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Abstract )

On, the basis of a cosmological model which is fundamentally of the Friedmann
expanding type with a spherically symmetric inhomogeneity superimposed, & study is
made of three gravitational aberrations of purely relativistic origin observed in the
images of stellar objects: (1) the “gravitational lens” effect, (2) a dispersion effect
whereby a point source would produce a diffuse image, and (3) an apparent
systematic motion of all light sources towards (or away from) the inhomogeneity.
Admissable inhomogeneities in the model must satisfy PU < 2x10% Mpec, where
P is the ratio of the average density of matter within the inhomogeneity to the average
density of the universe and U is its diameter in megaparsecs. "The assumption is also
made that the paths of light rays are described by the null-geodesic equations of the
space—time under consideration.

I. INTRODUCTION

Although the behaviour of light rays in homogeneous models of the universe
has been extensively studied, such work is not expected to give indications of the
properties of light propagation when non-uniformities are present. This is not to
say, however, that the problem of finding such properties has not already been dealt
with. In a recent paper Kristian and Sachs (1966; see also references therein for a
history of the problem) have considered the behaviour of light within a density
fluctuation in a Friedmann dust universe, where the scale of the fluctuation is to be
several orders of magnitude greater than the scale of the visible region (with smaller
irregularities smoothed out).

The problem considered in this paper is one where the inhomogeneity may be
considerably smaller than the visible region (the scale of which is about 300 Mpc)
and neither the source nor observer is necessarily located within the fluctuation. The
physical situation thus represented is one where light from a distant (but visible)
source passes by a galaxy, cluster, or larger object. The fluctuation is taken to be
embedded in a Friedmann model, since this provides for a more realistic treatment
of the problem than could be given by using the Schwarzschild metric, and indeed
predicts some effects which have no analogue in such static fields.

It is important to note that the fluctuation to be considered ddes not need to
have sharply defined boundaries and may in fact include the entire universe, where
in this case the density of matter would have to be spherically symmetric about some
point. Such a distribution of matter would occur in the hierarchical models of the
universe recently proposed by de Vaucouleurs (1970). It must be stated at once,
however, that the restriction to spherical symmetry is a gross oversimplification of
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a general hierarchical model, and the results of the present paper are to be regarded
only as indications of what one would expect to observe in a genuinely hierarchical
universe. The model outlined above is certainly not isotropic from the observer’s
viewpoint.

The line element appropriate to the problem has been developed by Cook (1972).
In angular coordinates it is

ds? = (1—29/8)ds2 —S2c-2(1427/S){dgh2 + k-1 sin2(k? $)(d62 4-sin20 dg2)}. (1)

where k is 1 for a closed model and —1 for an open model, § = S(t) corresponds to
the scale factor for a Friedmann model, and 1 = () is such that /S is dimensionless
and of order 7,,/S < 1. Equation (1) is approximate to order (n/S)2, and is suitable
to this order provided the condition PU < 2 x 104 Mpe is met, where P is the ratio of
the average density of matter within the fluctuation to the average density of the
universe and U is the diameter of the fluctuation. In what is to follow, the calculations
are for a closed model, although the results may be extended for the case k — —1,
and by “first order” we shall mean of order 7/S.

Since we shall make the fundamental assumption that light rays are described
by null geodesics, our program will be to use the null-geodesic equations for the
line element (1) to investigate three effects which are due to an inhomogeneous
gravitational field:

() the “gravitational lens” effect whereby the image of an extended object is
distorted,

(b) a “dispersion” effect whereby point sources of light may produce diffuse
images, and

(c) an apparent systematic motion of light sources towards (or away from) the
inhomogeneity.

II. SorutioN oF NULL-GEODESIC EQUATIONS

For the line element (1) the null-geodesic equations for 0(c) and $(o) are

S2(14-27/8)sin sin20 dg/do = —Bc2 (2)
and
2
;—G( —8%1 —|—27;/S)sin2¢r%) +8%(1+27/8)sin’} sin 6 cos o(%) =0, 3)

where 8 is a constant of integration. A solution § = 1= is of sufficient generality for
equation (3). The equation for y(c) then becomes

ol stz ] () s { () (3]

2
+ 8% %(1++27/8)sin 4 cos ¢(g~ﬁ) =0. 4)
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We can now eliminate ¢ between equations (2) and (4) to replace both of these
equations by

24 sl s L2l ] o

By dividing equation (1) throughout by de2? and putting ds2 = 0, we have an integral
of the system, which after elimination of ¢ becomes

() |G oSG (G ] =00

Since equations (5) and (6) are valid only to first order, we approximate their
solution to the same order. To do this we put = @M and t = ¢© D), where
tW and ¢ are O(y/8), and thus obtain four equations for ¢©, M, ¢©), and t®, Of
these, the only equations of interest at the moment are those for $© and W,

2 (0) )\ 2
dd‘i —2co t¢<°’(dé/'¢ ) —sing® cos @ = 0 (7)
and
1) ©0) 3,@1)
d:i —4c t¢(°) diﬁ dd¢¢ +2 cosec ¢(°)(d¢¢ ) z/:a)—(cosz¢(0)—sin2¢(0))¢(l)
9. 17.1(0) 0)
= ZZY((;(I(’» ){ (dd¢ 3 ) +sin z,b(o)} (8)

The general solution of equation (7) is
x = cot $O = acos(p—a), 9)

where o and « are arbitrary constants. If we put () = (sin24©)y equation (8)
becomes

2 2
2 ody dy  2(1+4a’)dy
(@ —x Wttt Ty @ (10)

In terms of ¢ this equation is

Ypp+y = 2cosec(p—a) (@+a=1)ny/S,

which has the solution

[
= 2(a—|—a_1)sin(¢—u) J¢ cosec’ (¢’ —a) do’ f g[8 d¢> ~+sin(¢— ¢°)(d¢)
(11)
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ITI. UNiQUuENESS OF LicHT PATH BETWEEN SOURCE AND OBSERVER

Before proceeding to draw conclusions from equation (11) we must consider
whether it is possible for two space points Py and Py to be connected by more than
one distinet light path, that is to say, whether we are able to choose ) (¢)+yD(¢)
and $9(¢)+4(4) both connecting Py and Py so that, for some ¢ within the range
do < ¢ << $1, the separation between these curves is of at least first order (which is
what we mean by distinct in this context). Non-uniqueness in this situation gives
rise to the effect (b) defined in Section I, and this point is considered further in Section
IV().

We may, without loss of generality, suppose that ¥® connects Po(bo,po) to
Pi(f1,¢1). Then ¢/Q is determined by equation (9), and Q' by equation (11) and
the end conditions $P(do) = pD (1) = 0. We now suppose that {9 joins Py to
Po(f1+4a,¢1) and that $P(do) = 0 and (1) = —s. If we now put

z, = ooty y, =1+, y =~
where y = A, B, then to first order we have
2a($1) +y2 = w(d1).
O = yasin(¢—do)/sin(p1—o)

Now define

which gives to first order
za($) +0(4) = xn($),

and impose the restriction ¢1—¢o < 37. If we write o = a cos($¢—«) then

2a+0 = (a+e)cos(p—u—3),
where

€ = y2008(po—a)/sin(1—po)

and e/a and & are first-order quantities. When the left-hand side of equation (10)
is made independent of the parameter a by putting w = z/a, the functions y, and
yp are given by the equations

N
L _2taldy 12)

2
2dya  dys
) aw TY S dx

(I—w W —w
and

2 2 2
s dys  _ 2(1+d’)dy _a_( 2<1+a)dn)
(1 w)dwz Y qw tys=— S dz ‘a\” " 8 dz

2(1+a%dn 2 &
= 20de)en Zdate B 340y (13

Then provided xd2y/da? is of first order (and we interpret this condition in Section
IV (b)), the expressions (12) and (13) are the same differential equation. In this case
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we let $Q+y @ = yQ 4y —& where £ is a function of at most first order. We
then have
wy—Ya = rp—yp+(1+ah)é

but, since (xs+©@—xpg) is a second-order quantity,

Yo+ 0 = yp—(1+ad)¢.

However, ya-0 is a solution to equation (12) which satisfies the same end conditions
as yp, and hence ¢ is at most a second-order quantity. We can thus draw the con-
clusion that, within the accuracy of the model, the light paths between sources and
observer are unique, except in the case where 7, is not of first order.

IV. GRAVITATIONAL ABERRATIONS
(a) Gravitational Lens Effect

We now seek to derive an expression for the distortion produced in the image
of an extended source. To do this we shall follow Kristian and Sachs (1966) and
calculate the eccentricity of the elliptical image that is to be expected from an
intrinsically spherical source.

We shall denote the centre of the inhomogeneity (at which is located the origin
of coordinates) by C; the observer, with coordinates (1, ¢1), by O; and the centre
of the source, with coordinates (i, $o), by S. The coordinate system is chosen so
that O and S lie in the surface 6 = {w. We now set up at O an orthonormal basis in
terms of which observations are to be made. We assume that O may determine the
direction of C which is specified by a unit vector i. The unit vector j is then normal
to the surface OCS at O (determined by # and the direction of light from S) and k is
orthogonal to both i and j.

Since the space-time under consideration is rotationally symmetric about CO,
we deduce that there will be no distortion of the image in the direction j. If the
angle at O between the direction of light from S and i is w then we have from the
metric (1) that

cot w = coseci; (clz/:/d<;$)¢,l ,

where the light path is described by ¢ = )(¢), § = w. If the light paths to O from

the points on the edges of the source which lie in the surface OCS are designated
4 and ¢, an approximate angular separation between these paths at O is given by

_ siu(asy_ai)
T singg\d¢  dé /4,

Swo = sin?w cosec 1 (P} —¢§)) ;.

Since

is the angular separation which would be measured in a homogeneous universe (as ®©
are the solutions to the null-geodesic equations for a homogeneous model), we take
Swq thus defined as the angular separation in the j direction between rays proceeding
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from the edges of the source. Hence we have that the eccentricity of the image (i.e.
its ratio of major to minor semi-axes) is

e = dw[dwy = (‘/’A¢—_¢B¢)¢1/(¢§2§_ g},)m ’

In terms of x and y as defined in Section I1I, we have after some manipulation
e—1 = —(yas—YBg)g,|(Xas—By)g, - (14)
In equation (9) we choosé the zero of ¢ so that « = 0 and then suppose
zp = (a+38a)cos(¢p—d«),

where 3a/a and 3« are very much less than unity. Thus, with the condition xa(¢1) =
zB(¢1) we have
(xa—xB) ~ (cosec $1)da

and hence from equation (14)
e—1 = —sin¢; (xaz—xny)/oa. (15)

In order to proceed with the calculation of e beyond this point, without making
further general assumptions regarding the physical situation, we would need to choose
a particular distribution of matter and an equation of state in order to determine 7
and § explicitly as functions of ¢ and ¢ respectively. It is possible, however, to introduce
considerable simplification into such a calculation if we admit the assumptions:

(i) that a is sufficiently large for only its highest powers to be retained (current
depths of observation give a > 50; Cook 1971, Section 2.4), and

(ii) that the product of the Hubble parameter with the separation between the
rays 4 and ¢ (in light seconds) is small.

With the above assumptions, and using equations (11) and (15), we have after
some calculation

e—1 = 2a cosec(p1—o){sin(p1—do) M — cos(d1—dpo) A -+ cos ¢1 cos o M

+cos i sindo A +a cos pg N1 —asindg Na},
where

1 b1
M= f singns/Sdp,  Ni— f sin ¢ sin(g1—g) maz/S dg,
do do

b1 b1
A= f¢ cos ¢ 1/ S do, Ny = L cos ¢ sin(h1 —) ngz/S dé .
(] 0
We note that the choice of the zero of ¢ determines ¢; and a via the conditions

x, = coty; = acosd;, a?~ 22+ (1+a?)cot’w.
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(b) Dispersion Effect

In Section ITT we saw that provided the expression a7, is small the light path
connecting a given source and observer is unique to first order. We shall now consider
the case where this requirement is not met. The analysis must be of a largely
speculative nature since our approximations are only sufficiently accurate to give
an indication of the presence of such an effect.

If, in the notation of Section III, we define D to be the separation between
any two rays from source to observer, that is,

D = (xB+yB)—(ra+ya),

then from equations (12) and (13) we have

(1—w?)Dyw—wDyp—+D = —2e(a+a=1)xng,/S
and

D(¢o) = D(¢1) =0,
since D = yp—ya+0. It follows after some routine calculation that

Dy($1) = —2e(14a2)eosec(p1— o)

b1 b1

X (sin do J cosng Nex|S df —cos ¢ f sin ¢ cos ¢ /S qu) . (16)
do o

Bearing in mind the considerations of subsection (a), we define the angular dispersion

at the observer’s point to be

= sin?w cosec i Dy(eh1) .

We note that this dispersion is in the i direction only. Thus if the image of an
extended source were to be considered, we would expect its edges in the i direction
to be diffuse and the edges in the j direction to be sharp. We should, however, avoid
attaching too much quantitative significance to equation (16). Parameters such as
#1 and @ may be estimated as in (a) above but the quantity e remains virtually
undefined, except that e/a is to be much less than unity. We are in any case unable
to give a satisfactory treatment of the intensity variation (with distance from a
central point) within an image.

Doubt may arise as to whether x5 +y4 and xp+yp are not just both inaccurate
descriptions of the one light path, which would mean of course that the dispersion
d was merely a result of the approximation procedure used and not a real effect at all.
A discussion of this point is given in the Appendix.

What may we say about the physical conditions which would produce dis-
persion? It has been shown by Cook (1972) that if py(if) is the density of a fluctuation
then

Kp1 Y -—4621]¢,/,/S3,

and, since 7z, is related to 7y, by the relation

Nas = (1+22)~2(nyy+22ny)
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which for 2> 1 (i.e. a small value of the boundary coordinate of the fluctuation)
is approximately
’ Nrxzx A 3(1+x2)f277¢¢ s

we associate large values of | 7, | with a concentration (or rarefaction) of matter. In
conclusion, therefore, it seems apparent that dispersion arises from the varying
degrees of deflection produced in light paths by the presence of a density fluctuation.

(c) Apparent Systematic Motion of Light Sources

The analysis in Sections ITI and IV(b) has shown that between any source and
observer there is, to first order at least, a unique light path at any particular time.
Implicit in equation (11), however, is the dependence of y upon the time of emission
of a photon. This gives rise to some apparent motions of all light sources, and we
shall now consider this effect.

If t© is a solution of

EUP) —SHEON (PP -+sin?O) = 0,

which is the equation obtained by taking only the terms of highest order in (6), then
the function S occurring in equation (11) is of the form S(t©(¢, t1)), where t; is the
time at which a photon is received by an observer at (1, $1). We now wish to replace
the term involving y,(f¢) in equation (11) with one containing Yp(d1). After some
calculation, again with « = 0, we obtain

y(¢1; ¢0» tl) OOS((ﬁl_"]SO)
1 &1 . b1 .
= —2(ata )(cos $o LS 1/ dé +-sin g L cot ¢ 7,/ 8 d¢) +y4(é1) sin (¢ —960)‘.

For fixed 2, y, o, and ¢1, differentiation of this equation with respect to £; gives

-1
sin(d1—do \aygtw 2%3 )(COS 4o f 168 44 | cindo f oot¢~n¢8 ¢),

where we have used t©/dt; = S(1©®)/S(t;). If w is defined as in Section IV(a) then

, , cosec?w dw[0t) = —sinyy Oy 4(h1)/06
and hence

dw 2(a~|~a_1)sinz/11 sinzw{ f¢‘ g8 . J"ﬁl cot dny S }
ot S(tr)sin(é1—go) OO§¢0 o ——S—-qu +sino o —_S'qu,’ - a7

Throughout this discussion we have tacitly used the convention that ¢ increases
along each light ray (that is, #1 > ¢o). In order to interpret equation (17) in physical
terms, we now restrict consideration to rays which do not cross the curves ¢ = 0 or .
Each ray is then classified according as to whether it travels (i) towards the curve
¢ = 0, or (ii) away from the curve ¢ = 0. As a result of these restrictions we have
singg < 0 for case (i) and singo > 0 for case (ii). Now, obviously, whatever the
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sign of n, for case (i), it will be of opposite sign for case (ii) provided that 74 does
not change sign over the path of the photon. We may thus conclude that dw/0t; has
the same sign for both cases (i) and (ii).

For purposes of illustration, we shall suppose 5(s) to be monotonically decreasing
(i.e. a concentration of matter at the origin; Cook 1971, Section 2.2). For case (i)
above we have n, > 0 which implies dw/d; < 0. This may be easily seen by writing
the expression in braces on the right-hand side of equation (17) as

. 1 2 &1 "
smq&of cosec’ ¢’ drﬁ’f ng S[S dg” .
%o ¢

Similarly, for case (ii) we have 5, < 0 and hence dw/dt; < 0. By analogy, were we
to suppose () to be monotonically increasing (i.e. a relative rarefaction of matter
at the origin) then we would obtain dw/dt; > 0 in both cases. We therefore conclude,
taking into account the symmetry in 6, that an observer would see all light sources
move towards, or away from, the radial geodesic section joining his position to the
centre of a concentration, or rarefaction, of matter respectively.
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APPENDIX

In order to deal with the point raised in Section IV(b) concerning the adequacy
of $® 41 as an approximation to the solution of equation (5), we need to show
that the difference between ¢ and $© -+ is a quantity of at least second order.
If this is so then the analysis in Section IV (b) is acceptable since s +P and P 44
could not then both be valid first-order approximations to the one curve and yet have
first-order separation (by ‘“valid” in this context we mean to within the next order
of approximation).

If we put X = cot i, we may integrate equation (5) to obtain

X2LX241 — 2 ¢ /
L= A 144 | g8 a),

and we shall investigate the accuracy of successive approximations to the solution
of this equation. In what is to follow, ““of order »” will be taken to mean of order
(n/S)*A. If we now put X = z+ Y, where without loss of generality we define z as
a solution of

x§,+x2+1 = 1442,
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we then have
2xy Yy +2¥)+ Y34 Y% = 4(14-4%) f: g[S dg’ . (A1)
For Y = y+Z, where y is a solution of
2wy yy +ay) = 4(1+4% f: 748 dg’

Z then satisfies the equation

Ay +y )2+ @ty L+ 25+ 2 = —(5+97) . (A2)

Now y, which is given by equation (11) with @ = 4 and Ys(bo) = 0, is of first order
and hence the right-hand side of equation (A2) is of second order (times A). If we
assume Z to be of at least first order then (A2) implies that Z is of at least second
order (by taking only first-order terms in (A2)).

The remaining possibility is that Z is of zeroth order, in which case Y is also
of zeroth order. If we differentiate equation (A1) with respect to ¢, we obtain

Yyp = — Y +H2(1+A2)0,/8) (@, + Y ). (43)

Without loss of generality we may again assume (as in Section IV(c)) that () is
monotonic increasing and then, provided that initially ¥ = 0 and Y is of first order,
from equations (Al) and (A3) we have that ¥ can be of no less than first order, and
hence Z must be of at least second order.





