1,. ~ l. It 
contains contributions from other partial. waves as well. The scattered intensity 
Mnnot exceed the initial intensity, and S0 l7Jn I ~ 1. The definition of the, covariant 
scattering llI,atrix is also ,wholly analogous to non-relativistic theory. Outside the 
region of interaction, the wavefunction satisfying (4a) is 

00 

':l' = 2: Cn(Jn -Sn(9n) , 
,. n~O 

(50a) 
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where the On are constants and the incoming and outgoing components .f' nand 
(2n respectively are given by 

with 

so that 

.f' - in~~ 
n - () sinw (QS)3/2' 

{2 = (itcosnw ~ 
n sinw (QS)3/2' 

lJI = ~ On(.f'n+{2n) - ~ (I-Sn){2n 
n n 

,....,N (eXP(iQoR))_(eXP{i(QS-t1T)) F(Q Z)) 
- 0 Ssinw S3/2 " 

which is equal to (free wave)-(scattered component), with 

F(Q,Z) = (21T)! Q-3/2 No(I-Sn)(cos nw)/sin w, 

No being a normalization constant, and 

F(Q, Z) is the covariant scattering amplitude. 

(50b) 

(50c) 

(51) 

(52a) 

(52b) 

If the wa vefunctions lJI, .f', and {2 are now taken to be column vectors of channel 
wavefunctions, Q as channel momenta, and n as covariant angular momenta defined 
in each channel, Sn becomes a matrix in channel space. From the additivity of the 
AItv> and the fact that it commutes with JR, one can conclude that n, and hence A, 
is conserved throughout the reaction, just as l would be non-relativistically. 

V. SYMMETRY CONVERSION 

The covariant wavefunctions for bound states lead to convergent integrals 
for probability densities and reasonably simple expressions for covariant cross sections. 
However, the quantities 

J = (n/2fLi)(lJI DlJI* -lJI* DlJI), (53) 

derived from the wave equation (3) are densities relative to both ordinary space 
and the relative times which define the surface of equal proper time. Therefore, 
the question arises as to how to convert these quantities to the conventional 3-space 
equivalents. The wave propagation in the relative time direction must be removed 
in such a way as to leave a relative energy eigenvalue in the 3-space Schrodinger 
equation equivalent to (3). This can be done by defining the Fourier transforms 
(Sneddon 1951) at a point in 3-space, with respect to a dummy variable g, as 

(54a) 
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that is, when g = € the conversion to 3-space is achieved. 
Taking the transform of (3), we get 

where 
.Yt'P = rffP. 

Using pseudospherical coordinates, one finds 

.p = (21T)-1 I: d(Rtanhy) Pexp(i€Rtanhy) 

= R(21T) -t I~1 dt P exp(i€Rt) 

and an interaction term 

p = 2",R(21T)-t I~1 dt 't"'(R, Q) P(R, Q). 

(54b) 

(55) 

(56) 

(57) 

With a small variation in the relative time coordinate at a fixed point R, the inter­
action behaves as 

2 R 00 1 (oP't"') I1 
p = ~ ~ PI ---p (t' -t)p P exp(i€Rt) dt . 

(21T) p=o . ot t=t'-1 
(58) 

If the interaction decreases with increasing R, and vanishes as R -+ 00, then provided 

one will have for large R 

p R:J 2",R(21T) -Lf'"(R, t') I~1 P exp(i€Rt) dt 

R:J 2", 't"'(R, O).p. 

(59) 

(60) 

The wave equation (55) then becomes the non-relativistic Schrodinger equation 
(Schiff 1949) 

(61) 
for small values of q, where 

(62) 

Therefore, for large R, or slowly varying potentials, the wavefunction .p becomes 
that applicable at low velocities,'where q is small and € is considered to be zero. This 
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would be the case for any weak interaction, implying that particle velocities remain 
small relative to the velocity of light. The invalidity of truncating the series (58) 
near the null cone where t' '" 1 indicates that measurements of relative time in 
this region affect the behaviour of the system violently and enhance the higher 
order terms of the relativistic interaction_ 

In the absence of any interaction, one would expect the covariant wavefunction 
(35), which represents two free particles, to transform directly to a plane wave at 
any velocity of the centre of mass, or any physical relative velocity. This is in fact 
the case: 

if = _1_ fR dT ex (iET) exp(iQ. S) ()(S2) ()(I_Z2) 
(2rr)t -R p {Q2S2 _(Q. S)2}i 

= exp(iq. R) fR dT {Q2(R2 _c2T2)_( q. R _ET)2}-i 
(2rr)Y -R 

= exp(iq. R)[_'!'{arcsin(2dT+b)}]R 
(2rr)i dt (_Ll)i -R' 

where 
LI = 4ad-b2 , 

b = 2q.R, 

The integrand simplifies to give 

if = eX~~~~t~ R)[ -{arcsin(I~:)~;~t~)t) }]::~~l' 
where z = (q. R)/qR, tl = tanhy, and t2 = tanh S. Using 

z = tl t2 + (l-t~)i(l-t~)!Z , 
one obtains the value rr for the integral, giving 

if = (trr)!q-1exp(iq. R). 

(63) 

(64) 

All of formal non-relativistic scattering theory is based upon the free particle 
plane wave function (64). Therefore, allowing for relativistic kinematic factors, the 
non-relativistic expressions for cross sections, the S-matrix, partial wave expansions, 
and any formalism independent of the explicit form of the interaction, including 
reaction matrix theory (Wigner and Eisenbud 1947; Lane and Thomas 1958; 
Preston 1962), potential theory (Regge 1959), and Regge pole theory, are valid to 
arbitrarily high energies. These theories become covariant within the relative time 
formalism, provided no measurement is made to test Lorentz invariance. A test of 
Lorentz invariance is necessarily an experiment with pseudospherical symmetry in 
4-space, and the additional A-degeneracy becomes observable. 

It is very instructive to show how the wave fronts propagating in 4-space 
combine to give the plane wave (64), and in doing so remove the n-degeneracy. Using 
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the eigenfunction expansion (35) and the addition theorem (32), we find 

'" = ~ Ioo dT exp(iET) P(R) 8(S2) 
(217) -00 

R II . . 1 ~ . n In(qR(l-ti)t(l-t~)t) 
= --. dh exp(lqRht2) X 217 I: (1) hn 2 t 2 t 

(217) -1 n~O qR(l-h) (1-t2) 

00 

X I: bzn Pf(tl)(1-tr)tpf(t2) (l-t~)tpz(z). (65) 
Z~n 

Now there exists a standard Fourier transform (Erdelyi et al. 1953) 

= L' exp(iY cos8cos,p) J v-.(Ysin8sin,p) C~(cos8) (sin8)"+t d8, (66) 

where C~ is the Gegenbauer function, which is related to the spherical harmonics 
by (Erdelyi et al. 1953) 

Substituting v = n+t, cos () = iI, Y = qR, p+v = l+t, and cos,p = t2, we obtain 

(217jqR)1(i)z-n Pf(t2) Jz+.(qR) 

= I~1 dtl exp(iqRtl t2) In(qR(l-tr)t(l-t~)tPf(tl))' 

which, when applied to (65), yields 

'" = t17 ~ (i)n hn ~ bzn (i)z-n Jz+t(qR) {pf(t2)}2 Pz(z) 
n~O Z~n q (qR)t 

= q-l ~ (i)ZJ1H(q~) Pz(z) ± t17hn bzn{pf(t2)}2. 
Z~O (qR) n~O 

(68) 

Now bZn = (2l+1)(l-n)!j(l+n)!, and the second sum in (68) is such that it equals 
t17(~l+1) from the addition theorem, so that 

00 

'" = (17j2q) I: (i)z(2l+1) (qR)-tJl+t(qR)Pz(z) 
Z~O 

in agreement with the direct result (64). 
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When the interaction "Y{S) is present, the converted wavefunction is 

00 

X 2: bnl pf(t1) PV(t2) Pl{z) 
l~n 

where 
I 

gl = 2: an{{l-n)!/(l+n)!}Gn{q, R, t2) pf(t2) 
n~O 

is the 3-space radial wavefunction, with 

(70) 

and Gn(QS)/QS is the solution to the 4-space radial wave equation. Bertram (personal 
communication) has proved the important result 

where Np(x) is the associated Bessel function. Using this result, we find 

_1_ foo dT ex (iET) i (ith Bn(QS)cos(narccosZ) 
(27T)! -00 P n~O n QS (1_Z2)! 

= ~ ~ 27T i (i)l (l+t) (qR) -tBI+t(qR) PI(Z) , (72) 
7T q 1~0 

where B is any of the Bessel functions J , N , H(l), or H(2). 
v v v v v 

The ordinary representation of the delta function (Goertzeland Tralli 1960) 
is not useful in this scattering theory. Instead we use the distorted form (40) to 
obtain 

with 

5°OQ3dQf1 dZ (1_Z2)tf1 dz 521T dIP exp{iQ.(S-S')} 1 
1 1 1 1 Q2S~" . , 1 Z2 o .-1 -1 0, . /::l SlllwSlllW - 1 

=47T2 i hncos{n{w-w')} X rooJn(QS)Jn(QS')QdQ 

n~O sinwsinw' Jo SS' 

47TO(S-S') o(Z-Z') 
S3(1_Z2), 

47T o(S -;-S') o(w-w') 
S3 sin2w 

Q .S/QS = cOS(W-W1)' Q .S'/QS' = coS(W'-W1)' 

(73) 
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where the rotation theorem 

Lr dWI cos{n(wl-w)} cos {n'(wl-w')} = (7T/hn)Snn' cos{n(w-w')} (74) 

has been used. In these equations 

z = cosw, z' = cosw', 

and 8 1 is a reference 4-vector. 
Following standard derivations (Goertzel and Tralli 1960) the equation for the 

scattering state is 

IJF(S, Q) = ~~i~~~:l + ffff S,a dS' dw' dz' dc[)' xG(S, S') IJF(S', Q) (75) 

and G is the Green's function 

where 

G(S, S') = -.!.. ('Xl Q,a dQ' fl dZ\ t fl dZI (2" dc[)1 
47T J 0 -1 (l-Z1) -1 J 0 

exp{iQ.(S-S')} ( 1 ) 
X Q,2SS'. . , Q2 Q,2 SlnwSlnw -

= ). £ (S S') h cos{n(w-w')} 
4 gn, n. . , 

n=O SlnwSlnw 

= (l/47T)Hd1)(Q I S-S' I)/SS' sinw sinw' , 

(s S') = (00 In(Q'S) In(Q'S') Q' dQ' 
gn, 1-0 SS'(Q,2_Q2) 

= Re{H~)(QS') In(QS)/SS'} , 

= Re{H~)(QS) In(QS')/SS'} , 

S< s' 

S> S'. 

(76) 

Taking the Fourier transform of (75) and using (64), we find the 3-space wavefunction 

From (77) one finds the conventional scattering amplitude as in Schiff (1949) of 

f(B,cP) = ~fffI dS' exp(iq' .R')~(S') IJF(S', Q), (78) 

where q' = q-qo, qo is the vector representing the initial beam momentum, and 
q is the final beam momentum in the direction (B, cp). Models for scattering and 
perturbation expansions can be evaluated from equation (78). 
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VI. BOUND STATES 

There are some specific points concerning the eigenvalues of the covariant 
angular momentum tensor which require elucidation. The most important is the 
question of its role in the energy eigenvalues for discrete levels in bound states. 
Five models are considered here to make this role apparent. 

(a) Coulomb Two·boson Atom 

The Hamiltonian for this problem as in equation (3) can be written in the 
notation of Part I as 

£P = fffP = eQ12-:l )2 + (Q2~Ad) P. (79) 

We now assume, as in Part I, that the electromagnetic potentials are given by 

(80a) 

where G l is an operator which is assumed to obey the eigenvalue equation 

(80b) 

the square brackets denoting the commutation relationship, with Gl a scalar and 
U em the 4-velocity of the centre of mass; and similarly 

(80c) 

When these potentials are substituted into (79) we find 

(81) 

to order e6 at least. Omitting the suffix cm from the 4.velocity, the following 
commutation relations must be valid for the above equality to hold: 

[QI,U] = 0, 

and therefore 

These conditions are really only necessary to simplify equation (79). 
We define two operators (FI,F2) with constant eigenvalues (ft,h), 
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such that 

With these operators, upon separating variables, equation (81) yields the radial 
wave equation 

(82) 

where E = 2/L(:Yt'-QV2M) = /L(W2-M2)/M. 
Putting fl2 ;= 4E and p = flS we obtain the equation 

(83) 

in which 

and 

Substituting 'Ps = W p-3/2 into (83) we obtain 

(84) 

This is Whittaker's equation (Erdelyi et al. 1953). The solution which tends to zero 
as p tends to infinity is 

WK,n' = exp(-tp)pK2FO(t-K+n',t-K-n';-p-:-l) 

= exp( -tp) pn'H 'P(t-K +n', 2n' +1; p), (85) 

where 'P(a, c; x) is the confluent hypergeometric function. It behaves asymptotically 
for large p such that 

'P ,...." ex (~1 ) ~n'-l( £ (_l)m r (n'+t+ m - K ) 1 r(t-K+m-n') K-n'-t-C.m) 
S p 2P P in~o r(n' +t-K) m! rrt-K -n') p 

"'" const. exp( -tp) pK-3/2. (86) 

Near the origi~, no nonsingular solution exists unless (t-K+n') is a negative integer. 
We have there 

'Ps ,....,,{r(2n')!F(t-K +n')}p-n'-i. 

Two discernible cases arise: 

(i) N = -(l-K+n') is an integer. This solution becomes the same as in the 
non-relativistic case, namely the Laguerre polynomials times factors. This <is because 

L~'(p) = {(-1)N/N!}'P(-N,2n'+1;p) 
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and these functions are nonsingular at the origin. However, we would then have 

K = t+N+n'. 

If the integer solutions for n are chosen, K is approximately half-integer, in which 
case the energy levels are 

and do not tend to the correct non-relativistic limit of the Bohr levels. There are 
two possible answers to this dilemma. Firstly, we could choose the solutions where 
n is half.integer. This would imply that the scattering theory developed in Sections 
III and IV was not applicable to such a pair of particles. An equivalent scattering 
theory in which n is half. integer is possible to derive. 

(ii) The second solution is to note from the relation 

Kn'(ix) = 7Ti exp(ix)xn'lJI(n'+t,2n'+I; x) (87) 

that as IX -+ 0 the solution with integer N cannot give the free particle eigenfunctions 
Kn(tp) at negative energies. We can therefore choose N to be half. integer to preserve 
this relationship. In this case the singularity at the origin does not allow one to 
normalize the solution over the physical volume element. Such two-boson atoms 
cannot therefore admit point source potentials which yield the Bohr levels and are 
nonsingular at the origin. If we assume the two bosons to be extended sources, it 
is possible to introduce a surface cutoff at very small values of S. Using Green's 
theorem, we find 

[WI Wz - W2 Wi] = (K1-K2) JOO WI W2 p -l dp . 
Po 

(88) 

Making use of the radial wave equation (82) we see that a cutoff at po allows the 
integral to be written 

~l~[Wl Wz - W2 Wi] = (K1-K2) too WI W2 S-1 dS. 
o 

(89) 

This integral will vanish if 

The higher terms in the expansion near the origin are found from the relation (85) 
and the equations (Erdelyi et al. 1953) 

r(l-c) l-cr(c-l) 
lJI(a,c;x) = r(a-c+l) ct>(a,c;x) +x r(a) ct>(a-c+l,2-c;x), (90) 

where 
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is the confluent hypergeometric function. For small po we obtain 

Kpo = (1-ic-Bn)(2-c) = (2n' +l)(Bn+n' -i) . 
Bn-2+ic Bn+n'-! 

(91) 

Right at the origin, we would have po = 0 and Bn = -n' +i. However,80 and Bn 
both have to be independent of K and this can only occur if 

po = 2(-E)180 ex: K-l, (92a) 

which is satisfied if the energy levels appropriate to the problem are given by 

(-E)i = (IX/K)!,-, [I=!'-. (92b) 

The surface cutoff 

8 _ 1 (2n' -l)(Bn+n' -i) 
0- 2 B ' 3 IX n+n -"2 

(93) 

can be chosen as small as desired, provided the actual limit is never taken to the origin. 
The normalizations are found from the relation 

and hence 

fOC> 
-1 ,2, 1-2n' 

W K W K' 8 d8 = (2n -3n +2)(po) SKK' 
So 

(94) 

(95) 

The energy levels are found to be 

E _ IX!,- _ 2 IX IX 2 0 1X6 2 2 (2 4'1:2 ) 
- - K2 - -!'- (N+n)2 + (N+n)3n + ( ) . (96) 

When one mass becomes very large, we find for m2 ~ ml 

E - 1 IX IX '/2 0 6 ( 
2 4 2 ) 

1 - ml - 2(N +n)2 - 2(N +n)3n + (IX) • (97) 

Two points of importance arise: 

(1) The term proportional to !1X4 is missing. 

(2) The quantum number n has replaced the (l+i) in the normal case of one 
light boson in a central field. 

(b) Linear Harmonic 08cillator 
The force 

(98) 

can be represented by the potential 

"Y = L iKpX~ (99) 
p 
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with a wave equation 

(100) 

which separates to give four equations 

(101) 
with 

The Kp must transform as tensors. Putting 

4 ~ K 
(Xp = 2fL v, 

we obtain 
(102) 

The standard solutions are the Hermite polynomials such that 

(103) 
with 

n = 0,1,2, ... , 

There are therefore zero-point energies corresponding to all modes of vibration 
along the four axes. The time-like vibrations have not been observed and it is not 
known how they would manifest themselves. These functions form an orthonormal 
set over the physical volume element. 

(c) Inverse Oube Law oj Force 

When Goldstein (1953) formulated the Bethe-Salpeter (1951) wavefunctions 
for two spinors interacting via the ladder exchange of neutral bosons, he obtained 
a radial wave equation from the quantum field theory of the form 

(104) 

in the case of equal masses. This is a special example of the radial wave equation 
(4a) for a hypercentral inverse cube law of 4-force. Putting"Y = _KjS2 in equation 
(4a) we find 

(105) 

which is identical with Goldstein's (1953) equation provided R = QS and 4'1') = A2+K 
= n2+K-1. In the non-relativistic limit, this force gives the solutions appropriate 
to the r-2 potential. It is therefore not surprising that he found no bound state, 
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as no non-relativistic bound states exist (Morse and Feshbach 1953). Goldstein's 
solutions 

n' = (1-47])!, (106) 

are obviously those for the inverse cube law of 4-force in the relative time theory. 
No bound states exist here as well for 0 ~ S ~ 00. 

(d) Square Well Potential 

With an interaction in equation (4a) of the form 

=0, 

S<a, } 

S>a, 

nj/" = -nj/"o, 
(107) 

where nj/"o and a are constants, we have the covariant analogue of the square well 
potential. The solutions are 

where 
= B H~l)(f3S)If3S , 

IX = {2fL(nj/"O-(b'W, 

S<a, } 

S >a, 

f3 = (2JL1ff)!. 

In the bound state region, Iff is less than zero and hence 

(108) 

(109) 

is the solution. These functions tend to zero as S tends to infinity. By choosing 
boundary conditions on each solution such that 

a (8lJfsI8S) = -(n+1), lJf s S~a 
(110) 

one also ensures that the internal eigenfunctions form an orthonormal set in the 
interval 0 ~ S ~ a. The energies of the bound states are obtained by noting that 
the boundary condition (110) is equivalent to the conditions 

(Ill) 

when P = Pv are zeros of J n-l(P). Hence the energy levels are 

Iffv = Pvla . (112) 

(e) Two-fermion Atom 

There are many possible models of the two-fermion atom and the one derived 
here is chosen mainly for its relative simplicity. The main problem is in finding 
how to linearize equation (2). We choose the form 

(113) 
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where IJ's is an eight-component spinor, four components appropriate to one ordinary 
spinor and four to the other, with 

(114a) 

(114b) 

V being the relative velocity_ The Hamiltonian for the relative motion is 

£ = P3YpQP -PIJt +'t'" 

= P3ysQS -P3 i(ys/S)p3 K +'t'" -PI Jt , (115) 
in which 

(116) 

where we have (Corinaldesi and Strocchi 1963~ 

upv = (YpYv-YvYp)/2i, (117) 

and the Y /s are the usual Dirac matrices_ From (117) it can be shown that 

(118) 
and using 

Qs = (8. Q -ii)/S = i(8/8S +3/2S) (119) 

it can be readily proved that the following relations hold 

(120a) 

PI P2YS +P2YS PI = 0, Kys-ysK = 0, 

[£,K] = 0, [£,K2] = 0, (120c) 

where we choose P3 = 1 and PI = P2 = Y5-
The analogue of the total angular momentum is 

(121) 

where tu pv is the spin tensor and 

J2 = tJpJpp = tApv:AP+tu"vAPP+tupvuPV = K2-£_ (122) 

We choose ys = Yl- Putting 

0/4 = S-1 (123) 
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we obtain the following set of differential equations 

(124a) 

(124b) 

(124c) 

(124d) 

and with the aid of (119), while assuming that as in non-relativistic theory K is integer, 
we obtain the equations 

(125a) 

(125b) 

(125c) 

These are identical with Dirac's (1958) radial equations, and he has shown that they 
have solutions for bound states provided 

"Y = -e2/S, (126) 

where P = (K2- cx2)i and n' is an integer. When one mass becomes very large, it 
can be seen from equations (114) that 

(127) 

and we are left with Dirac's formula for the fine structure of the hydrogen atom. 
The relative time theory therefore works very well in this case. 

There is one important feature of this model. Using equations (122) and (116) 
we find 

(128) 

In the non-relativistic approximation, we replace P2 by unity and obtain 

,\ = K-i, -K-! (129) 

and'\ must be half-integer if we are to obtain the correct fine structure. This has the 
effect of making the radial wave equations the same as in the non-relativistic theory, 
but the angular eigenfunctions become, for example, 

(130) 

The boson theory given in previous sections does not apply to spinors and the 
mathematical theorems such as the covariant addition theorem and the equations for 
symmetry conversion for these eigenfunctions need to be investigated. 



RELATIVISTIC TWO-BODY PROBLEM. II 

VII. REFERENOES 

BETHE, H. A., and SALPETER,E. E. (1951).-Phys. Rev. 84, 1232. 
COOK, J. L. (1972).-Aust. J. Phys. 25,117. 

165 

CORINALDESI, E., and STROCCru, F. (1963).-"Relativistic Wave Mechanics." p. 217. (North 
Holland: Amsterdam.) 

DIRAC, P. A. M. (1958).-"The Principles of Quantum Mechanics." 4th Ed. (Oxford Univ. Press.) 
EDMUNDS, A. R. (1957).-"Angular Momentum in Quantum Mechanics." (Princeton Univ. Press.) 
ERDELYI, A., MAGNUS, W., OBERHETTINGER, F., and TRICOMI, F. G. (1953).-"Higher Trans-

cendental Functions." Vols. 1 and 2. (McGraw-Hill: New York.) 
FEYNMAN, R. P. (1949).-Rev. mod. Phys. 20, 367. 
GOERTZEL, G., and TRALLI, N. (1960).-"Some Mathematical Methods in Physics." (McGraw-Hill: 

New York.) 
GOLDSTEIN, J. S. (1953).-Phys. Rev. 91, 1516. 
GRADSHTEYN, I. S., and RYZHIK, I. M. (1965).-"Tables of Integrals, Series and Products." 

p.56. (Academic Press: New York.) 
LANE, A. M., and THOMAS, R. G. (1958).-Rev. mod. Phys. 30, 257. 
MORSE, P. M., and FESHBACH, H. (1953).-"Methods of Theoretical Physics." Part II, p. 1665. 

(McGraw-Hill: New York.) 
PRESTON, M. A. (1962).-"Physics of the Nucleus." (Addison-Wesley: Massachusetts.) 
REGGE, T. (1959).-Nuovo Oim. 14, 951. 
SCruFF, L. I. (1949).-"Quantum Mechanics." (McGraw-Hill: New York.) 
SNEDDON, I. N. (1951).-"Fourier Transforms." (McGraw-Hill: New York.) 
TOMONAGA, S. (1946).-Prog. theor. Phys., Osaka 1, 27. 
WIGNER, E. P., and EISENBUD, L. (1947).-Phys. Rev. 49, 519. 

APPENDIX 

It is of some interest to show how the partial waves of covariant angular 
momentum are related to the partial waves of ordinary angular momentum. In order 
that the wavefunction 'P in equation (50a) should be converted by the Fourier trans­
form to the equivalent wavefunction ifs in a particular Lorentz frame, we must have 

where 
Jz = (qR)-l h!~l(qR)Pz(z) , (!) = (qR)-i hf~l(qR)Pz(z), 

z (l-n)! n 2 
Sz = l~o hn (l+n)!{Pz (t:!)) Sn 

and therefore, from equations (32) and (46), 

.Esc = \ 1 ~ (l-Sn) c~snw 12 
Q n=-oo smw 

7T
2 

1 ; ~ (l-n)! n 2 2 12 
= -3 ~ (2l+1) ~ (l-Sn)hn (l+ ),{Pz (tt)} (l-tt)Pz(z) 

4Q z=O n=O n. 

= (7T2j4Q)(1-ijl)asc(q, z), 
where 

asc = I/~o (2l+1)(1-Sz)Pz(z) 12 

is the conventional differential cross section. 






