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Abstract 

Further investigation of steady magnetohydrodynamic flow through a straight 
channel of arbitrary cross section with nonconducting walls is considered, in the 
presence of anisotropic conductivity due to the Hall effect, where no restriction is 
made on the Reynolds number or magnetic Reynolds number. An approximate 
solution is provided by a perturbation expansion in terms of the Hall parameter, 
assumed small. Corrections are made to the first-order solutions established by 
Panton and Hosking (1971) and the solutions are then extended to the second order 
for a square channel. It is found that both the Reynolds number and magnetic 
Reynolds number terms have a significant influence on the mass transport, the 
former far outweighing the contribution to the flow established by Tani (1962) for 
the values of the flow parameters assumed. 

I. INTRODUCTION 

In the previous paper by Panton and Hosking (1971; hereinafter referred to 
as Paper I) an investigation of magnetohydrodynamic (MHD) channel flow with aniso­
tropic conductivity was carried out, where the anisotropy was considered to be due 
to a significant Hall effect. An error in the boundary condition on B used in that paper 
necessitated the re-evaluation of the first-order stream function ifil (the y component 
of the vector potential) and hence Vl y and B 1y as given in Paper I. The condition for 
ifil on the boundary was found to be incorrect and the problem had to be extended 
over all space using a condition on ifil at infinity. Since the solution of ifil over all 
space was continuous across the boundary of the duct, that part of the solution 
applying within the duct could then be used for the subsequent calculations involving 
Vly and B 1y. Results obtained by the method of Rayleigh and Ritz showed only slight 
difference, to first order, from those obtained in Paper I. 

The significance of the previous calculations compared with those of Tani 
(1962) was in the inclusion of two parameters, namely the Reynolds number Rand 
the magnetic Reynolds number Rm, which he had assumed to be small (R ~ 1, Rm ~ 1). 
The analysis was performed by oonstructing minimum prinoiples oorresponding to the 
resulting MHD equations and boundary conditions. These principles were valid for 
arbitrary ohannel oross seotions but were subsequently solved for a ohannel of square 
oross seotion by the method of Rayleigh and Ritz. The approximate solution was 
based on an expansion in terms of the Hall parameter k (oonsidered small) to first 

* First-order solutions were established in the pa.per by D. M. Panton and R. J. Hosking 
which appeared in Aust. J. Phys., 1971,24,61-9. 
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order only, with no restriction on Rand Rm. In this case, no modification to the 
mass transport was found but a net axial current was produced by the anisotropy 
in the conductivity. At the same time a secondary cross flow was established, identical 
with that obtained by Tani (1962) when Rand Rm were very much less than unity. 

In the present paper, the expansion is taken to order k2 , and now significant 
modifications in the mass transport are determined. One of these modifications 
corresponds to that found by Tani (1962), whilst two others arise from the Rand 
Rm terms. The results show that whilst the Rm terms may be omitted with some 
justification, the contribution to the flow due to the presence of the R term cannot 
be ignored, and is more significant than the contribution obtained by Tani (1962). 
Furthermore, the R contribution is found to decrease the flow, that is, opposite in 
effect to the modification found by Tani (1962). 

Whereas contributions from terms of order k3 may have some influence on the 
cross-velocity profiles, these are not of principal interest here and, furthermore, the 
contribution to the axial velocity from these terms is asymmetric and hence provides 
no net change in the mass transport. 

We consider a steady MHD flow in a straight channel of arbitrary cross section 
with nonconducting walls. An incompressible fluid with anisotropic conductivity 
flows in the presence of a uniform transverse magnetic field. A right-handed cartesian 
axis system is used such that the z axis is parallel to the imposed uniform magnetic 
field Boz while the centre line of the channel is along the y axis. All physical quantities 
except pressure are assumed to be independent of y. 

II. MHD EQUATIONS 

The steady flow considered is governed by the following MHD equations: 
continuity equation for an incompressible fluid 

V.v=O; (1) 
equation of motion 

pv. Vv + VP = fL-1(V X B) X B +pv V2v; (2) 

Ohm's law in the form 
j = a(E+vX B)-(KjB)jx B, (3) 

under the assumption of conditions where the ions in the fluid have no spiral paths, 
whereupon Wi 'Ti ~ 1, Wi being the ion cyclotron frequency and 'Ti the ion-neutral 
collision time, and thus the gradients of the electron pressure Pecan be neglected 
(Liubimov 1962); the electromagnetic equations 

V.B=O, fLj = Vx B, VXE = 0; (4) 

and the equation of magnetic induction 

7]-1 VX(vx B) -Vx Vx B -KB-1 Vx{(Vx B) X B} = 0, (5) 
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where (5) may be obtained by taking the curl of (3) and using equations (4). In these 
equations v denotes the fluid velocity, B the magnetic field density, E the electric 
field,j the electric current density, p the fluid density, P the pressure, JL the magnetic 
permeability, and v the kinematic viscosity. The resistivity 7J = (JLa)-I, where a is the 
fluid conductivity which is assumed to be constant. The anisotropy in the conductivity 
is due to the Hall term, which is characteristized by the parameter K in equation (3). 
If the fluid is fully ionized we have K = WeTe = aB/ene, where We denotes the electron 
cyclotron frequency, Te the ion-electron collision time, e the electron charge, and ne 

the electron number density. We find K ~ 1 is a good assumption for many laboratory 
MHD flows, and consequently K is a natural expansion parameter. 

III. PERTURBATION EQUATIONS 

We seek perturbation solutions of the MHD equations (1)-(5) by expanding the 
physical quantities in the form 

(6) 

where k = KBOZ/B is very much less than unity. The zeroth-order solution corresponds 
to the primary isotropic conductivity flow (Shercliff 1953; Tani 1962). The equations 
relating to the zeroth order may be found in Paper I, but the first-order equations 
are now modified slightly and will be considered afresh, along with the second-order 
terms. 

To first order, the MHD equations (1)-(5) may be expressed as 

V .VI = 0 ; (la) 

V .BI = 0, VXEI = 0; (4a) 

and 

where 

Vo = (O,VOy(x,z),O) , Bo = (0, Boy(x,z),Boz) , 

v = (a/ax, 0, a/az) , 

and all derivatives with respect to y vanish except the zeroth-order pressure gradient 
apo/By = -G (constant). 
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We now introduce the dimensionless quantities 

x* = x/a, y* = y/a, Z* = z/a, 

P* =P/pV5, v*=v/Vo' 

B6z = 1 Bi = Bl/BozRm, 

j* =j/Boz Vou, 
where 

Rm = Voa/y) , R = Voa/v, 

in which a and Vo denote the reference length and reference velocity and R, R m , 

and M are the Reynolds number, the magnetic Reynolds number, and the Hartmann 
number respectively. The components of equations (2a) and (5a), with the asterisks 
omitted for convenience, are then given by 

(7) 

(8) 

(9) 

2 2 2 
_ 0(\7 0/1) _ 0 Xl + 0 'BOY 

OZ - oz2 oi' 
(10) 

_ \72 Bl = OVly + Rm (00/1 oVOy _ 00/1 OVOy _ OXI oBoy + OXI OBOY ) 
y oz oz ox ox OZ OZ ox ox OZ ' 

(ll) 

and 

(12) 

where the stream functions Xl and 0/1 have been introduced such that 

VIx = oXI/OZ, VIz = -oXI/OX, B IX = Oo/I/OZ, BIz = -Oo/l/OX. (13) 

The y component of equation (3a) is 

(14) 

since Ey = O. (For \7 X E = 0, Ey is constant and, since (n X E) = 0 across the 
fluid wall interface, Ey is continuous across this boundary. Assuming that Ey is 
zero at infinity, then Ey = 0 everywhere.) 
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Elimination between equations (7) and (9) yields 

V2V2X1 +M2 o(V2.pl)/OZ = 0, 

and hence with the help of equation (10) 

V2V2X1 = M2(02Xl/oz2 +o2Boy/oz2). 

723 

(15) 

(16) 

Although equations (10)-(12) have been obtained by curling Ohm's Law, it is found 
preferable to use the y component of this equation for the evaluation of .pl, since it 
is of lower order in .pl than either (lO) or (12). Using the second of equations (4) in 
dimensionless form, to both zeroth and first order we obtain 

which with the introduction of the stream function .pi gives 

(17) 

Subject to the appropriate boundary conditions, equations (16) and (17) may be 
solved for Xl and .pl, and the solutions used in (8) and (11) for Viy and B ly. 

The second-order perturbation equations derived from equations (1)-(5) are 

V .V2 = 0, (lb) 

pVl. VVl + pV2. Vvo + VP2 = p.-l{(V X Bo) X B2+(V X B l ) X Bi 

+(V X B2) X Bo} +pv V2V2 , (2b) 

V .B2 = 0, (4b) 

7]-l{VX (vox B 2)+ V X (Vl X B l )+ Vx (V2X Bo)}- Vx (V X B 2) 

-Bilzl[V X {(V X Bo) X Bl}- V X {(V X B i ) X Bo}] = 0, (5b) 
where 

When dimensionless quantities are introduced, equations (2b) and (5b) in 
component form, with the asterisks again omitted for convenience, are 

R{OX1 02Xl _ OX102Xl)+ROP2 
Oz ox OZ ox oz2 ox 

= - M2Rm B 2Y oBoy +M2V 2.p2 +M2Rm{- o.p\V2.pl) -B1Y OB1Y) 
& & & 

- M2Rm B oy OB2y + O(V2X2) 
ox OZ' 

(18) 
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R(OXIOvIY _ OXI Ov11l)+R(OX2 OvOY _ OX2 0vOY) 
& ox ox & & ox ox oz 

+ OVsI a 'BOy + oBoY?J!l_ OVsI a Boy _ oBoy a ifst 2 2 2 2 ) 

pz oxoz ox &2 ox oi oz oxoz ' 
(21) 

+ OXI aBlY _ OXI aBlY + OVsI OVly + OX2 oBoy _ OX2 OBOY) (22) 
ox oz oz ox oz' ox ox ox oz ox ' 

, _ OVsl 02BOY _ oBay 02Vsl + OVsI 02BOY + OBoy02ifJI) (23) 
oz ox 2 .,ox oxoz ox oxoz OZ ox2 , 

where 

Elimination between equations (18) and (20) gives 

R(OX10(V2XI) _ OXI 0(V2XI)) = yo4X2 +M2Rm(OVsIO(V2ifst) _ OVs10(V2Vsl)) +M2 O(V2Vs2) 
OZ ox ox oz oz ox ox oz OZ' 

(26) 
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and hence from equation (21) 

(27) 

The stream function 0/2 may now be evaluated from equation (24), and equations 
(19) and (22) will then give V2y and B2y under appropriate boundary conditions. 

We note that in the limits R, Rm ---+ 0, equations (19) and (22) yield expressions 
that are equivalent to those used by Tani (1962). 

IV. BOUNDARY CONDITIONS 

The general boundary condition for the velocity v of a viscous fluid flowing 
past a solid surface applies on the boundary r, and is v = O. In terms of the stream 
function this implies 

x = const., oX/on = 0, (28) 

on r, where %n denotes the derivative in the direction normal to r. 
The boundary condition on B as given in Paper I is incorrect and must be 

considered afresh. The condition n . j= 0 which must apply on the walls of an insu­
lated duct gives oBy/os = 0, where S is a coordinate drawn along the boundary r. 
Thus By is constant on r and since the net current carried by the duct is zero this 
constant must also be zero (see e.g. Roberts 1967). Hence we have 

By=O on r. (29) 

The components Bx and B z, however, are subject only to the conditions 
<n. B) = 0 and <n X B) = 0, where the angle brackets denote the jump across the 
fluid-wall interface, so that a knowledge of the external field is necessary to allow 
specification of these components on the boundary. In order to determine the solu­
tions for Bx and B z and hence 0/ within the boundary r,a solution of the stream 
function 0/ must be found over all space using the condition 

at infinity. (30) 

The solution of 0/ within the boundary r may then be retrieved as a part of the 
solution over all space which is continuous across the boundary r. 

V. VARIATIONAL PRINCIPLES 

The boundary value problems for the first- and second-order solutions, subject 
to the conditions (28), (29), and (30) are now replaced by corresponding functionals 
whose extremals give the required solutions. The variational principles relating to the 
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first-order equations are identical with those in Paper I except for the principle 
involving rpl, which will now be examined. 

Consider the integral 

where Xl and Boy are known functions of x and z. Suppose that rpl(X,Z) minimizes 
Ir and that rpI(x, z) represents a variation in rpl such that 

rpI(x,z) = rpl(X,Z)+E7](X,Z), (32) 

where E is small and 7](x, z) is arbitrary. Then 

If {-OXI_ oBoy _~(Orpl)_~(Orpl)}7](X z) dxdz 
OZ OZ ox ox ozoz ' 

all space 

(33) 

(see e.g. Kantorovich and Krylov 1958), where c is the "contour at infinity". By 
the condition (30) 7] is zero on c and hence the second integral vanishes. Thus since 
7](x, z) is arbitrary I3I I = 0 if and only if equation (17) is valid over all space. 

The structure of the second-order equations is essentially similar to the first­
order perturbation equations for which variational procedures have been considered 
both in Paper I and above. Variational principles related to equations (27), (24), 
(19), and (22) will thus be stated only. 

The integral 

12(X2) = If [HV2X2)2 + tM2 (OX2) 2 -X2{M2 o2BiY +R(OXI O(V2XI) _ OXI O(V2XI») 
oz oz oz ox ox OZ 

A 

. _M2Rm(OrpIO(V2rpl) _ Orpl O(V2rpl) + Orplo2XI + OrpIo2Boy _ Orpi o2XI 
. OZ ox ox oz ox OZ2 ox oi oz oxoz 

_ orpl a :BOy _ a rpi OXI _ ~ oBOY + a rpl OXI + a rpl oBoy dx dz 2 2 2.1• 2 2 ) }] 
OZ ox OZ oz2 ox oz2 ox ox oz oz ox oz oz 

(34) 

is stationary for X2 , satisfying boundary condition (28) and equation (27). 
Similarly, the integral 

+ OBOyOrpl _ OBOyOr/JI)}] dxdz 
ox OZ oz ox 

(35) 

is stationary for values of rp2 satisfying (30) and (24). 
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Finally, the integral 

14(v2y,B2y) = II [-t{ e;~Yr +(0~!Yr}+!M2{V2Y o::Y -B2Y O~!Y + (o::yr 
A 

+ (OB2y)2}+V2 {_ R(OX2 ovoY _ OX2 oVoY + OXI O~lY _ OXIOVIY) 
oz Y ozox oxoz ozox oxoz 

+B2 {M20(V20/1) -M2Rm(- 00/2 0VOY + 00/2 0VOy _ Oo/lOVlY 
y oz oxoz ozox oxoz 

+ OXI aBlY _ OXI aBly + 00/1 OVly + OX2 oBoy _ OX2 OBOY)}] dx dz 
OX oz oz OX oz OX OX oz oz OX 

(36) 

is stationary for values of V2y and B 2y which vanish on the boundary r of the region 
A and satisfy equations (19) and (22). 

VI. NUMERICAL SOLUTION FOR A SQUARE CHANNEL 

A 

Fig. I.-Regions of solution 
for .pl. 

We now consider a numerical solution for a 
channel of square cross section, with I x I ~ 1 and 
I z I ~ 1 (region A in Fig. 1), using the direct method 
of Rayleigh and Ritz. The form of the solutions of 
the zeroth-order variables VOy and Boy, and the first­
order terms XI, Vl y, and B ly are identical with those 
used in the original calculation of Paper I. The 
solution for h over all space will now be considered 
in detail. 

We divide the whole space into four distinct 
regions of influence as shown in Figure 1. Within 
the duct (region A), we assume the trial form 

o/lA(x,z) = ~ amnx2min = P(x,z) , (37) 
m,n 

where the symmetry in x and z is determined from the trial forms of Xl and Boy and 
equation (17). 

Outside the duct we must assume forms for h which vanish as x and z tend to 
infinity. In regions B l , where I z I ~ 1, we choose 

o/IB1(X,Z) = P(x,z)/x2r , (38) 

satisfying the condition (30) as I x I --+ 00, whilst in regions B2, where I x I ~ 1, we 
choose 

o/IB2(X, z) = P(x, Z)/z28 , (39) 
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satisfying (30) as I z I --+ 00, and in regions B3 

!J;IB3(x,z) = P(x,z)/x2r z2s , 

satisfying (30) as I x I and I z I both approach infinity. 

(40) 

The trial forms can now be substituted in equation (31), which may be written 
in the form 

Il(!J;l) = II F(x,z) dxdz +2 II G(x,z) dxdz +2 II G(x,z) dxdz 

A B, B. 

+4 II G(x,z) dxdz, (41) 

where 
B3 

F( ) = 1{ (O!J;l) 2 + (O!J;1)2} -!J; (OXI + OBoy) 
x, z 2 ox OZ 1 OZ OZ' (42) 

(43) 

and the coefficients amn are determined to minimize Il(!J;l). 
In region A, where values of the coefficients for Xl and Boy have already been 

evaluated, substitution of the trial form (37) into the first part of equation (41) gives 

11A(!J;1) = m*~o amnC~o akIA~~n,k,1 - k~~O (2m+2k+41C~/2n+2l+1)) , (44) 

where N is an integer to be determined, the Ckl are known coefficients relating to 
Xl and Boy, and 

A (1) _ 8mk 8nl 
m,n,k,l - (2m+2k-l)(2n+2l+1) + (2m+2k+1)(2n+2l-1)' 

(45) 

In the outer regions oXl/oz +oBoy/oz vanishes, and we are left with the mini­
mization of three integrals involving !J;l only. The trial form for region Bl may be 
written 

N 
.1. () '" 2m-2r 2n 'l'lB, x, Z = £oJ amn x Z, 

m,n~O 

where r is an integer? N +1 for convergence of the integral. Substitution into the 
second part of (41) gives 

N N 
'" '" (2) hB, (!J;1) = £oJ £oJ. amn akl Am,n,k,l, 

m,n=O k,I~O 

(46) 

where 

A (2) _ _ 4(m-r)(k-r) 
m,n,k,l - (2m+2k-4r-1)(2n+2l+1) 

4nl 
(2m+2k-4r+1)(2n+2l-1)' (47) 

For region B2 we choose 8 ? N +1 in the trial form (39) for convergence of the 
integral, giving 

N N 

hB2 (!J;1) = ~ ~ amn akl A~~n,k,l' 
m,n~O k,I~O 

(48) 
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where 

A(3) _ m,n,k,l -
4mk 4(n-s)(1-s) 49 

(2m+2k+1)(2n+21-4s-1)' ( .) (2m+2k-1)(2n+2l-4s+1) 

Finally, in region B3 for r, s ?;: N + 1, w~ obtain 

N N 

I IB3 (!f;1) = ~ ~ amnakIA~~n,k,I' 
m,n~O k,I~O 

(50) 

where 

A (4) _ 2(m-r)(k-r) 2(n-s)(1-s) 
m,n,k,l - (2m+2k-4r-1)(2n+21-4s+1) + (2m+2k-4r+1)(2n+21-4s-1)' (51) 

Combination of the above expressions for the four regions then gives 

(52) 

(53) 

Fig. 2.-Values of the integral I1(0/1) at Hartmann number M = 0·5 for (a) selected values of 
N, r, and 8 and (b) N = 3 and selected values of rand 8. 

The expression for It(!f;l) is now minimized with respect to the parameters 
aij such that oit/oaij yields the (i,j) element of an array whose inverse provides 
the required solutions. Thus 

[ OJ] [N 3 4Ckl ] . 
Oaij = m~~o amn(Ai,j,m,n+Am,n,i,j) - k~O (2i+2k+1)(2j+21+1) = 0,. (54) 

for 0 ~ i, j ~ N, is the matrix equation to be solved for the determination of th~ 
parameters amn. 
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In the numerical calculations that were carried out, the minimization of 11 
for a particular value of the Hartmann number depended on a suitable choice of N 
and consequently rand 8. Parameters amn were evaluated for a range of Hartmann 
numbers and for values of N from 1 to 5. At the same time, rand 8 were allotted 
values within the range N + 1 to N +5. Substitution of these solutions in the integral 
h (equation (52» then gave an indication of the correct choice of the parameters 
N, r, and 8 for the minimization of h. 

8 M=I 

2 

4 4 
4 

0 0 

II II 6 
" " - -~ 0 '" 0 .- 10 ........ 

'" '" 0 0 - -
-8 (a) -8 (b) 

-0'8 -0,4 0 0'4 0'8 -0,8 -0'4 0 0'4 0'8 
z x 

8 
Fig. 3.-Magnitude of the axial current jy 
for R = 104, G = 10-2, and Rm = 10-2, 

6 withN=3andr,8=4: 
0 (a) at the channel cross section x = 0 II 

for selected values of the Hartmann 

" 4 number M between I and 10, -'" ~ (b) at the channel cross section z = 0 '" 0 - for selected values of M between 1 and 

(c) 
10, and 

(e) along the central axis for values of 

0 M between 0·5 and 10. 
2 4 5 6 8 9 10 

M 

Figure 2(a) shows the values of h at Hartmann number 0·5 for values of N 
from 1 to 5 and for r,8 up to N +5. The data indicate a flattening out in value of 
the integral from N = 3 onwards, and a final choice of N = 3 was made to economize 
on the amount of computation necessary as the array sizes increased for increasing 
values of N. Inspection of the values at N = 3 in Figure 2(a) indicates a suitable 
choice for rand 8 equal to N + 1, as the local minimum here increases for larger 
values of rand 8. Confirmation of this tendency is given in Figure 2(b), where values 
of the integral for N = 3 are shown for selected values of rand 8. 

The final choice of parameters for the minimization of II was then N = 3 and 
r,8 = 4. The resulting calculated values of 0/1 were substituted in the variational 
principle for the evaluation of V1y and B 1y given in Paper 1. The results obtained using 
the new variational form for 0/1 are similar to those obtained earlier, indicating that 
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the original expression of ifJl was an approximate trial form, although derived from 
incorrect boundary conditions. As in the previous calculation, we obtain a cross 
flow identical with that found by Tani (1962), together with the net axial current 
jy = V2ifJl represented in Figures 3(a)-3(c), where the chosen physical parameters 
are representative of a laboratory flow. 

To first-order in k, there is no change in the net axial flow since Vl y is asymmetric. 
The axial velocity profile for Vly at z = 0 is shown in Figure 4; we note that the 
asymmetry is most pronounced near M = 3 and decreases as M becomes large. The 
cross electric current profiles produced by the first-order contribution are asymmetric 
and, when combined with the zeroth-order cross currents (Shercliff 1953), the net 
result is an asymmetry in these profiles. 

o 
II 
" ~ 

€ 

-o·s -0·4 o 
x 

0·4 o·s 

Fig. 4.-Velocity profile of Vll1 

for the first-order contribution 
to the flow at z = 0 for R = 104, 

G = 10-2, Rm = 10-2, and 
selected values of the Hartmann 
number M between 1 and 10. 

All first-order terms having now been calculated, we proceed to the second-order 
or k2 calculations. In this analysis all terms involving Rm in the second-order equations 
are ignored, although those from the first-order calculation are still retained. Thus 
the terms that arise as factors of k2 are: (i) those involving {RG} (Tani 1962), (ii) 
those involving {R2(RG)3} and, (iii) those involving {RRm (RG)3}; whereas terms of 
the form {R~(RG)3} are small in comparison with (i), (ii), or (iii) and are neglected. 

Since Rm terms are ignored to the second order, we need only consider the 
following trial forms. Let 

(55) 

satisfying the boundary condition (28), for substitution in equation (34), where 
gl, g2, and g3 are chosen so that 12(X2) is stationary, and 

(56) 
and 

(57) 

for substitution in equation (36), where kl' k2, k3, il, i2, and i3 are chosen so that 
14(v2y,B2y) is stationary. 
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The influence of the {RG} terms on the mass transport is shown in Figure 5(a). 
The value at M = 5 is in agreement with Tani (1962), namely an increase in the flow 
of 0 '0175k2RG, but additional terms involving Rand R m, which were not included 
by Tani,are also significant. The effects of these terms on the mass transport for 
values of the Hartmann number up to 10 are shown in :Figures 5(b) and 5(c). The 
contribution by the Reynolds number term {R2(RG)3} decreases the flow, this influence 
being most marked near M = 3 and decreasing as M becomes large. The influence 
of the magnetic Reynolds number term {RRm(RG)3} is variable, increasing the flow 
up to about M = 5· 5, with the maximum effect near M = 3, and decreasing the flow 
for higher values of M. 

20 (a) 
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Fig. 5.-Contributions to the mass 
transport at values of M up to 10 from: 

(a) {RG} t.erms, corresponding to the 
work of Tani (1962), 

(b) Reynolds number term {R2(RG)3}, and 

(c) magnetic Reynolds number term 
{RR m (RG)3}. 
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The relative significance of these terms compared with Tani's (1962) contribution 
may be seen by considering their ratios at M = 3, namely 

For values of R = 104, G = 10-2 , and Rm = 10-2, which are typical of a laboratory 
flow, we find {R2(RG)3}f{RG} '"'"' 106 and {RRm(RG)3}j{RG} '"'"' 1, that is, the Reynolds 
number term is of much more significance than Tani's term for the given values of the 
flow parameters, whilst the magnetic Reynolds number term is of equal significance 
with Tani's term. 
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VII. CONCLUSIONS 

The analysis of the Hall effect in a magnetohydrodynamic flow for a channel 
with nonconducting walls using perturbation methods has given the following results. 

To first order, the characteristic fluid cross flow pattern has been established, 
although there is no change in the net flow along the channel. However, a net axial 
electric current flow is established at this order, along with an asymmetric cross 
current flow, disturbing the generally symmetric cross-current pattern established 
at zeroth order. 

To second order, there are two important influences on the net fluid flow along 
the channel due to the inclusion of Reynolds number and magnetic Reynolds number 
terms. For typical laboratory values of the parameters involved, these influences 
have been found to be of a much greater significance than Tani's (1962) result for the 
Reynolds number term and of equal significance for the magnetic Reynolds number 
term. The inclusion of Reynolds number terms in studies of flows of this type is thus 
seen to be of the utmost importance. 
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