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Ab8tract 

On the basis of a cosmological model which is fWldamentally of the Friedmann 
expanding type with a spherically symmetric inhomogeneity superimposed, a study is 
made of three gravitational aberrations of purely Ielativistic origin observed in the 
images of stellar objects: (1) the "gravitational lens" effect, (2) a dispersion effect 
whereby a point source would produce a diffuse image, and (3) an 'apparent 
systematic motion of all light sources towards (or away from) the inhomogeneity. 
Admissable inhomogeneities in the model must satisfy PU :5 2 X 104 Mpc, where 
P is the ratio of the average density of matter within the inhomogeneity to the average 
density of the Wliverse and U is its diameter in megaparsecs .. The assumption is also 
made that the paths of light rays are described by the null-geodesic equations of the 
space-time under consideration. 

1. INTRODUCTION 

Although the behaviour of light rays in homogeneous models of the universe 
has been extensively studied, such work is not expected to give indications of the 
properties of light propagation when non-uniformities are present. This is not to 
say, however, that the problem of finding such properties has not already been dea.lt 
with. In a recent paper Kristian and Sachs (1966; see also references therein for a 
history of the problem) have considered the behaviour of light within a density 
fluctuation in a Friedmann dust universe, where the scale of the fluctuation is to be 
several orders of magnitude greater than the scale of the visible region (with smaller 
irregularities smoothed out). , 

The problem considered in this paper is one where the inhomogeneity may be 
considerably smaller than the visible region (the scale of which is about 300 Mpc) 
and neither the source nor observer is necessarily located within the fluctuation. The 
physical situation thus represented is one where light from a distant (but visible) 
source passes by a galaxy, cluster, or larger object. The fluctuation is taken to be 
embedded in a Friedmann model, since this provides for a more realistic treatment 
of the problem than could be given by using the Schwarzschild metric, and indeed 
predicts some effects which have no analogue in such static fields. 

It is important to note that the fluctuation to be considered d6es not need to 
have sharply defined boundaries and may in fact include the entire universe, where 
in this case the density of matter would have to be spherically symmetric about some 
point. Such a distribution of matter would occur in the hierarchical models of the 
universe recently proposed by de Vaucouleurs (1970). It must be stated at once, 
however, that the restriction to spherical symmetry is a gross oversimplification of 

* Department of Mathematics, University of New England, Armidale, N.S.W. 2351. 

Awt. J. PhY8., 1972,25,749-58 



750 M. W. COOK 

a general hierarchical model, and the results of the present paper are to be regarded 
only as indications of what one would expect to observe in a genuinely hierarchical 
universe. The model outlined above is certainly not isotropic from the observer's 
viewpoint. 

The line element appropriate to the problem has been developed by Cook (1972). 
In angular coordinates it is 

ds2 = (1-27]/8)dt2 -82e-2(1 + 27]/8){d"'2 +k-1 sin2(k! ",)(d82 +sin28 dcfo2)}. (1) 

where k is 1 for a closed model and -1 for an open model, 8 = 8(t) corresponds to 
the scale factor for a Friedmann model, and 7] = 7]("') is such that 7]/8 is dimensionless 
and of order Wr/8 ~ 1. Equation (1) is approximate to order h/8)2, and is suitable 
to this order provided the condition PU ~ 2 X 104 Mpc is met, where P is the ratio of 
the average density of matter within the fluctuation to the average density of the 
universe and U is the diameter of the fluctuation. In what is to follow, the calculations 
are for a closed model, although the results may be extended for the case k = -1, 
and by "first order" we shall mean of order 7]/8. 

Since we shall make the fundamental assumption that light rays are described 
by null geodesics, our program will be to use the null-geodesic equations for the 
line element (1) to investigate three effects which are due to an inhomogeneous 
gravitational field: 

(a) the "gravitational lens" effect whereby the image of an extended object is 
distorted, 

(b) a "dispersion" effect whereby point sources of light may produce diffuse 
ima:ges, and 

(e) an apparent systematic motion of light sources towards (or away from) the 
inhomogeneity. 

II. SOLUTION OF NULL-GEODESIC EQUATIONS 

For the line element (1) the null-geodesic equations for 8(0') and cfo(u) are 

(2) 
and 

where fJ is a constant of integration_ A solution 8 = !1T is of sufficient generality for 
equation (3). The equation for "'(0') then becomes 

(4) 



GRAVITATIONAL ABERRATIONS IN STELLAR IMAGES 751 

We can now eliminate a between equations (2) and (4) to replace both of these 
equations by 

'I' d. C TJ", dt 2 -2 d . 2 d2
,f. ( )2 2 [()2 {()2 }] dcp2 -2 cot", d~ -sm"'cos'" - 83 dcp +8 C d~ +sm", = 0, (5) 

By dividing equation (1) throughout by da2 and putting ds2 = 0, we have an integral 
of the system, which after elimination of a becomes 

dt 2 -2 'I' • 2 2TJ t 2 -2 d", . 2 ( ) 2 {(d,f.)2 } [(d )2 {()2 }] dcp -8 C dcp +sm'" -8 dcp +8 C dcp +sm'" = o. (6) 

Since equations (5) and (6) are valid only to first order, we approximate their 
solution to the same order. To do this we put", = ",(0)+",(1) and t = t(O)+t(l), where 
t(l) and ",(1) are O(TJI8), and thus obtain four equations for ",(0), ",(1), t(O), and t(l). Of 
these, the only equations of interest at the moment are those for ",(0) and ",(1), 

-"'- -2 cot", (0) _'1'_ -sin lO) cos'" (0) = 0 
d2 (0) (d,f.(O») 2 

dcp2 dcp 
(7) 

and 

2TJ'(tf;(0»){(d",(0»)2 . 2 (O)} 
= (0) d'" +sm 1{1 • 

8(t) 'I' 
(8) 

The general solution of equation (7) is 

x = cot ",(0) = a COS(cp-lX) , (9) 

where a and IX are arbitrary constants. If we put I{1(1) = (sin21{1(0»)y equation (8) 

becomes 
2 2 

( 2_ 2)d Y _ dy+ __ 2(I+a )dTJ 
a x 2 Xd Y - 8 d' dx x x 

(10) 

In terms of cp this equation is 

which has the solution 
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III. UNIQUENESS OF LIGHT PATH BETWEEN SOURCE AND OBSERVER 

Before proceeding to draw conclusions from equation (11) we must consider 
whether it is possible for two space points Po and Pl to be connected by more than 
one distinct light path, that is to say, whether we are able to choose "'If)(cp)+"'~)(cp) 
and "'~>(cp)+",g>(cp) both connecting Po and P1 so that, for some cp within the range 
cpo < cp < CPl. the separation between these curves is of at least first order (which is 
what we mean by distinct in this context). Non-uniqueness in this situation gives 
rise to the effect (b) defined in Section I, and this point is considered further in Section 
IV(b). 

We may, without loss of generality, suppose that "'If> connects Po("'o,cpo) to 
P1("'1, CPl). Then "'if> is determined by equation (9), and "'~) by equation (11) and 
the end conditions "'~>(cpo) = "'~>(cpl) = O. We now suppose that "'~> joins Po to 
P2("'1 +"'2, CPl) and that ",g>(cpo) = 0 and ",g>(CP1) = -"'2. If we now put 

x = cot·I.(O) 
')' 'f'')' , 

where y = A,B, then to first order we have 

Now define 

which gives to first order 

and impose the restriction CPl-CPO :::::;; 1-17. If we write XA = acos(cp-a.) then 

where 

and E/a and 8 are first-order quantities. When the left-hand side of equation (10) 
is made independent of the parameter a by putting w = x/a, the functions YA and 
YB are given by the equations 

(12) 

and 

(13) 

Then provided xd27]/dx2 is of first order (and we interpret this condition in Section 
IV(b)), the expressions (12) and (13) are the same differential equation. In this case 
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we let I/;f)+Js<l) = I/;~)+I/;g)-g, where g is a funotion of at most first order; We 
then have 

but, since (XA +e-XB) is a second-order quantity, 

However, YA +61 is a solution to equation (12) which satisfies the same end conditions 
as YB, and hence g is at most a second-order quantity. We can thus draw the con­
clusion that, within the accuracy of the model, the light paths between sources and 
observer are unique, except in the case where 7Jxx is not of first order. 

IV. GRAVITATIONAL ABERRATIONS 

(a) Gravitational Lens Effect 

We now seek to derive an expression for the distorti(;>n produced in the image 
of an extended source. To do this we shall follow Kristian and Sachs (1966) and 
calculate the eccentricity of the elliptical image that is to be expected from an 
intrinsically spherical source. 

We shall denote the centre of the inhomogeneity (at which is located the origin 
of coordinates) by 0; the observer, with coordinates (1/;1,,$1), by,O; and the centre 
of the .source, with coordinates (1/;0, e/>o), by S. The coordinate system is chosen so 
that ,0 and S lie in the surface (J = !rr. We now set up at ,0 an orthonormal basis i:p. 
terms of which observations are to be made. We assume that ,0 may determine the 
direction of 0 which is specified by a unit vector i. The unit vector j is then normal 
to the surface QOS at ,0 (determined by i and the direction of light from S) and k is 
orthogonal to both i and j. 

Since the space-time under consideration is rotationally syinmetric about 0,0, 
we deduce that there will be no distortion of the image in the direction j. If the 
angle at ,0 between the direction of light from Sand i is w then we have from the 
metric (1) that 

cotw = cosec 1/;1 (dl/;/de/»<I>l' 

where the light path is described by I/; = I/;(e/», 8 = !rr. If the light paths to ,0 from 
the points on the edges of the source which lie in the surface QOS are designated 
I/;A and I/;B, an approximate angular separation between these paths at ,0 is given by 

Ow = sin2w(dl/;A _ dl/;B) . 
sin 1/;1 de/> de/> <1>1 

Since 

is the angular separation which would be measured in a homogeneous universe (as 1/;(0) 
are the solutions to the null-geodesic equations for a homogeneous model), we take 
owo thus defined as the angular separation in the j direction between rays proceeding 
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from the edges of the source. Hence we have that the eccentricity of the image (Le. 
its ratio of major to minor semi-axes) is 

In terms of x and y as defined in Section III, we have after some manipulation 

(14) 

In equation (9) we choose the zero of e/> so that ex = 0 and then suppose 

XB = (a+8a)cos(e/>-Sex) , 

where Sa/a and Sex are very much less than unity. Thus, with the condition XA(e/>l) = 
XB(e/>l) we have . 

and hence from equation (14) 

(15) 

In order to proceed with the calculation of e beyond this point, without making 
further general assumptions regarding the physical situation, we would need to choose 
a particular distribution of matter and an equation of state in order to determine "I 
and S explic~tly as functions of,p and t respectively. It is possible, however, to introduce 
considerable simplification into such a calculation if we admit the assumptions: 

(i) that a is sufficiently large for only its highest powers to oe retained (current 
depths of observation give a > 50; Cook 1971, Section 2.4), and 

(ii) that the product of the Hubble parameter with the separation between the 
rays ,pA and ,pH (in light seconds) is small. 

With the above assumptions, and using equations (ll) and (15), we have after 
some calculation 

+cose/>lsine/>oA +acose/>oNl -a sine/>o N 2} , 

where 

f"" M = sine/> "Ix/S de/>, 
"'0 

f"" Nl = sine/>sin(e/>l-e/» T}xx/S de/>, 
"'0 

f"" A = cose/> "Ix/S de/>, 
"'0 

We note that the choice of the zero of e/> determines e/>l and a via the conditions 
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(b) Dispersion Effect 

In Section III we saw that provided the expression x7)xx is small the light path 
connecting a given source and observer is unique to first order. We shall now consider 
the case where this requirement is not met. The analysis must be of a largely 
speculative nature since our approximations are only sufficiently accurate to give 
an indication of the presence of such an effect. 

If, in the notation of Section III, we define D to be the separation between 
any two rays from source to observer, that is, 

then from equations (12) and (13) we have 

and 
D(</>o) = D(</>I) = 0, 

since D = YB-YA +8. It follows after some routine calculation that 

( f "'l 2 f"'l ) X sin </>0 cos </> 7)xx/ S d</> -cos </>0 sin </> cos </> 7)xx/ S d</> . 
"'0 "'0 

(16) 

Bearing in mind the considerations of subsection (a), we define the angular dispersion 
at the observer's point to be 

d = sin2w cosec "'ID",(</>I) • 

We note that this dispersion is in the i direction only. Thus if the image of an 
extended source were to be considered, we would expect its edges in the i direction 
to be diffuse and the edges in thej direction to be sharp. We should, however, avoid 
attaching too much quantitative significance to equation (16). Parameters snch as 
</>1 and a may be estimated as in (a) above but the quantity E remains virtually 
undefined, except that E/a is to be much less than unity. We are in any case unable 
to give a satisfactory treatment of the intensity variation (with distance from a 
central point) within an image. 

Doubt may arise as to whether XA +YA and XB+YB are not just both inaccurate 
descriptions of the one light path, which would mean of course that the dispersion 
d was merely a result of the approximation procedure used and not a real effect at all. 
A discussion of this point is given in the Appendix. 

What may we say about the physical conditions which would produce dis­
persion1 It has been shown by Cook (1972) that if Pl("') is the density of a fluctuation 
then 

and, since 7)xx is related to Wrl/r by the relation 
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which for x ~ 1 (i.e. a small value of the boundary coordinate of the fluctuation) 
is ,approximately 

we associate large values of I'T/xx I with a concentration (or rarefaction) of matter. In 
conclusion, therefore, it seems apparent that dispersion arises from the varying 
degrees of deflection produced in light paths by the presence of a density fluctuation. 

(c) Apparent Systematic Motion of Light Sources 

The analysis in Sections III and IV(b) has shown that between any source and 
observer there is, to first order at least, a unique light path at any particular time. 
Implicit in equation (ll), however, is the dependence of y upon the time of emission 
of a photon. This gives rise to some apparent motions of all light sources, and we 
shall now consider this effect. 

If t(O) is a solution of 

which is the equation obtained by taking only the terms of highest order in (6), then 
the function S occurring in equation (ll) is of the form S(t(O)(cp,h)), where h is the 
time at which a photon is received by an observer at (!fil, CPl). We now wish to replace 
the term involving y",(cpo) in equation (ll) with one containing y",(CPl). Mter some 
calculation, again with IX = 0, we obtain 

y(cpl, cpo, h) COS(cpI-CPO) 

For fixed x, y, cpo, and CPl, differentiation of this' equation with respect to tl gives 

.' (,/. _,/. )&Y",(CPl) = _ 2(a+a-l )( ,/. f"'l'T/d> S d'/' + . ,/. f"" cotCP'T/",sd,/.) 
sm '/'1 '/'0 8 S() . cos '/'0 S '/' sm ,/,0 S. '/', 

tl tl "'0 "'0' 
where we have used 8t(0)/8h = S(t(O»)/S(tl)' If w is defined as in Section IV(a) then 

and hence 

(17) 

Throughout this discussion we have tacitly used the convention that cP increases 
along each light ray (that is, CPl > cpo). In order to interpret equation (17) in physical 
terms, we now restrict consideration to rays which do not cross the curves cP = 0 or Tr. 

Each ray is then classified according as to whether it travels (i) towards the curve 
cP = 0, or (ii) away from the curve cP = o. AS a result of these restrictions we have 
sincpo < 0 for case (i) and sincpo > 0 for case (ii). Now, obviously, whatever the 
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sign of TJif> for case (i), it will be of opposite sign for case (ii) provided that TJif> does 
not change sign over the path of the photon. We may thus conclude that Bw/Bh has 
the same sign for both cases (i) and (ii). 

For purposes of illustration, we shall suppose TJ(!fo) to be monotonically decreasing 
(i.e. a concentration of matter at the origin; Cook 1971, Section 2.2). For case (i) 
above we have TJif> ~ 0 which implies Bw/Btt < O. This may be easily seen by writing 
the expression in braces on the right-hand side of equation (17) as 

f
if>l 2 fif>l 

sin 4>0 cosec 4>' d4>' TJq," S/ S d4>" . 
if>o if> , 

Similarly, for case (ii) we have TJif> ~ 0 and hence Bw/Btl < O. By analogy, were we 
to suppose TJ(!fo) to be monotonically increasing (i.e. a relative rarefaction of matter 
at the origin) then we would obtain BW/f)tl > 0 in both cases. We therefore conclude, 
taking into account the symmetry in 8, that an observer would see aU light souroes 
move towards, or away from, the radial geodesic section joining his position to the 
centre of a ooncentration, or rarefaction, of matter respectively. 

V. AOKNOWLEDGMENT 

I wish to thank Dr. N. W. Taylor for useful oomments on this work, part of 
whioh was prepared with his supervision while I was an M.Sc. student at the 
University of New England. 

VI. REFERENCES 

COOK, M. W. (1971).-M.Sc. Thesis, University of New England. 
COOK, M. W. (1972).-Aust. J. Phys. 25, 299-305. 
KRISTIAN, J., and SACHS, R. K. (1966).-ABtrophYB. J. 143, 379-99. 
DE VAUCOULEURS, G. (1970).-Science, N.Y. 167, 1203-13. 

Al'PENDIX 

In order to deal with the point raised in Section IV(b) conoerning the adequaoy 
of !fo(O)+!fo(I) as an approxi.mation to the solution of equation (5), we need to show 
that the differenoe between !fo and ",(0)+",(1) is a quantity of at least seoond order. 
If this is so then the analysis in Section IV(b) isaoceptable since !fof.)+!fofl) and !fo~)+!fog.) 
could not then both be valid first-order approximations to the one curve and yet have 
first-order separation (by "valid" in this oontext we mean to within the next order 
of approximation). 

If we put X = oot!fo, we may integrate equation (5) to obtain 

and we shall investigate the accuracy of successive approximations to the solution 
of this equation. In what is to follow, "of order n" will be taken to mean of order 
(TJ/s)n A. If we now put X = x+ Y, where without loss of generality we define x as 
a solution of 
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we then have 

(A 1) 

For Y = Y+Z, where y is a solution of 

2 fr/J 2(xr/JYr/J +xy) = 4(I+A ) 7)r/J,18 df 
r/Jo 

Z then satisfies the equation 

(A2) 

Now y, which is given by equation (ll) with a = A and Yr/J(,po) = 0, is of first order 
and hence the right-hand side of equation (A2) is of second order (times A). If we 
assume Z to be of at least first order then (A2) implies that Z is of at least second 
order (by taking only first-order terms in (A2)). 

The remaining possibility is that Z is of zeroth order, in which case Y is also 
of zeroth order. If we differentiate equation (AI) with respect to ,p, we obtain 

(A3) 

Without loss of generality we may again assume (as in Section IV(c)) that 7)(ifo) is 
monotonic increasing and then, provided that initially Y = 0 and Y ¢ is of first order, 
from equations (AI) and (A3) we have that Y can be of no less than first order, and 
hence Z must be of at least second order. 




