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Abstract 

The general theory of relativity is discussed within the framework of the 
concept of surfaces of equal proper time as outlined in a previous paper. The three 
main tests of general relativity, namely the precession of the perihelion of Mercury, 
the gravitational shift of spectral lines, and the gravitational deflection of light rays 
by massive sources, are considered and it is shown that, though the modified equations 
are Lorentz·invariant with respect to distant observers, the deviations from 
conventional results are so minute as to be undetectable. 

1. INTRODUCTION 

In a previous paper, Cook (1972; hereinafter referred to as Paper I) gave models 
of special relativistic dynamics which permit the evaluation of trajectories for two 
interacting bodies, and, in particular, investigated the motion of planets within the 
context of these models. The special relativistic effects upon orbits were found to be 
very small. It is well known (Einstein 1915,1916) that the effects of general relativistic 
considerations are detectable in the form of the advance of the perihelion of Mercury, 
the gravitational shift of spectral lines, and the gravitational deflection of electro­
magnetic waves. The effects predicted in Paper I are much smaller than these and the 
question naturally arises as to whether the modified theory can be made compatible 
with general relativity. In the present paper, the precession of the perihelion of 
Mercury is discussed using a combination of the theory in Paper I and general 
relativity. 

If one considers the Schwarzschild (1916) exterior solution and considers the 
metric as a function of radius and angle, it can be seen that these parameters are 
defined relative to the centre of a massive Sun which has no motion. Should an 
observer A be viewing the planetary system from a distance very much greater than 
the radii of the planetary orbits, he would have to be at rest relative to the Sun in 
order to test the predictions of general relativity. On the other hand, if one wishes 
to know how an observer B who is moving rapidly with respect to the Sun would 
describe the system, the logical thing to do would be to regard the Schwarzschild 
coordinates as relative coordinates and carry out a Lorentz transformation upon the 
metric. As a simple illustration, observer A would determine a metric given by 
(M011er 1952) 

(1) 

where IX is the Schwarzschild constant, (r, e, 4» are configurational polar coordinates, 
and t is the coordinate time. Suppose B is moving rapidly with a velocity V relative 
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to A towards the system in a direction momentarily along the radius vector r, at 
a point where 8 is zero. The coordinates defined by B have the values relative to 
those defined by A of (M011er 1952) 

r' = f3(r- Vt) , ct' = f3(t- Vr/c2) , (2) 

and the metric (1) is not invariant under the Lorentz transformation (2). How then 
can one describe the planetary system in a way which leaves the metric unaltered 
by (2)1 We assume that the observers A and B are so distant that the gravitational 
influence of the planetary system upon them is negligible, and they can be considered 
to be in frames of reference that are approximately inertial. 

Such a model is given here. Before considering this model, however, it is 
necessary to discuss further the concept of equal proper time surfaces as proposed 
in Paper 1. 

II. SURFACES OF EQUAL PROPER TIME 

It is usually difficult to visualize the physical significance of equal proper time 
surfaces because of the lack of a simple reference model. Let us consider its meaning 
in general relativistic terms. Imagine that an observer A who wishes to investigate 
a particular region in space can send a shower of test particles through it and can 
determine the trajectory of each. A gravitational field may be present both due to 
the mutual interaction of the pa~ticles, which we shall ignore, or more likely due to 
some strong sources which may be present. To define the coordinate time t, we 
suppose that in a particular reference frame the space through which the particles 
pass contains a grid of clocks, which have all been calibrated with the aid of a slowly 
moving master clock, to read coordinate time t. As an illustration, though not 
essential to the model, let us choose a particular surface of equal coordinate time 
as determined by observer A to be a "calibration surface" over which he sets all 
test particle proper times Ti to zero. 

Let Yj and X be the usual vector and scalar gravitational potentials. The 
increment in proper time for each particle is related to the ~ncrement in coordinate 
time by (M011er 1952) 

dTi = dtt[{(1+2X/c2)!-YjVifc}2-v7fc2Ji, (3) 

where the vi are the 3-velocity components of particle i. The arc length in 4-space 
travelled by each particle from the calibration surface is 

(4) 

If we take the points where all particles have travelled an equal distance along 
their particular trajectory in 4-space then, provided the distribution of velocities 
is known at the calibration surface and is assumed to be a given continuous function 
of particle velocities, the points can be taken to lie upon a "surface of equal proper 
time". 

As an illustration of the two-dimensional case, in Figure 1 the extremities of 
the equal length arcs traced out by the test particles lie on a line of equal proper 
time. Without the specification of an initial velocity distribution, this line would 
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not be unique. Once such a distribution V(x) is given, one can idealize the situation 
to the results of observing many such showers, and the line of equal proper time 
is not only unique but is determined for all positive values of the 'Tt. It can be seen 
from equation (4) that, by setting all of the 'Tj equal over each such surface, the 
corresponding coordinate times tj will in general be different. Therefore, relative 
time differences 

arise over these surfaces that are functions of'T = 'Tj. 

Line of equal 
proper time 

x 

Fig. I.-Line of equal proper 
time connecting the extremities 
of equal length arcs traced out 
by the test particles in two 
dimensions. 

(5) 

In relation to the two-body problem being considered by observers A and B, 
the notation of Paper I is used here and we adopt the relative coordinates 

where all coordinates refer to an equal proper time surface. We also use as in Paper I, 
the variable y defined by 

Scoshy = R, Ssinhy = cT. (6b) 

The principal concept outlined here, the use of surfaces of equal proper time 
to describe dynamical interactions, is not really practicable for distant observers 
such as A and B and therefore, although of some benefit in visualizing these surfaces, 
the concept has to be modified when one examines the motion of two distant bodies 
by means of light signals. Thus, instead of introducing the shower of test particles, 
we suppose that both observers can view many such systems and can therefore 
obtain some idea as to the effect of varying the initial chosen conditions. For example, 
if each observer finds that the motion is determined by four second-order differential 
equations in the four relative coordinates and proper time, then eight initial conditions 
per particle, or per pair of particles after centre-of-mass motion is removed, are 
required. These conditions can be chosen to be the initial position in 4-space and the 
initial velocities in 4-space. By varying these initial conditions, through examining 
different planetary systems, one is in effect using the masses themselves as test 
particles. Therefore, in discussing the motion of planet and Sun, we are referring 
to the coordinates which relate the position and motion of the Sun at a time when 
a clock there appears to read proper time 'T to A and B, to the planet when it is at a 
position where a clock upon it also appears to read proper time 'T to A and B. Naturally, 
the above events local to planet and Sun will not occur at the same coordinate time 
t in general. This idea is difficult to grasp unless one realizes that the relative interval 
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between planet and Sun is actually 

and it -=I=- t2 over the surface. Specification of a continuous distribution of initial 
4-velocities and a set of initial coordinates R then allows one to locate the surfaces 
of equal proper time. 

III. GENERAL RELATIVITY CONSIDERATIONS 

To investigate general relativistic effects, it is necessary to obtain the analogue 
of the Schwarzschild exterior solution. As pointed out above, this solution is appli­
cable to a static gravitational field around a massive stationary source. We require 
a set of two-body dynamical field equations and their solution which preserve Lorentz 
invariance between observers A and B. The gravitational field equations according 
to Einstein (1915, 1922) can be written 

Mik = -KT'ik, (7) 

where Mik represents a system of second-order differential equations and Tik is the 
energy-momentum tensor. The metric for the problem is obtained by assuming 
the existence oflengths of arc in tlle 5-space defined by the coordinates (Rl, R 2 , R3, T, T) 
for which an element of arc is 

(8) 

where G!1V is the appropriate metric tensor in 4-space. Using pseudospherical 
coordinates as in Paper I, we assume, in analogy with Schwarz schild (1916), 

A,p = 0,1,2,3,4, (9) 
with 

Rl =y, R2= 8, R4 = CT. 

In what follows, Roman indices will indicate 4-space and Greek indices 5-space. 
By comparison with the case of weak fields dealt with in Paper I, we see that the 

equations (7) must reduce for weak fields to 

(10) 

where p is the gravitational source density and k a constant. Now it Olin be shown 
from standard methods (M0ller 1952) that 

(ll) 

and we can put TAu as the 5-space equivalent to Tik in equations (7) with 

M A,,= -KTA'" (12a, b) 

UP being the 5-velocity dRP/dT. 
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Equations (7) express the assumption that a differential operator acting on 
g44 is proportional to T 44. Therefore, following Einstein (1915, 1922), we assume 

(13) 

where the curvature tensor f!llAp is given by 

(14) 

In terms of mixed components, we find 

(15) 
where 

(16) 

.\ is a constant of cosmological significance, and the usual Christoffel symbols are 
defined as 

(17a) 

with 
g gPU = Su 

Ap A' (17b) 

Using the relations (17) together with the metric (9), we find 

r80 = a'f2a , r~l = Sfa, 
(18) 

where the prime denotes differentiation with respect to S. The components that are 
independent of a(S) and b(S) are 

~=~=~=~=~=~=~, } 

r~2 = sinh y cosh y, rI2 = r~l = rr3 == rg1 = tanh y , 

r~a = sinhycoshysin2 8, r:a = -sin 8cos 8, rga = rg2 = cot 8. 

(19) 

The remaining components are zero. 
Employing the metric (9) and equations (16) and (17), we obtain 

o b" b,2 a'b' 3a' 
f!llo = 2ab - 4ab2 - 4a2b - 2a2S' 

(20a) 

(20b) 

4 b" b,2 a'b' 3b' 
f!ll4 = 2ab - 4ab2 - 4a2b + 2abS' 

(20c) 
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and from (16) 

(21) 

Thus from (12b) we have 

Mg = -~+ ~(1-!)-'\ = -KTg 
2ab8 8 2 a ' 

(22a) 

Ml=M~=M~ 

bIt b,2 a'b' a' 2b' 1 (1) 1 
= -2ab + 4ab2+ 4a2b + a28+ ab8 - 8 2 a-I -,\ = -KT1' (22b) 

4 3a' 3 (1) 4 
M4 = -2-+2 1-- -,\ = - KT4. 

2a 8 8 a 
(22c) 

It was shown in Paper I that, in order to obtain the exact analogue of the 
3-space potential from the electromagnetic field equations, it appears necessary to 
postulate that the "vacuum" specified by letting the masses tend to zero is such 
that when either mass is nonzero a source term is present. To obtain the correct 
8-1 behaviour for the potential, it is necessary to make this source 

(23) 

where H is a constant to be determined. Such a source obeys the continuity conditions 
(Moller 1952) 

(24) 

where IJ = det g = ab86 cosh4 y sin2 {} and we make use of the fact that ab is constant. 
The latter can be proved by subtracting (22c) from (22a) to obtain 

ab'+a'b = O. 

We choose ab = 1. However, from equations (22) we also find that for any values 
of a and b 

t8M'i+Mt = Ml = M~ = M~ = o. (25) 

The three vanishing source terms therefore follow from the values of Tg and Ti chosen 
to keep equation (12b) consistent. 

To solve equations (22), we put y = a-I and obtain 

(26) 

which, upon substituting the relations (23) and integrating, yields 

(27) 

where B is a constant of integration. Since no 8-3 force is observed, we put B = O. 
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In the weak field approximation, using the reduced mass }L of the system, we must 
obtain the Newtonian-like potential of Paper 1. Therefore, using the Newtonian 
gravitational constant G, we have 

(28) 

However, from Einstein (1916), we assume that the equations should yield 

(29) 
and we have 

(30) 

It therefore follows that IHI is 127T times the total rest mass of the particles. If 
both masses tend to zero, this term vanishes. 

We note that 'T here has the significance of being the proper time as determined 
by the observer A or B. Since A is at rest relative to the Sun, 'T is approximately 
equal to t, the usual coordinate time, in his frame of reference. The observer B will 
not, however, observe this relation if he moves rapidly relative to A. Observer A 
can then make the approximations y ~ 0, 8 ~ r, and dy2 ~ 0, and will find that 
Einstein's model is correct. 

IV. COMPARISON WITH RESULTS OF GENERAL RELATIVITY 

(a) Calculation of Precession 

Putting 

we obtain the equations of motion, as demonstrated by M011er (1952), of 

(82cosh2y)~2j(1-ct8) = const., (AjA)tany = cos 1> , 

(31) 

(32) 

where A and A are the constants of motion defined in Paper I, the motion is confined 
to the plane () = t7T, and the angular velocity 

(33) 

is used throughout the derivation. We then arrive at the additional precession for 
one rotation in terms of w as 

(34) 

where 8 1 and 8 2 are the maximum and minimum values of 8 respectively. It follows 
that the observed precession is 

(35) 

This leads to a correction at maximum deviation of 1 part in 4 X 108 for Mercury. 
Such a small discrepancy is unlikely to be observable, and therefore the above 
theory agrees closely with standard general relativity. It has the added feature, 
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however, that Llw in equation (34) is a Lorentz-invariant quantity, and the observers 
A and B discussed in the previous sections would determine the same equations of 
motion and the same value for Llw, which, for example, is 42·9 min of arc per century 
in the case of Mercury. 

(b) Other General Relativistic Effects 

From the theory outlined in Paper I, it is straightforward to show that the 
gravitational shift of spectral lines and the gravitational deflection of light signals 
are almost identical with the conventional results. For example, in the former case 
we obtain (Moller 1952) for observer A, situated distant from a light source ml and 
observing light emitted from it, 

~: = - 0;1 Ul - 8~J ' (36) 

where Llv is the frequency shift from the vacuum value due to the presence of the 
SOll-rce, vo the vacuum spectral line frequency of the gravitational source, 8 1 the 
covariant interval from the centre of mass of ml to its surface, and 8 1A the covariant 
interval from the centre of mass of ml to observer A. Observer A would therefore 
find corrections only of the order of 10-8 to the conventional result. Observer B 
would, of course, see conventional special relativistic Doppler line shifts, because of 
his motion relative to A. 

To consider the gravitational deflection of light, we assume that m2 is zero 
and that the light signal obeys Fermat's principle (Moller 1952) in the relative 
4-space. We then obtain 

(37) 

where w = c(l-rxj8)! is the proper velocity of light in the medium. For i, k = 2,3 
equation (37) just gives the conventional result for an angular deflection Llif; of 

(38) 

where 8 m is the minimum proper distance between the light ray and mass mi. There 
appears to be a correction of the order of 10-8 to the result (38) for observer A since 
8 m is not quite equal to the usual radius rm = 1 rl(t)- r2(t) I. Observer B would see 
a different deflection owing to the fact that the incident and deflected light waves 
undergo special relativistic aberration (McCrea 1954). The deflection for observer B 
can easily be calculated from standard formulae. 

v. CONCLUSIONS 

It has been shown that the theory presented by Cook (1972) is not so much 
inconsistent with general relativity but forms distinct models that are valid within 
the framework of special relativity. General relativity can be encompassed by such 
models, but it must be emphasized that the corrections found are so small that at 
present the theory remains only a formalism which cannot do more to conventional 
models than make them Lorentz-invariant. 
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