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Abstract 

Contrary to curtent opinion, the statistical distributions of level spacings and 
reduced widths when applied to the reaction matrix are not invariant under changes 
in the boundary condition matrix or the matching radius. General arguments are 
given, together with specific examples which violate the invariance requirements. We 
conclude that it may be the parameters of the collision matrix which should be 
analysed and considered as the invariant parameters. It is shown that if, for a specific 
set of boundary conditions, the distributions of level spacings and reduced widths are 
uncorrelated, then correlations between the level spacings and widths must exist 
when different boundary conditions are used. 

1. INTRODUCTION 

The parameters which occur in statistical theories of nuclear reactions usually 
depend on the statistical properties of the parameters in the reaction matrix R, and 
for this reason the statistics of R-matrix parameters have been widely investigated 
(Lynn 1968). Distribution laws for level spacings and reduced widths have been 
derived by Wigner (1956) and Porter and Thomas (1956) respectively. Though no 
formal proof has ever been given, it is usually assumed that the statistical distributions 
of R-matrix parameters are independent of the boundary conditions used in the 
definition ofthe R-matrix. Lane and Thomas (1958) claimed this on physical grounds 
and supported their view with a plausibility argument. Teichmann and Wigner 
(1952), by considering the effect of changes in the boundary conditions, suggested the 
existence of correlations between the level spacings and the reduced widths. On the 
other hand, Lane and Thomas dismiss this argument as being based on mere 
speculation. 

More recently, Moldauer (1964) investigated some of the statistical properties 
of the R-matrix numerically and concluded that they were not independent of the 
boundary conditions. He discovered that by fixing the distributions of the reaction 
matrix parameters and varying the boundary conditions, the distributions of param­
eters of the collision matrix varied; this should not occur. Unfortunately, changes 
in statistical distributions due to changes in boundary conditions are not investigated 
easily by computer experiments. The main difficulty is the restriction to a finite 
number oflevels. Initially, an R-matrix may be constructed such that the distributions 
of the level spacings and reduced widths are independent of the sampling range. 
However, after changing the boundary conditions the resulting R-matrix no longer 
has this property. Distributions obtained by sampling the poles near the extremities 
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of the range are generally different from those obtained by sampling near the centre 
of the range. 

In this paper, the problem of whether or not the reaction matrix parameters 
vary with boundary conditions is investigated analytically for a single channel 
R-matrix by considering the moment-generating functions of the distributions. The 
statistics of R-matrix parameters are generally not invariant under changes in 
boundary conditions. This is demonstrated by considering first- and second-order 
variations in the moments and distributions due to variations in boundary conditions. 
It is shown that if there exists a special set of boundary conditions in which the level 
spacings and reduced widths are uncorrelated, then generally for other boundary 
conditions there must be correlations between the level spacings and reduced widths. 
Therefore the method of statistically sampling reaction matrix parameters from 
uncorrelated distributions in order to generate cross sections may only be valid for 
a particular set of boundary conditions. 

II. FORMULATION OF THE PROBLEM 

In the Wigner and Eisenbud (1947) R-matrix formalism, the single channel 
scattering matrix is expressed in terms of the R-function 

R(E) = ~ Y~/(E;..-E) +Rw , (1) 
;.. 

where the Y~ are the reduced widths, the E;.. are the resonance poles, and Rw is a 
residual constant. The eigenvalues E;.. of the nuclear Hamiltonian are defined by 
imposing on the eigenfunctions, at a chosen radius a, boundary conditions which are 
characterized by a real constant B, as 

(2) 

where the o/;..(r) are eigenfunctions, corresponding to the eigenvalues E;.., of the 
nuclear Hamiltonian with the boundary conditions (2). The reduced width amplitudes 
are defined as 

(3) 

where M is the reduced mass of the system. 
If Ro is an R-function corresponding to the boundary condition Bo then the 

R-function for a different boundary condition B is given by the relation (Lane and 
Thomas 1958) 

R = Ro{l-(B-Bo)Ro}-l. (4) 

The collision function g' is given by 

g' = Q2{1-(L-B)R}-1{1-(L*-B)R}, (5) 

where Q = exp(i</», </> being the hard sphere phase shift, and L = S+iP, S being the 
level shift and P the penetration factor. The function (5) is invariant under the 
transformation (4). It should also be invariant with respect to changes in the 
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arbitrarily chosen radius a. We can express these invariances in the equations' 

o!f'joB = 0, o!f'joa = O. (6a, b) 

The positions E;' of the poles in R are given by the solutions of the equation 

1-(B-Bo)Ro = 0 (7) 
and the residues are 

(8) 

Equation (4) was shown by Teichmann (1950) to be equivalent to the differential 
form 

oRjoB = R2. 

By equating residues at the poles on either side of equation (9) we find 

2 
-YA' 

These relations also follow from equations (6a) and (5). 

(9) 

(lOa, b) 

In order to study the statistics of R-matrix parameters, Wigner (1956) 
introduced the concept of the statistical R-function in which the reduced widths Y~ 
and level spacings D A' given by 

(11) 

have definite distributions which are independent of the sampling range. We shall 
consider the statistical R-function defined by equation (1) in which the s~mmation 
over.\ extends from - 00 to + 00. We suppose that there is some prescribed order in 
which positive and negative terms in equation (1) are to be summed. 

The effects of changes in the boundary conditions on the statistics of the param­
eters is most conveniently investigated by means of moment-generating functions. 
The moment-generating function (Cramer 1946) of a distribution P(x) is the Laplace 
transform 

P(s) = f: exp( -sx) P(x) dx, (12) 

so that when F(s) is expanded in ascending powers of s 

00 

P(s) = ~ {( _1)kjk!}Mkl, (13) 
k~O 

where Mk is the kth moment of the distribution. If the series (13) is absolutely con­
vergent for some s > 0, the distribution is uniquely determined by its moments. 
Therefore the dependence of the distributions of level spacings and widths on the 
boundary conditions is completely determined by the dependence of the moments 
upon Band a. 

Two common examples of the above which are used in calculations are as follows. 
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W igner Di8tribution of Level Spacing8 

In this case 
P(D) dD = (7TDj2152)exp{ -7TD2j(4D)2} 

and 
FD(8) = 1-158exp{(15282)j7T}erfc(158j7Ti), 

where 

(14) 

(15) 

The Taylor expansion of (15) gives all of the moments of the distribution in terms of 
15 alone: 

FD(8) R:! 1 -158 + (2j7T)15282 + ... 
and thus 

Mo(D) = 1, M1(D) = 15, 

Porter-Thoma8 Di8tribution of Reduced Width8 

Here 

and 

which yields 
MO(y2) = 1, 

III. LEVEL SPACING DISTRIBUTION 

(16a) 

(16b) 

(17) 

(18) 

(19) 

Suppose when B = Bo that D" and y~ are uncorrelated. The dependence of the 
level spacings on B is obtained from equation (lOa) as 

Using the fact that 
8D"j8B = 8<D)j8B, 

where the angle brackets denote the average over '\, we find 

Similarly, by repeated differentiation of (22) we can show that for all n 

8n <D) = <8n-ly~ _ 8n-ly~ +1) = O. 
8Bn 8Bn- 1 8Bn- 1 

(20) 

(21) 

(22) 

(23) 

This result reflects the well-known fact that the average density of levels is indepen­
dent of B (Lane and Thomas 1958); however, it is not necessarily independent of a. 
Furthermore, we can show that the first derivatives of all higher moments vanish. 
Thus 

<8D~j8B) = <nD~-l(Y~_Y~+1) = n<D~-l)<Y~-Y~+l) = 0, (24) 

since D" and Y~ are uncorrelated. 
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Needless to say, if the moments are to be truly independent of B then all higher 
derivatives of all moments must be identically zero, that is, 

for all (n, k) . (25) 

This is certainly not the case in general, as can be seen by considering the second 
derivative of the second moment M2(D). 

From 

aDA = 2( 2 _ 2 )2+2D aYA _ aYAH 2 2 (2 2) 
aB2 YA YH1 A aB aB (26) 

we obtain 

a M2 = a <D ) = 2« 2 _ 2 )2)+2 D aYA _ aYAH 2 2 2 / (2 2) 
aB2 aB2 YA YH1 '" A aB aB . 

(27) 

The first term on the right in equation (27) is nonzero and its value depends only on 
the distribution of the reduced widths. In general the second term will not cancel the 
first term as its value depends not only on the distribution of widths but also on the 
distribution of level spacings. The value of the second term can be determined. 
Using the fact that at Bo widths and spacings are uncorrelated, we obtain from 
equation (lOb) 

(28) 

For those terms in equation (28) for which fL = A-k (k > 0), we have 

(29) 

Writing 

( .~ DA_i)-1 =foo (~1 eXP(-DA-iS)) ds, 
~~1 0 ~~1 

(30) 

we find 

(E DA E "'/ = -<D) f 00 [Pn(s)t ds, 
'- A-k- A 0 

(31) 

where Fn(s) is the moment-generating function of the distribution of level spacings. 
Similarly, those terms in equation (28) which have fL = A+k (k > 0) can be written as 

/ DA '" / (k-1 )-1", -1 
" n E / =" DA 2: DHi / = k , 
'ViiA+k- A "i~O 

(32) 

which may also be expressed in integral form as 

(E DA E "'/ = <D) f 00 exp( -k<D)s) ds. 
" A+k- A 0 

(33) 

Therefore, combining the relations (31) and (33), equation (28) becomes 

(DA~Y;) = <l)2<D)(~ fOO {eXP(-k<D)S)-[Pn(S)]k}) ds. (34) 
" 8B k~1 0 
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The two summations in (34) must of course be carried out simultaneously in 
the same order as used to define the summation in equation (1). To avoid difficulties 
arising from the lower limits of the integrations, we replace them by a small positive E 

and consider the limit as E tends to zero. Since for all S > E the two series in equation 
(34) are absolutely convergent, the summations may be taken inside the integrals. 
Summing the series separately we obtain when E -'i>- 0 

<DA ~y~"" = <i)2(D) f W ( exp( -(D)s) _ PD(S) ) ds. (35) 
c}B/ 0 l-exp(-(D)s) I-PD(s) 

In terms of averages we obtain finally 

(36) 
where 

C«D») = <D) f W ( exp( -(D)s) _ PD(S) ) ds. 
o l-exp(-(D)s) I-PD(s) 

(37) 

We note that the integral on the right of (37) exists only if PD(s) tends to zero 
faster than s-l as s tends to infinity. For large s, we may write 

PD(s) = IW exp( -sD){P(O) +D(dP/dD)D~o + ... } dD 

= s-lP(O) +s-2(dP/dD)D~o+ .... 

Therefore, the above analysis holds only if 

LimP(D) = 0, 
D-.O 

(38) 

(39) 

which is an expression of the fact that levels repel each other. We note that often 
PD(S) has the form PD(D)s) and therefore that 

C(D»)=f W
( exp(-u) _ PD(u) )dU, 

o l-exp(-u) I-PD (u) 
(40) 

which is independent of (D), and is therefore constant. Similarly, if P(y2) can be 
written as a function P(y2/(y2») then Py(s) has the form Py(y2)S) and the second 
moment of the distribution is a constant times <y2). It follows that 

(41) 

As an example, if we take the Wigner distribution of level spacings (14) and the 
Porter-Thomas distribution of reduced widths (17), we obtain 

(42) 
where 

C - f W ( 1 _ 1 ) du 
- 0 I-PD (u) l-exp(-u) 

= f W (exp( _u2/7r) _ 1 ) du '"" 0.49 
o uerfc(u/7rt) l-exp(-u) . 

(43) 
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IV. DISTRIBUTION OF REDUCED WIDTHS 

If we consider equations (7) and (8), then since RQ(E~) is finite for every B *- Bo, 
it follows that all Y~ tend to zero when B-Bo tends to infinity. Thus the average 
reduced width (y2) is certainly not independent of B. We therefore examine the 
effect of the transformation (4) on the distribution of the quantities yV(y2). It is 
not difficult to see from equation (lOb) that 

(44) 

though in general higher derivatives do not vanish. Using the fact that y~ and D 
are uncorrelated, we obtain for n > 1 

where 

A = < ~ ~ (E/k-E}..)-l(Ev-E?y-l), 
It"'}.. V"'/k 

The conditions on A and F under which the second derivatives of all moments 
vanish can be represented by the set of simultaneous equations 

n = 2,3,4, ... , (46) 

where an andfn are the coefficients in equation (45). Since F is always nonzero, the 
equations (46) can only be satisfied if: 

(i) A = 0 andfn = 0 for all n, and 

(ii) an/fn is a constant that is independent of n. 

Clearly neither of these conditions is satisfied in general, and therefore the distribu­
tion of reduced widths must change when the value of B is altered. 

V. LEVEL SPACING DISTRIBUTION AFTER SMALL CHANGE IN BOUNDARY CONDITIONS 

In Section III it was shown how the moments of the distribution of level 
spacings vary under small changes in B. However, from these results it is not easy 
to derive the corresponding change in the distribution function itself. The effect 
of a small change in the value of B on the shape of the distribution function can be 
calculated more easily by considering transformations between random variables. 

Suppose that initially we have a set of level spacings D 1, D2 , •.• , D N and a set 
of reduced widths Yl, Y 2 , .•. , Y N such that the probability that Di has a value 
between D and D+dD is P(D) dD and the probability that Yi has a value between 
Yand Y +dY is Q( Y) dY. Let us consider the effect of the transformation (4) on a 
particular D}.., say D1 . We write the transformed level spacing as 

(47) 
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The inverse transformation may be written as 

(48) 

Then the probability that ~l has a value between ~ and ~+d~ is given by ::7l(~) d~ 
where 

::7l(~) = f··· f P{F(~,D2' ... ,DN; Y1, ... , Y N)}{P(D2) ... P(DN)} 

x{Q(Y1) ... Q(Y N)}(8FI8~) dD2 ... dDN dY1 ... dY N. (49) 

This can be written as 

(50) 

where the average is taken over all variables except ~. 
In particular, when B = Bo + oB we can write to second order in oB 

(51) 

Using the same argument as that used to derive equations (31) and (33) we can 
obtain the inverse tranformation in order (OB)2 as 

-A+l{ ~ y!(~ DHk)-l - ~ y!(~+ ~ ~i_k)-1}](OB)2. 
#>Hl k #<i+l k 

(52) 

Substituting (52) into (50) and neglecting terms of order higher than (oB)2 eventually 
yields 

::7l(~) = P(~)+{G(~)P(~) +H(~)dP(~)/d~+Kd2P(g)/df22}(oB)2, (53) 

where 

(54) 

2 2 - 1 fCIJ 

= 2<y > 0 {exp(-~s)-I}{I-PD(S)}- ds, (55) 
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and 
(56) 

It is quite clear from equation (53) that the distribution function has changed 
from the initial distribution function P(D) to one which depends upon <y2) as well 
as <D). Therefore, if there exists some special value Bo for which the level spacings 
and reduced widths are uncorrelated, then in general when B =1= Bo correlations 
between spacings and widths must exist. 

VI. CHANGE IN PARAMETERS WITH CHANGE IN RADIUS 

Let us consider the physical requirement that the collision function Y given by 
equation (5) should be independent of the arbitrary radius a. Then from equations 
(5) and (6b) we obtain 

aR = idQ_1_{1_2(S_B)R+(S2+P2_2SB+B2)R2} 
aa daPQ 

_~ap R{l+(B-S)R}- as R2. 
P aa aa 

(57) 

We shall consider s-waves only where (Preston 1965) 

P = ka = (2ME)'a, Q2 = exp( -2ika) , 

from which we obtain 

aR 1 (B2 B) 2 R -=-+ -+2MaE-- R --(1-2B). 
aa a a a a 

(58) 

However, using equation (1) we get 

aR = ~ ~y~_l __ _ ~ y~ aEA + aRoo 
aa A aa EA-E A (EA-E)2 aa aa' 

(59) 

Substituting equation (1) into (58) and equating the residues of poles of each 
order in E A -E, we obtain the three equations for small Roo 

where 

aEA/aa = - y~{2MaEA+B(B-1)la}, 

ay~/aa = y~{(2B-1)/a -2Ma(y~ -2EAFA)} ' 

aRoo/aa = l/a, 

F A = ~ y!/(EA--EI') , 
I'#A 

(60a) 

(60b) 

(60c) 

(61) 

The most common value for B chosen in s-states is B = 0, and for this value 
we obtain 

with equation (60c) unchanged. Equation (62a) gives 

aDA/aa = 2Ma{EAY~ -EA+l y~+l}' 

(62a,b) 
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that is, 
8<D)/8a = -2Ma(y2)<D). (63) 

Next consider from equation (62b) 

The term containing Ei\ can be shown to have a zero average and therefore we have 
by the methods of the previous section 

8<y2)/8a = -2Ma<y4)-<y2)la. (65) 

For a Porter-Thomas distribution, equation (65) becomes 

(66) 

Equation (66) has the unique solution 

(67) 

where C is a constant of integration which is independent of a. Equations (67) give 
explicitly the dependence of the mean distribution of reduced widths on the matching 
radius a. 

Returning to equation (63) and integrating with respect to a, we obtain the 
solution 

<D(a) = <D(ao){(C+6Mao)/(C+6Ma)}' . (68) 

The average level spacing <D) turns out to be a monotonic function of a, varying 
smoothly from the value at ao to zero as a becomes infinite. This can be seen from 
the following tabulation of the matching radius dependence on level spacing, where 
we have chosen <D(ao) = 1, ao = 1, C = 1, 6M = 1, and <y2(ao) = 0·5: 

a }·O 1·25 1·5 2·0 3·0 4·0 5·0 7·5 10 00 

<D) 1·0 0·954 0·928 0·874 0·794 0·734 0·693 0·618 0·567 0 

<y2) 0·5 0·356 0·267 0'}67 0·084 0·050 0·033 0·015 0·008 0 

Finally, equation (60c) can be integrated to give approximately 

Roo = In(alao) , (69) 

where ao has been chosen as the nuclear radius, and therefore the constant background 
in equation (1) vanishes at this radius. 

VII. CONCLUSIONS 

Several methods have been used to illustrate that, contrary to current opinion, 
the statistical distributions of reaction matrix parameters do depend on· both the 
choice of the boundary condition matrix B and the matching radius a. Explicit 
expressions for the changes in the moments of the distributions as well as for the 
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changes in the distributions themselves have been derived. The two important 
examples of experimentally verified distributions considered have been shown to be 
non-invariant under the relevant transformations. We conclude therefore that the 
technique of statistically sampling reaction matrix parameters from such distributions 
in order to generate cross sections may be valid only for a particular value of Band 
a special matching radius. 

In addition, if one were to analyse experimental data and derive sets of dis­
tributions of Y~ and E i'-' using ranges of values for a and B, one should find that these 
distributions depend upon a and B. By using a least-squares fit to a Porter-Thomas 
distribution and a Wigner distribution respectively, it should be possible to select 
an a and B which give the best fits. We speculate that the values obtained might be 
those where a is close to the nuclear radius and B is of order -l (l being the orbital 
angular momentum), as this choice gives zero level shift at threshold for square-well 
potentials. 
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