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Ab8tract 

The combined effects of a finite ion Larmor radius and collisions with neutral 
atoms on the dynamic stability of a composite medium are investigated.' The 
stability analysis haS been carried out for a semi·infinite composite medium of ' 
variable density in the presence and absence of a uniform streaming motion~ Wave 
propagations transverse to the direction of the uniform horizontal magnetic field 
have been considered. It is found that the effects of the collisions as well as the 
finite ion Larmor radius are stabilizing on both streaming and non· streaming 
composite media. 

1. INTRODUCTION 

The effects of collisions with neutral atoms on the stability of the well-known 
Rayleigh-Taylor and Kelvin-Helmholtz configurations have been investigated by 
Hans (1968). He idealized a plasma, which may not be fully ionized but also per­
meated with neutral atoms, as a composite medium having an infinitely conducting 
hydromagnetic component and a neutral component, the two interacting through 
mutual collisions. It has been shown by both Hans (1968) and Bhatia (1970a) that 
these collisions have a stabilizing influence on the instability of the interface between 
two uniform superposed static media. For the case of a'Kelvin-Helmholtz configura­
tion of two superposed media, Rao and Kalra (1967) and Hans (1968) found that the 
collisional effects are in fact destabilizing for a sufficiently large collision frequency. 

In recent years several authors (e.g. Roberts and Taylor 1962; Rosenbluth, 
Krall, and Rostoker 1962; Jukes 1964) have pointed out the importance of the 
effects of finiteness of the ion Larmor radius, which exhibits itself in the form of 
"magnetic viscosity" in the fluid equations, on plasma instabilities. In his investic 
gation Hans (1968) also considered these finite Larmor radius (FLR) effects, besides 
the effects of collisions, on the stability of two superposed uniform media. 

It has also been pointed out by several authors (see e.g. Chandrasekhar 1961) 
that the case of variable density is equally illteresting. Recently Bhatia (1970b) 
considered collisional effects on the dynamic stability of a '. composite medium of 
variable density and showed that the collisions have a stabilizing influence. Earlier 
Ariel and Bhatia (1969) had investigated FLR effects on the stability of a fully 
ionized plasma of varying density and found that they also have a stabilizing influence 
on the plasma instability. 

It is therefore of interest now to study the result of simultaneous inclusion of 
FLR and collisional effects on the stability of a composite medium of variable 
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density, and this is the aim of the present work. The medium is assumed to be 
incompressible and having a one-dimensional stratification in density. The effects 
on the stability of a streaming composite medium are also considered. Since the 
basic equations governing the motion of a composite medium in the presence of 
collisional and FLR effects have been given by Hans (1968), many details are omitted 
here. 

II. PERTURBATION EQUATIONS AND DISPERSION RELATION 

The linearized perturbation equations describing the motion of the infinitely 
conducting hydromagnetic and the neutral components of a composite medium, 
in the presence of a uniform horizontal magnetic field H = (Ho, 0, 0) acting in a 
direction perpendicular to the uniform streaming velocity U = (0, U,O) and a 
downward gravitational field g = (0,0, -g), lead finally to the following differential 
equation governing the velocity component w: 

{D(pDw) -k;pw}{n +iky U +vca(n +iky U)((n +iky U +vc)} 

+2ivky[D{(Dp)(Dw)}-kZ(Dp)w]+gk;(Dp)w((n +iky U) = O. (1) 

This equation is the same as the one obtained by Hans (1968) except that the term 
2ivky(P2 p)(Dw) is missing from his equation. However, this omission does not 
affect his calculations as he has considered the case where the density of the hydro­
magnetic component p is constant. In equation (1) u(u, v, w) denotes the velocity 
and Vc the collision frequency between the two components (both assumed to be 
macroscopic). The effects on the neutral component resulting from the presence of 
a magnetic field and the fields of gravity and pressure are neglected. The FLR 
effects are exhibited in equation (1) through pv = N1'(4wH' where WH is the ion 
gyration frequency and Nand l' are the ion number density and temperature 
respectively. Also in equation (1) D 0= d(dz and a = Pd(p, Pd being the density of 
the neutral component. 

After elimination of sevoral quantities from the linearized perturbation equations 
governing the system, equ~tion (1) is obtained by employing a normal mode analysis 
and seeking solutions whose dependence on y and the time t is of the form 

exp(iky y +nt) , (2) 

where n is the frequency and ky the wave number of the perturbation along the 
yaxis. We are thus analysing here the transverse mode of wave propagation. 

Equation (1) holds for all density distributions. We now consider a medium 
in which the density p (and also Pd) is stratified vertically, that is, 

=0, elsewhere, } (3) 
p(z) = PI exp(fh), O~z~d, 

where PI and f3 are constants. The medium is assumed to be confined between two 
parallel rigid surfaces at z = 0 and d and to be infinitely extending along both 
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horizontal directions. For a density distribution of the form (3) equation (1) becomes 

D2w+,8Dw 

k2(g,8/(n +iky U) -{n +iky U +ocvc(n +iky U)/(n +iky U +vc) +2iv,8ky}) = 0 (4) 
+ y n +iky U +ocvc(n +iky U)/(n +iky U +vc) +2iv,8ky w. 

On the bounding surfaces (z = 0 and d) w must vanish. Appropriate to the condition 
at z = 0, the solution to equation (4) can be written as 

(5) 

where m1 and m2 are the roots of the equation 

2+,8 +( g,8/(n+iky U) -1)k2 =0 
m m n +iky U +ocvc(n +iky U)/(n +iky U +vc) +2iv,8ky y . 

(6) 

The condition that w must vanish at z = d requireI', for a nontrivial solution, 

or (7) 

where 8 is an integer. 
Making use of the relations between m1 and m2 as given by (5) and (7), the 

dispersion relation for different values of the parameter 8 then becomes 

(n +iky U)3 +(n +iky U)2{2iv,8ky+vc(1+oc)} 

+(n +iky U){2ivvc,8ky -g,8k~/(l2 +k~)}-vcg,8k~/(l2 +k~) = 0, (8) 

where we have written 
(9) 

III. DISCUSSION 

Chandrasekhar (1961) has shown that, in the absence of the effects of FLR 
and collisions, the configuration is stable or unstable according as ,8 is less than or 
greater than zero respectively. For the non-streaming (U = 0) configuration the 
same conclusion was also obtained earlier when the effects of FLR (Ariel and Bhatia 
1969) and collisions (Bhatia 1970b) were included separately. We now therefore 
consider the dispersion relation (8) according to whether the configuration is stable 
or unstable. 

(a) Stable Stratification (U = 0 and U =F 0) 

Putting q = n +iky U and ,8 = -,81 (,81 > 0), we can rewrite equation (8) as 

l +vc(l +oc)l + {g,81 k~/(l2 +k~)}q +vc g,81 k~/(l2 +k~) 

= i(2v,81kyl +2vvc,81kyq) , (lO) 
or in the simple form 

(11) 
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where the constants a, b, c, d, and e are all positive and real and denote the coefficients 
of the various powers of q in equation (10). 

If we now square equation (ll) we obtain a sixth-order polynomial in q which 
can be written in the form 

(12) 

where, as is clear from (ll), the coefficients Ai (i = 0, ... , 5) are all real and positive. 
Applying Hurwitz's criterion to equation (12) we find that the roots of q are either 
all negative and real or complex conjugates with negative real parts. This indicates 
that, for both streaming and non-streaming, the configuration is stable in the presence 
of the collisional and FLR effects, as it is in the absence of these effects. 
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Fig. I.-Plots of the growth rates (positive real parts of n' and ii) again,st the wave numbers 
k' and "k respectively for (a) a non-streaming medium with IX = 0'5 and (b) a streaming medium 

with IX = O· 5 and B = 2· 0, for the indicated values of the v parameters. 

(b ) Unstable Stratification 

It is convenient to consider the dispersion relation (8) for unstable conditions 
(f3 > 0) separately for the cases U = 0 and U #- O. 

(i) Non-streaming .L1fedium (U = 0) 

With U = 0 and the transformations 

n' = n / (gf3)! , v' = vl(f3/g)!, v~ = vc/(gf3)i, k' = ky/l, (13) 
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we get tJ.1e dimensionless form of equation (8) 

Numerical calculations were performed to obtain the variation of n' with k' from 
equation (14) for several values of the parameters v' and v~ for ex = 0 ·5. The results 
of these calculations are presented in Figure l(a), where the growth rate (positive 
real part of n') is plotted against the wave number k', for different values of v' and 
v~. It can be clearly seen from the figure that as v~ increases n' decreases, thereby 
indicating that the influence of collisions is stabilizing even in the presence of an 
FLR effect. Furthermore, the curves show that n' decreases as v' increases for the 
same v~, and this indicates that the FLR effect is also stabilizing. We thus conclude 
that both effects enhance the dynamic stability of a composite medium of variable 
density. 

(ii) Streaming Medium (U i= 0) 

In this case we make the substitutions 

ii = njlU, v = vf3jU, Ve = vejlU, k = k ll jl (15) 

in equation (8) and obtain the dimensionless form of the dispersion relation 

ii3+ri2{(3+2v)ik+vc(1 +ex)}+ii{ -3k2-4vk2- Bk2j(1 +k2) +2ive k(1 +ex+v)} 

+ {-ik3-2ivk3-iBk3j(1 +k2) -ve(1 +ex)k2 -2vve k2 -ve Bk2j(l+k2)}= 0, (16) 

where 
B = gf3jl2U2 (17) 

is a measure of the buoyancy forces in terms of the streaming velocity. 
For several values of the parameters v, Ve, ex, and B numerical calculations 

were performed to locate the roots of ii from equation (16) for different values of the 
wave number k. The results are presented in Figure l(b), where the growth rate 
(positive real part of ii) is plotted against k for several values of v and Ve for Ct. = 0·5 
and B = 2·0. It can be seen that ii decreases with increase in both v and ve, again 
indicating that both the collisional and FLR effects have a stabilizing influence 
on the unstable configuration. 

We may thus conclude that the simultaneous inclusion of the effects of collisions 
and a finite Larmor radius has a stabilizing influence on the dynamics of a streaming 
composite medium in which there is a one-dimensional stratification in the density, 
at least for the range of parameters considered. 
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