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Abstract 

A procedure for the evaluation of the path integrals for the two-particle statistical 
density matrix at low temperatures is described. It is applied to both helium and neon, 
the first being the paradigm of a quantum mechanical gas and the second exhibiting 
weaker, but still significant, quantum effects at temperatures above the triple point. 
The density independent part of the pair-correlation functions and the second virial 
coefficients are obtained from these quantities. Three- and many-particle quantum 
properties are examined by approximating the Slater sum by a product of Boltzmann 
factors, each factor containing an effective pair-potential defined from the results of 
the two-particle case. The radial distribution function, obtained from a Percus-Yevick 
equation using this effective potential, demonstrates the validity of using the effective 
potential approximation as a tool for studying quantum properties by giving satisfactory 
results for helium and good agreement with experiment for neon. 

1. INTRODUCTION 

The statistical density matrix plays a fundamental role in quantum statistical 
mechanics. Through it the observed value of any observable of a quantum mechanical 
system of interest can be found. It is the operator which connects quantum mechanics 
with the statistical mechanics of many-particle systems. The density operator p (of 
which the density matrix is just a description in a particular representation) can be 
found by solving the Bloch equation 

op/oP = - Hp, (I) 
with the boundary condition 

limp=1 (unit operator), (2) 
p~o 

where P = l/kT and H is the Hamiltonian of the system being considered. The 
formal solution of this equation is p = exp( - PH). It can be solved analytically in 
several instances, in particular when a single particle is considered, the result being 
applicable to a system of many non-interacting particles. However, in most cases we 
have to resort to approximations or numerical procedures, or often both. 

A direct evaluation of the density independent part of the pair-correlation 
function for helium via the Slater sum was performed by Larsen et al. (1966) who, in 
their evaluation, used expressions which were formally derived by Blatt (1956). 
The sum over orbital angular momentum restricted the temperature to below 2 K. 
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This method has also been applied to hydrogen by Poll and Miller (1971). An alter­
native method, based on a Monte Carlo evaluation of the path integrals for the Slater 
sum, was presented by Fosdick and Jordan (1966) who used an idea originally put 
forward by Butler and Friedman (1955). However, the Monte Carlo sampling errors 
increased with decreasing temperature, with the result that the pair-correlation 
function became increasingly indeterminate below about 30 K. 

A procedure is outlined here which provides a method of finding the pair­
correlation function in the temperature range where it has not been determined with 
accuracy before and also provides a consistency check with the other two methods, 
at each end of the temperature range. The density matrix is obtained for both helium 
and neon and then applied to multiple-particle effects, the first of these being the third 
virial coefficient and the associated contribution to the radial distribution function 
from the term of first order in the density. The required three-particle diagonal 
elements of the density matrix are approximated by a product of two-particle diagonal 
elements. This reduction to effective pair-potentials permits the use of an effective 
quantum mechanical Percus-Yevick equation to study the radial distribution function 
of a quantum liquid. 

II. DENSITY MATRIX OF A TWO-PARTICLE SYSTEM 

Consider a system consisting oftwo nonidentical particles, the system being open 
(i.e. unbounded) within a statistical mechanical framework. The coordinate rep­
resentation of the Hamiltonian operator for this system is 

H = _ 112 82 11 2 82 

2M a~ -2/1 8r 2 + V(I r I) (3) 

= Hx+ H" 

where x is the coordinate of the centre of mass, M the total mass, r the relative 
coordinate, and /1 the reduced mass. Since the Hamiltonian for the centre of mass 
motion commutes with the Hamiltonian for the relative motion, the density matrix 
for relative motion per, r'; [3) can be defined by the equation 

(x, r I exp( - [3H) I x', r') 

= (2nI12[3/M)-3/2 exp{ -(x _X')2 /(2112[3/M)}(r I exp( - [3H,) I r'), (4) 

where 
per, r'; [3) = (r I exp( - [3H,) I r'). (5) 

The potential used in this paper is the Lennard-Jones potential 

VCr) = 48{(0-/r)12 -(0-/r)6} , (6) 

with the de Boer-Michels parameters appropriate to helium-4 (de Boer 1949) 

8/k = 10·22 K and No 0-3 = 10·06 X 10- 6 m 3 , (7) 

where No is Avogadro's number, and parameters calculated by Nicholson and 
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Schneider (1955) for neon 

e/k = 33·74 K and Nou3 = 12.607xlO- 6 m 3 • (8) 

For the Lennard-Jones potential there is a particularly convenient method of choosing 
dimensionless variables: let r* = r/u and define new parameters P* and e* by 

P* = (h2/2Jlu2k)T-l and e* = 4e2Jlu2/h2. (9) 

These shall determine the units to be used in the remainder of the paper and so, for 
convenience, the asterisks will be discarded. 

The density matrix for any central potential can be expanded in terms of con 
tributions from all partial waves 

00 

p(r,r';p) = ~ {(21+ 1)/4nrr'} p,(r,r';p)PI(cos() , 
1=0 

(10) 

where () is the angle between rand r'. Since helium and neon are Bose-Einstein gases 
the pair-correlation function g(r) is the sum of a direct and an exchange contribution: 

where 

and 

g(r) = gd(r)+gex(r), (11) 

00 00 

gd(r) = (4np)3/2 ~ {(21+ 1)/4nr2} PI(r, r; p) = ~ g,(r) (12) 
1=0 1=0 

00 

gex(r) = (4np)3/2p(r, -r;p) = ~ (-I)'g,(r). 
1=0 

(13) 

The free-particle density matrix p(O)(r, r'; P) can be expanded in terms of partial waves 
in similar manner to equation (10) (see Storer 1968a, 1968b) 

p(O)(r,r';p) = (4np)-3/2 exp{ -(r-r,)2/4p} 

00 

~ {(21 + 1)/4nrr'} p~O)(r, r'; p) PiCcos () 
1=0 

00 ( r2 + r' 2) (rr') = (4np)-3/2 I~ (21+ l)exp -~ i, 2P Plcos() , 

where i, is the modified spherical Bessel function, that is, i,(z) = (n/2z)t I,+t(z). 

III. HIGH TEMPERATURE ApPROXIMATION 

(14) 

(15) 

There are several approaches that can be made to obtain approximations to the 
density matrix (see e.g. Blatt 1956; Fosdick and Jordan 1966) but our technique is to 
use the properties of an expansion of the exponential of the sum of two noncommuting 
operators. From equation (3) it can be seen that we can write the Hamiltonian 
operator for relative motion as the sum of two noncommuting operators, 

Hr = Ho+Hl· (16) 
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It is usual for the operator HI to contain the potential energy term VCr) since it is 
nearly always this term which prevents an exact solution of the density matrix of the 
original Hamiltonian. 

For sufficiently small P we may expand the exponentials involving terms of order 
p2 or higher, to obtain the approximation (Grimm and Storer 1969) 

exp{ -P(Ho + HI)} Ri exp( -!pHI)exp( -pHo)exp( -!PHI) 

- 2p3 exp( -!PHI) exp( -!PHo) 

X c3 exp( -!PHo) exp( -!PHI) + .. :' (17) 
where 

C3 = ls[HdHI,Hol] + l4[Ho,[HI,Hol]· (18) 

Thus we have an approximation for the density operator for relative motion, defined 
by equation (4), which is correct to order p2 

P= exp( -PHr) Ri exp( -!pHI)exp( -pHo)exp( -!PHI) , (19) 

where the operators PI = exp( -!PHI) and P<0) = exp( - PHo) satisfy the differential 
equations 

!HI PI = - iJPIjiJp and HoP<°) = -iJp(O)jiJP (20) 

respectively, with boundary conditions 

lim pea) = lim PI = 1. (21) 
/1-+0 P:-"O 

The importance of this result lies in the fact that, although it may be impossible to 
write down a closed form for the density operator, it may be possible to divide the 
Hamiltonian operator Hr into two parts Ho and HI for which the exact solutions of 
the equations (20) can be found. 

The lth partial wave Hamiltonian operator can be divided into a sum of two 
noncommuting operators HI = H?+Hl, where H? = -(iJ2jiJr2) +1(1+ 1)/r2, in an 
analogous manner to equation (16), and so by the same procedure as before we obtain 

plr,r';p) Ri exp{ -!pHlCr)}p~O)(r,r';p)exp{ -!pHlCr')} +o(P3), (22) 

with p~O) as defined in equation (15). 
This approximation relies on the value of P being small, i.e. it is a high tempera­

ture expansion (although it should be pointed out that the error is also proportional 
to the operator c3 , which allows the approximation to remain valid under less stringent, 
conditions in particular cases). The basic procedure used in this paper is to extend the 
solution to low temperature regions, where quantum effects are important, by recog­
nizing that the operator equation (Storer 1968a, 1968b) 

exp( - 2PH) = exp( - PH) exp( - PH) (23) 
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is an exact relation. In coordinate space representation for PI(r, r'; /3), this is simply 

PI(r, r'; 2/3) = LX) dr2 PI(r, r2; /3) p,(r2, r'; /3). (24) 

We can then use the high temperature approximation (22), at a temperature T, as a 
starting point for an iteration procedure based on this equation to find the density 
matrix at a series of temperatures T, T/2, T/4, etc. The detailed equivalence between 
this procedure and the path integral formulation for the density matrix (Fosdick and 
Jordan 1966) has been pointed out by Storer (1968a). 

IV. NUMERICAL CALCULATIONS 

The most obvious choice of division of the Hamiltonian operator is to let 

H? = _(82/8r2) +/(1+ 1)/r2 and Hi = VCr). 

The solution of the relevant Bloch equation (20) is the Ith partial wave contribution 
to the free-particle density matrix 

p~O)(r, r'; /3) = (4rc/3) - 3/24rcrr' exp{ - (r2 + r,2)/4/3} i,(rr' /2/3) . (25) 

The modified spherical Bessel functions were computed by using the standard back­
wards recurrence relation (Abramowitz and Stegun 1965) or the power series for 
small z = rr'/2/3 (z ,,; 1). For large z (~50) the asymptotic expansion used was 

. ( ) _ 1 ( 1(1 + 1 »)( 1(1 + 1) l(l + 1 )(1-2)(1 + 3) 
11 Z - 2z exp z-~ 1- (2Z)2 + 3(2z)3 

1(1 + 1)(5/2 + 5/-12») 
+ 2(2z)4 . (26) 

The explicit inclusion of the term exp{ -/(/+ 1)/2z} was found to give much better 
results than using the standard asymptotic expansion for modified Bessel functions 
(Abramowitz and Stegun 1965). Thus we can make the initial high temperature 
approximation (22) over a grid of any size, and for any / value, and it remains to 
extend this approximation to low temperatures using numerical integration techniques 
to implement the iteration procedure. 

The range of the integration given by equation (24) is (0, (0) but this can be 
restricted to a finite interval because of two properties. The first is that off-diagonal 
terms decrease as exp( - r2 /2/3), which means that for any fixed rand r' the integration 
over r 2 can be restricted to a finite range. The second property restricting the iteration 
procedure is that, although we have infinite matrices (with a limited number of off­
diagonal terms), the solution for r, r' > R, where R is some chosen finite range 
dependent on /3, can be approximated by the known expression 

exp{ -/3 VCr)} p~O)(r,r';2/3)exp{ -/3 VCr')} 

to a predetermined accuracy. It is thus unnecessary to extend the ranges of rand r' 
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which determine the size of the resultant matrix beyond this value. Because the 
Lennard-Jones potential can be effectively replaced by a hard core for radial separ­
ations r < y, where y is of the order of 0·6a, all matrix elements within this barrier 
are zero and so no contribution is made by these elements to the integration. 

Formally then, if the range of rand r' over which we wish to find values for the 
density matrix is R = N.t1, the integral (24) can be written in terms of the trapezoidal 
rule as 

[Pl2P)]pq = ~ [P1(P)]pdplP)hq.t1 
k 

(27) 

for p, q :,;;; N, where we have defined 

[PI(P)]pq = plp.t1, q.t1; P). (28) 

This iteration procedure is thus equivalent to a matrix squaring operation. 
Beginning with the initial approximation given by equation (22) the above 

procedure will result in the calculation of PI(r, r'; 2P) within the range r, r' :,;;; R. 
In the small region, where r or r' is within a distance of the order the thermal wave­
length A. from R, there will be some error because the integral (24) has been truncated 
at a finite point R. When both r ~ R - A. and r' ~ R - A., this can be remedied simply 
by noting that the approximation 

PI(r, r'; 2P) = exp{ -P VCr)} p~O)(r, r'; 2p)exp{ -P VCr')} 

is valid for large rand r', and the erroneous values can be corrected to this expression. 
When r' is large (~ R -A.) but r is small (or vice versa), it is found satisfactory to use 
the replacement 

P lr, r' ; 2P) = exp{ - P Veff(r; P) - P VCr')} p~O)(r, r' ; 2P) , (29) 

where Veff(r; P) is defined by 

exp{ -P Veff(r;p)} = PI(r,r;p)/p~O)(r,r;p). (30) 

These modifications, however, only affect the narrow strip within a distance A. from R. 
By repetition of this procedure the Ith partial wave contribution to the density 

matrix is evaluated at temperatures T/2m, where Tis the initial temperature and m the 
number of times the matrix is squared. In principle the direct and exchange contri­
butions t6 the pair-correlation function result simply from the summation of the 
partial wave contributions at a particular temperature according to equations (12) and 
(13) respectively. However, for helium the highest temperatures for which the pair­
correlation function could be found to sufficient accuracy by direct summation was 
about 10 K. These summations required partial waves up to I ~ 17 while, for 
temperatures higher than this, evaluation of the extra partial waves needed would 
have required unreasonable computing times. 

It is interesting to compare the result at 2 K with those of Larsen et al. (1966) 
and Fosdick and Jordan (1966), since both groups evaluated the same quantity with 
identical potential parameters but used different numerical techniques. This was the 
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Fig. I.-Pair-correlation functions g(r) for helium and neon at the indicated temperatures. 
In (a) only the density independent contribution is shown. In (b)-(d) the terminated expansion 
method (see text) has been used to obtain g(r) from the present work. A comparison with the 

classical and Wigner-Kirkwood equivalent expressions is given in (c) and (d). 
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highest temperature considered by Larsen et al., while Fosdick and Jordan forced 
their calculations down to 2 K for comparison, their procedure encountering large 
Monte Carlo sampling errors at this temperature. The result for the present work at 
2 K follows closely that of Larsen et al., the largest variation occurring at the maximum 
where we differ only in the third significant figure, this difference being too small to 
allow graphical comparison. The same relationship exists at 1 K. This comparison 
inspires confidence in the accuracy of the present results at higher temperatures. 
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The exchange term, found by summing gl according to equation (13) follows 
closely the results of Larsen et al. (1966) at 2 K but differs considerably from those of 
Fosdick and Jordan (1966). In this case, however, their errors are even greater than 
the magnitude of gex(r). In Figure l(a) we show the density independent part of the 
pair-correlation function for the temperatures 4, 5, 8, and 10 K. 

The direct contribution to the pair-correlation function can be adequately 
represented by the Wigner-Kirkwood approximation (see Uhlenbeck and Beth 1936, 
1937; Green 1951) for temperatures above about 100 K for both helium and neon 
but for lower temperatures the approximation worsens quickly. We extend the 
calculation of the pair-correlation function to the temperature range between that for 
which a simple partial wave summation can be performed and that for which the 
Wigner-Kirkwood approximation is valid, by using the following technique. The 
speed of convergence of the sums in equations (12) and (13) depends not only on the 
temperature but also on the distance between the two particles, the smaller the separ­
ation the faster the convergence. Consequently the number of the partial wave terms 
evaluated (17 for helium and 51 for neon) is sufficient for all temperatures, provided 
the value of r concerned is small enough in each case. Also, the higher the temperature 
the smaller is the choice of r, which we will denote by rc. Similarly the approximation 
given by equation (22) depends not only on the temperature but also on the radial 
separation via the commutators of H? and Hi, the higher the temperature the smaller 
the distance ra required for the approximation to be accurate to within a definite 
number of significant figures. 

If the number L of partial waves taken is enough to satisfy the criterion rc ~ ra 
for the partial sum so formed then for r > rc' equation (12) can be approximated by 

L 00 

gir) ~ ~ glr) +exp{ -13 VCr)} ~ g~O)(r), 
1=0 I=L+1 

where 
g~O)(r) = (4nf3)3 /2 {(21 + 1 )j4nr2} p\O)(r, r; 13) . 

This expression can be rewritten in the form 

L 

(31) 

(32) 

gir) ~ ~ [g,(r)-exp{-f3V(r)}g~O)(r)]+exp{-f3V(r)}, (33) 
1=0 

since 
00 

~ gfO)(r) = 1. (34) 
1=0 

We call approximation by equation (33) the terminated expansion method. A similar 
expression can be derived for the exchange term (unlike the Wigner-Kirkwood ex­
pansion), although at the temperatures for which we have applied the method the 
exchange term can be neglected. 

Figure l(b) shows the pair-correlation function for helium at the four temper­
atures 40, 32, 20, and 16 K as evaluated by the above method. The pair-correlation 
function was also evaluated at 8 and 10 K by this approximation to enable a com­
parison to be made between it and the direct sum. In the latter case the magnitude of 
the tail is low due to the incomplete sum, while the semiclassical approximation for the 
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tail in the former case increases its value, thus putting an upper and lower limit on the 
tail. The difference is too small to be shown graphically but comparison of the second 
virial coefficients, found by integrating the curves, indicates the numerical differences 
to be of the order of 10- 7 m 3 mole -1. 

The pair-correlation functions for neon at the temperatures 44·2 and 22· 1 K 
are shown in Figures l(c) and led) together with the classical and Wigner-Kirkwood 
approximations, demonstrating the large quantum effects that exist at these temper­
atures. 

V. SECOND VIRIAL COEFFICIENT 

The above results can be used to calculate the second virial coefficient. This 
serves, in the case of helium, as a check on the accuracy of our evaluation of the pair­
correlation function by comparison with the phase shift method (see e.g. de Boer and 
Michels 1939; Green 1951, 1952a, 1952b; Boyd et al. 1969). For neon these results go 
below the temperature where the Wigner-Kirkwood results are accurate. 

The second virial coefficient has the same form in quantum mechanics as in 
classical mechanics, 

B = -2nNo (J3 1" dr r2{g(r) -l}. (35) 

After substitution from equation (11), the second virial coefficient can be separated 
into a contribution due to Boltzmann statistics and one due to exchange effects, 

Bd = - 2nNo(J3 f" drr2(gd- l ) (36) 

and 

Bex = -2nNo(J3 fooo drr2gex. (37) 

The second virial coefficient results from the evaluation of these two integrals. The 
direct term can be written as the sum of three parts; the first 

l;,nNo(J3y3 (38) 

is the contribution due to the "hard core"; the expression 

-2nNo(J3 iR drr2(gd- l ) (39) 

gives the contribution due to the effect of quantum mechanics. By using equation (12) 
and diagonal values of equation (14) this expression can be rewritten as 

00 iR - 2nNo(J3 I~O y drr2{g,(r) _g~O)(r)}, (40) 

this second form being applicable in the low temperature region where the sum can be 
accurately terminated. The limit R is the point at which gd differs insignificantly from 
exp( - p V), so that the final part is 

-2nNo(J3 fRoo drr2[exp{-pV(r)}-lJ. (41) 
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The exchange term of the second virial coefficient also simplifies, but to the 
single term 

(R' 
- 2nNo(J3 Jy dr r2gexCr) , (42) 

which can be rewritten as 

00 JR' -2nNo(J3 ~ (-1/ dr r2g/(r) , 
I~O y 

(43) 

where R' is the range at which gex differs insignificantly from zero. 
Equations (40) and (43) imply that, in the low temperature region where sufficient 

I values can be summed over, the contribution from each orbital angular momentum 

TABLE 1 

SECOND VIRIAL COEFFICIENTS FOR HELIUM 

The second virial coefficients are expressed in units of 10- 6 m 3 mole- 1 

Temp. Present work Boyd et at. (1969) 
T(K) Bex Bd B Bex Bd B 

1 -53·13 -383·27 -436·40 -52·400 -376·630 -429·030 
2 -3·477 -176·10 -179·58 -3·427 -173·992 -177·419 
2·5 -1·113 -137·68 -138·79 -1·113 -135·282 -136·395 
4 -0·061 -78·66 -78·72 -0·060 -78·045 -78·105 
5 -0·011 -59·98 -59·99 -0·011 -59·114 -59·125 
8 0·000 -30·11 -30·11 0·000 -30·767 -30·767 

10 0·000 -20·95 -20·95 0·000 -21·321 -21·321 

to the second virial coefficient can be directly evaluated, and this has been done in these 
cases. The contribution to the direct second virial coefficient by the hard core is 
independent of the temperature and has the constant value Bhc = 4· 551 X 10- 6 

m3 mole- 1 for helium. Adding to this the total contribution from expression (40) 
and the contribution from the classical tail gives the direct second virial coefficient. 
This, and the exchange second virial coefficient are given in Table I, where they are 
compared with the results of Boyd et al. (1969). The results agree to within 2% with 
their very accurate values. The discrepancies that do exist are justified in that the 
aim was to evaluate the pair-correlation function, the virial coefficient integrals being 
a reasonable test of the accuracy of the results without demanding precision. The 
results obtained for higher temperatures by integrating equation (33), together with 
experimental data, are plotted in Figure 2(a). It should be pointed out that the 
Wigner-Kirkwood results do not continue to diverge from the true values in the 
gentle curve shown. Instead they quickly diverge upwards towards infinity as the 
temperature decreases further. 

The three values obtained for neon by integrating over the appropriate approxi­
mate pair-correlation functions are compared in Figure 2(b) with low temperature 
experimental evaluations. The low temperature values of Keesom and Van Lammeren 
(1934) were ignored by Nicholson and Schneider (1955) in all attempts to find the 
parameters of the Lennard-Jones potential by fitting the data. The reason for this 
appears to be that, when the results of Keesom and Van Lammeren and of Holborn 
and Otto (see Otto 1929) were the only experimental values for neon, the former were 
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about 10% less in the region of overlap which is presented in Figure 2(b), the latter 
work being used to obtain an accepted set of values. Thus it was deemed that the 
compressibility measurements in the former case were incorrect especially when 
comparisons of third virial coefficient data were made. There is obviously a great 
need for a second series of measurements in this region. 
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Fig. 2.-Second virial coefficient B for helium and neon as a function of temperature. Results of the 
present work are indicated by crosses. (a) The continuous curve is from Boyd et al. (1969) and the 
dashed curve from the Wigner-Kirkwood expansion. The experimental points are: inverted triangles, 
Keesom (1942) "adopted values"; triangles, Keesom and Walstra (1947); circles, White et al. (1960); 
squares, Boyd et al. (1968). (b) The continuous curve is the classical relation obtained by substituting 
Nicholson and Schneider's (1955) potential parameters into the reduced values tabulated by Hirsch­
felder et al. (1954). The experimental points are: squares, Kamerlingh-Onnes et al. and Palacios 
Martinez and Kamerlingh-Onnes (see Otto 1929); inverted triangles, Otto (1929); triangles, Keesom 

and Van Lammeren (1934); circles, Sullivan and Sonntag (1967). 

VI. EFFECTIVE POTENTIALS AND THREE-PARTICLE EFFECTS 

In practice the solution of even the three-body problem is very difficult and it is 
inevitable that for more than three particles approximations have to be made. We 
introduce here an effective potential V.ff(r; fJ) defined by 

g(r) = exp{ - fJ V.rlr; fJ)} , (44) 

where g(r) is the density independent part of the pair-correlation function. We then 
assume that the many-body density matrix p can be written in the form 

p(rl'· .. , rN; r;, . .. , rjy; fJ) 

= p(O)(rl,···,rN;r;, ... ,rjy;fJ)exp(-!fJ~. {Verr(rij;fJ) + Verr(rij;fJ)}) , (45) 
l<} 
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where p(O) is the free-particle density matrix. Since Verr(r;p) --+ VCr) as p --+ 0, this 
equation is certainly valid for high temperatures (see equation (17)) and, by looking 
in detail at the consequences of this approximation for the three-body system, we hope 
to be able to investigate its validity at temperatures where quantum effects are im­
portant. It is similar in spirit to the Bijl-Jastrow approximation (Jastrow 1955) which 
has been applied to the ground state of many-particle systems, and to the approxi­
mation of Dunn and Broyles (1967) which has been applied to the electron gas and the 
hydrogen plasma (Broyles et al. 1969). Fosdick and Jacobson (1971) and Klemm 
(1971) have both applied the present approximation to the three-body problem in 
order to test its validity. 

If we define 
Fij = exp{ - P V.rr(r ij; pn -1 (46) 

by analogy with Mayer's classical function/ij' we obtain the following expression for 
the third virial coefficient in terms of Fij 

(No 0'3)2 fff CCT) = - "TT F12 F23 F13 dr1 dr2 dr3' (47) 

which can be reduced to 

C(T) = - (N~ 0':)2 f: G3(k)k2 dk, 

where G(k) is given by the Fourier transform expression 

G(k) = 4n f: F(r) (sin kr/kr)r2 dr. (48) 

Thus the number of integrations necessary to find the third virial coefficient has been 
reduced from nine to two. 

We can also find the contribution to the pair-correlation function from the 
term linear in the density, since this can be evaluated in a· similar manner. It has the 
form 

gl(r12) = f F13 F23 dr3 (49) 

and, applying the inverse Fourier transform (48), it becomes 

gl(r) = (0'/2n)34n 5000 G2(k)(sinkr/kr)k2 dk, (50) 

which is just the Fourier transform of G2 • Thus we can also find an approximation to 
the pair-correlation function correct to the first power of the number density. 

In Figure 3(a) we compare the Monte Carlo results of Jordan and Fosdick (1968) 
for the third vi rial coefficient of helium with the results obtained using the approxi­
mation (45) by Fosdick and Jacobson (1971) and Klemm (1971). the slight difference 
between these two results most likely arises from the uncertainty in the value of the 
g(r) used by Fosdick and Jacobson due to Monte Carlo sampling. Included in the 
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Fig. 3.-Third virial coefficient C, as a function of temperature, and radial distribution function g(r) 
to first order in the density, for helium and neon. In (a) and (c) the results of the present work are 
indicated by crosses. In (b) and (d) the results are for helium at 5 K, p = 95 kgm- 3 and neon at 
44·2 K, p = 670 kgm- 3 respectively. The symbols used are: (a) Squares, Otto (1929); triangles, 
Keesom (1942) "adopted values"; continuous curve, classical solution for a Lennard-Jones potential; 
circles, Jordan and Fosdick (1968); inverted triangles, Fosdick and Jacobson (1971). (b) Crosses 
with error bars, Monte Carlo calculations of Jordan and Fosdick (1968). (c) Squares, Kamerlingh­
Onnes et al. (see Otto 1929); inverted triangles, Otto (1929); circles, Sullivan and Sonntag (1967), 
full curve, classical solution for a Lennard-Jones potential assuming additive two-body forces. 
(d) Crosses, experimental results of Stirpe and Tompson (1962); continuous curve, present results. 
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figure are the experimental results of Keesom (1942) (adopted values) and Otto (1929). 
It is interesting to note the marked discrepancy between the two sets of data, especially 
since they are the only experimental results available except for some very low temper­
ature points evaluated by Keller (1955) from pressure-volume isotherms. Indeed 
Otto has an additional point at 15' 19 K which is not included because it is too far off 
scale (his value being 1063 x 10- 12 m6 mole- 2 ). 

The radial distribution function in liquid helium has been derived from experi­
mental neutron and X-ray scattering data for a variety of densities at several temper­
atures in helium. In particular Henshaw (1960) published some results up to 5·04 K 
derived from neutron scattering data. In Figure 3(b) the experimental result at this 
temperature and a density of 95 kgm - 3 is shown together with the linear approxi­
mation to the radial distribution function at this density and a temperature of 5 K as 
derived by Jordan and Fosdick (1968). Our curve, in the same figure, follows closely 
Jordan and Fosdick's results and thereby demonstrates the feasibility of making the 
approximation (45) in order to obtain qualitative estimates of thermodynamic 
properties when the system is described by quantum statistical mechanics. Figure 3(c) 
compares the classical third virial coefficient with our results in the temperature range 
between 40 and 100 K for neon. The additional point found by us at 22· 1 K is not 
shown because it has a large negative value, namely - 2355 x 10- 12 , as compared with 
-4335 x 10- 12 m6 mole- 2 in the classical case. The only experimental results around 
this temperature are two points evaluated by Keesom and Van Lammeren (1934): 
5116 x 10- 12 and 4017 x 10- 12 m6 mole- 2 at 26· 2 and 27·8 K respectively. 

The theoretical and experimental turning points for helium occur at similar 
temperatures and this would be expected to be the case for neon. Thus there is no 
explanation for the huge discrepancy present between experimental and theoretical 
values, the classical turning point occurring between 40 and 44 K. Figure 3(c) shows 
that only the recent measurements of Sullivan and Sonntag (1967) are near the theore­
tical results, the earlier measurements being about twice the magnitude and following 
no discernible pattern. These include the values of Kamerlingh-Onnes et al. (see Otto 
1929), since an unplotted point of theirs at 55·63 K has a value of 900·55 X 10-12 

m6 mole - 2. Thus it would appear that there is an almost complete lack of experimental 
data that can be taken as correct for the temperature region immediately above the 
turning point. This poses a serious difficulty in obtaining the effects of nonadditive 
three-body forces, not to mention improvements in two-body additive potentials. 
It should also be noted (see Fig. 3(a)) that, although there does exist a curve of smoothed 
values of the third virial coefficient for helium, it is of similar antiquity to the above 
results and conflicts with the only other experimental points available. 

The contribution to the radial distribution function from the term linear in the 
density at 44· 2 K is shown in Figure 3(d) at a density of 670 kgm -2. This is compared 
with the experimental determination by Stirpe and Tompson (1962) for the same density 
and temperature in liquid neon. Terminating the expansion at the first term gives 
excessive weight to the second distribution peak, the many-particle effects present in 
a liquid not being included in our results (c.f. Fig. 4(b)). A series of tests conducted by 
Stirpe and Tompson strongly suggest that the peak in the experimental curve at about 
1· 7 (J was an artifact from the Fourier transformation and did not represent structure 
in liquid neon. Schmidt and Tompson (1968) noted that the scattered intensity in this 
experiment was very low and the results must be considered with this defect in mind. 



1·5 

1'0 

0'5 

STRUCTURE OF QUANTUM FLUIDS 

(a) Helium 

(\ 
,f \ \ 

11 \ \ 

II \\ '-" i/ \\. ,,//--'---~ 
fI \/1 
II 
1/ 

II 
II , 

/, 

+ + 
++ ... 

--- Henshaw 
------ Present work 

2 

+ Stirpe and Tompson 
--- Present work 

2 

ria 
4 

3 

ria 

2·5, (b) Neon + 

++ 

2'0 

1'5 

1'0 

+ Stirpe and Tompson 

0'5 --- Present work 

o 2 3 

Fig. 4.-Radial distribution functions 
for helium and neon from the Percus­
Yevick equation, compared with 
experimental results from Henshaw 
(1960) in (a) and Stirpe and Tompson 
(1962) in (b) and (c). The temperatures 
and densities are: 
(a) T= 4K, p = 184kgm-3 ; 

(b) T= 44·2K, P = 670kgm-l; 
(c) T= 44·2K, p = 1250kgm- 3 • 

The experimental results were evaluated 
under the same conditions except for a 
lower temperature (24'7 K) in (c) . 

VII. RADIAL DISTRIBUTION FUNCTION 

57 

4 

A quantum fluid has a radial distribution function which has the same shape as 
the corresponding classical quantity. It differs only in the magnitude and position of 
the various maxima and minima and has the same property that g(r) _ I as r _ OCJ. 

It is satisfactory therefore to introduce a quantum mechanical direct correlation 
function c(r) and if we assume pair-wise additivity of effective potentials, so that we can 
write 

F(r) = exp{ -p Veff(r;p)} -1, (51) 

then by a similar procedure to Percus and Yevick (1958) we can obtain the quantum 
analogue to the Percus-Yevick approximation 

{F(r) + l}c(r) = g(r)F(r). (52) 
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Combining this with the definition of c(r) we can write the approximation as 

y(r) = 1+ n f y(r')F(r'){y(lr-r'I)F(lr-r'l) +y(lr-r'l) -I} dr', (53) 

where 

y(r) = g(r) exp {P Veff(r; fJ)} . (54) 

We have used the method devised by Broyles (1961) to solve the Percus-Yevick 
equation with the effective potentials in place of the classical Lennard-Jones potential 
(c.f. Mandel et af. 1970). In Figure 4(a) we compare our solution for helium at a 
temperature of 4 K and a density of 184 kg m - 3 with an experimental evaluation by 
Henshaw (1960) at a temperature of 4·02 K and the same density. Since our result in 
Figure 3(b) follows Jordan and Fosdick's (1968) results reasonably closely it is not 
likely that the deviation from experimental values here is due to our approximation. 
It is more likely due to either the choice of potential or the inherent approximation 
involved in choosing pair-wise additive forces. The latter possibility is also indicated 
by the results for the third virial coefficient given in Section VI. This factor is also 
suspect because we are going from gas to liquid temperatures and densities. 

The result of applying the Percus-Yevick approximation to neon at 44·2 K and 
a density of 670 kg m - 3 is shown in Figure 4(b), where it is compared with the experi­
mental results of Stirpe and Tompson (1962) for identical conditions. It should be 
noted that the fit to the secondary peaks is far better than in Figure 3(d), where the 
three-particle contribution only is graphed. Stirpe and Tompson also obtained results 
at a temperature of 24·7 K and a density of 1250 kgm- 3 • In Figure 4(c) we compare 
the results obtained from the Percus-Yevick equation at this density and a temperature 
of 44·2 K since some difficulty was encountered at the low temperature (probably due 
to the proximity of the triple point). However, because neon is a liquid in this range 
the structure should not depend critically on the temperature. There is good agree­
ment with the first peak, although the second peak is low, a probable consequence of 
the closer packing which occurs at lower temperatures. 

These results give confidence that an effective potential approach to the study of 
the structure of many-body systems which have to be described by quantum statistical 
mechanics is a fruitful one. It certainly has the major advantage of enabling the many 
techniques developed for classical statistical mechanics to be applied to quantum 
systems. 
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