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Abstract 

The isentropic unsteady expansion of the driver gas in a shock tube is made to pass 
through an MHD interaction. The interaction is tailored so as to produce a new isentropic 
unsteady expansion downstream with greater energy than the original, which will drive a 
new shock of greater but constant velocity. Illustrative examples are calculated. 

I. INTRODUCTION 

Much effort in recent years has been directed towards increasing the shock speed 
in high speed shock tubes. One of the problems is that the energy lost in radiation sets 
a limit to the improvement that can be achieved by increasing the energy in the driver 
gas before the diaphragm bursts. An example of a device which overcomes this 
problem is the MAARC shock tube (Schneiderman et al. 1967), in which energy is added 
downstream from the diaphragm at effectively constant temperature. Other designs 
have been surveyed by Leonard and Rose (1968) who consider a range of two-stage 
devices. In these the first stage is some source of high energy gas, such as a shock tube 
or arc chamber, and the high energy gas expands steadily from a nozzle through the 
second stage in a magnetohydrodynamic (MHD) interaction. Conditions at the exit 
of the interaction are matched to those behind the shock by an isentropic expansion 
fan or, in some cases, an upstream propagating shock. Improvements in such arrange­
ments are to be expected if the gas from the first stage expands unsteadily before it 
enters the second stage. There are two reasons for this: 

(1) energy added to the expanded gas should have greater effect than if added to 
the denser unexpanded gas, and 

(2) the expanded gas will be cooler so that radiation losses should be reduced. 
In this paper a technique is proposed for adding energy well downstream from 

the sonic point in the unsteady expansion. Figure 1 shows the important parts of the 
proposed apparatus, with an x-t diagram giving the shock trajectories, characteristics, 
and particle paths. The diaphragm separates a high pressure region on the left from a 
low pressure region on the right. There is a short MHD accelerator in the low pressure 
tube at a distance Xo from the diaphragm. 

The x-t wave diagram in Figure 1 shows the behaviour after the diaphragm 
bursts. An initial shock Si propagates into region 1, the undisturbed low pressure gas, 
carrying behind it shock-heated gas into region 2. Behind a contact surface is an 
unsteady isentropic expansion in the driver gas, region 3. The high pressure region, 
as yet undisturbed by the expansion, is region 4. The initial shock is allowed to pass 
through the interaction and power is applied as the contact surface passes. The gas 
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leaving the interaction becomes the expansion 3' which will give rise to the secondary 
shock S. and the expansion 3". In some cases, instead of the expansion 3" there may 
be an upstream-facing shock. It would be swept downstream in the moving gas. 
It will be assumed here that no such shock occurs, and conditions for its avoidance 
will be discussed in Section VII. 

The shock S. will overtake the initial shock Si and accelerate it. There will 
follow a series of reflections back and forth between the contact surface and the main 
shock front. After the reflections have died out the main shock will have reached its 
final condition as Sr. The transition from Si to Sr will be examined in Section V. 

Particle path ---
Positive cha"racteristic 

• 

Diaphragm Interaction 

Fig. 1.-Shock tube containing the MHD interaction and the corresponding x-t 
diagram showing the effects of the interaction on the characteristics, particle path, 

and shock front. 

As the upstream unsteady expansion 3 flows through, the interaction is controlled in 
such a way as to create a downstream expansion 3' which will hold the final shock 
velocity constant. One method by which this may be achieved is to vary the electric 
and magnetic fields in the interaction so that the expansion 3' is a simple wave, 
similar to 3 upstream but of higher energy. 

The main concern of this paper is to specify the interaction which will convert 
the isentropic simple wave in region 3 into another isentropic simple wave in region 3'. 
The present work also gives a method for calculating the expected new shock speed 
and considers the interaction which will accelerate the main shock front most effec­
tively. The paper is a theoretical examination of the proposed technique. Sections II, 
III, and IV develop the general specifications that the MHD interaction must meet and 
relate these to an interaction with crossed-field geometry, while Section V indicates 
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how the final shock speed may be determined. Section VI presents a calculated 
example to illustrate the techniques developed in the preceding sections. Section VII 
examines an optimum proportion between the current density and the magnetic field 
in the crossed-field interaction and relates this to the thermodynamic model used in 
Section VI. Finally, Section VIII draws some general conclusions about the accuracy 
and limits of the technique. 

II. FORMATION OF SHOCK 

Velocity and pressure are continuous across the contact surface between the 
driver gas (region 3 in Fig. 1) and the shock-heated gas (region 2). Thus the gas 
velocity behind the shock may be determined from the intersection of the pressure­
velocity relations in the two gases. 

.e­
'G 
o 

~ 

s 

c' 

Pressure 

3' 

3 

Fig. 2.-Shock and expansion curves. 
Curve S is the pressure-velocity 
relation in the gas behind the shock, 
while curves 3 and 3' are relations in 
the expansions upstream and 
downstream respectively from the 
interaction. The lines CC', CC", 
and CC'" are possible paths taken 
by the gas particles in the 
interaction. 

(a) Shock Curve 

The pressure and velocity in the gas behind a shock propagating into a given gas 
take different values for different shock speeds. Their locus in the pressure-velocity 
plane will be referred to as a "shock curve". The relation between them may be 
written in the form 

v = fs(P) , (1) 

where v and P are the velocity and pressure of the gas behind the shock. Let the shock 
curve S in Figure 2 represent this relation for the shock propagating into region 1 in 
Figure 1. The gas conditions behind the shocks Si and Sf both lie on this shock curve. 

(b) Expansion Curve 

In the expansion 3 in Figure 1, along positive characteristics defined by 
dxfdt = v + a, where a is the velocity of sound, changes in pressure and velocity are 
related by (Courant and Friedrichs 1948) 

dv = _(ap)-l dP. 

Along negative characteristics (dxfdt = v-a), they are related by 

dv = (ap)-l dP. 

(2a) 

(2b) 
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As the positive characteristics pass from the expansion into the adjacent steady-flow 
region 4, the expansion is a simple wave. Gas properties are constant along negative 
characteristics, which are straight lines. The definition of the negative characteristics 
then becomes simply x/ t = v - a, and this relates the gas properties to their position 
in the x-t diagram. 

As gas properties along negative characteristics are constant, all changes are 
related by equation (2a), which therefore represents a unique velocity-pressure re­
lationship throughout the expansion. The converse is also true: if equation (2a) holds 
throughout the expansion, gas properties along negative characteristics are governed 
by both equations (2a) and (2b) and are therefore constant. 

With an appropriate thermodynamic model, equation (2a) may be integrated to 
give the pressure-velocity relation in the expansion. The boundary conditions for this 
integration are those in region 4. 

Let the curve 3 in Figure 2 represent this relation. It will be referred to here as 
the "expansion curve". Conditions at the contact surface will be given by the inter­
section of curves 3 and S at the point C. The following section considers alteration of 
the simple wave 3 in Figure 1 such that the expansion 3' is also a simple wave. 

III. ALTERATION OF EXPANSION 

(a) Conditions for Constant Velocity Shock 

The MHD interaction is to be applied to the expansion so as to create conditions 
in which a new shock may emerge with higher velocity than the original. In order that 
the new velocity will be constant, the interaction will be made to vary so that the 
expansion created downstream (3' in Fig. 1) will be a simple wave. Following the 
discussion in the previous section, for 3' to be a simple wave, two conditions must be 
met: 

(i) 3' must be isentropic, and 
(ii) equation (2a) must hold along all lines in its x-t diagram. 

(b) "Short" Interaction 

Much simplification of the mathematics results from the assumption that the 
length of the interaction region Llx is short enough that the following two conditions 
are met: 

(1) The interaction may be treated as a quasi-steady process with slowly varying 
input conditions. Thus, in the time during which a gas particle from region 3 of 
Figure 1 passes through the interaction, gas conditions at the entrance change by only 
a negligible fraction. If this time of passage is M, or approximately Llx/v, the con­
dition becomes that for any gas property ( 

(o(/ot)x=xo Llx/v ~ ( . 

This condition depends on the position Xo of the interaction. As (o(/ot)x=xo in the 
expansion becomes smaller without limit as Xo increases, the condition may be met by 
positioning the interaction sufficiently far downstream from the diaphragm. 
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(2) It is an acceptable approximation to write 

AC = [dCJdx]MHOAx, 

where AC is the change from Xo to Xl of C and [dCJdx]MHo is its rate of change in the 
interaction. This is a linear approximation to a nonlinear process and will normally 
be valid only while AC is a small fraction of C. 

We will now examine the short interaction which produces a downstream 
expansion satisfying conditions (i) and (ii) in subsection (a) above. 

Particle 
paths 

Condition (i) 

IV2 

V2 1 
dVd = vz-vi 

1 

I 1 

~D.X~ 

Xl x 

Fig. 3.-x-t diagram of two particle 
paths through the MHD interaction. 
The x scale is greatly expanded by 
comparison with that of Figure 1. 
The velocities v{ and v~ are given by 

v~ = Vl +[dvl/dxjMHDD.x, 

v~ = v2+[dv2/dxjMHDD.x. 

This condition is met by making constant the addition of entropy to unit mass 
of the gas in the interaction. Whence, the interaction must be such that 

[dsJdx]MHO = constant, 

where s is the entropy per unit mass. 

Condition (ii) 

(3) 

In the downstream expansion 3', equation (2a) holds along all lines in the family 
of positive characteristics. If it is made to hold along any line intersecting this family, 
it will be true along all lines in the expansion. It will be convenient to make equation 
(2a) hold along the line X = Xl at the exit of the interaction. 

In the x-t diagram expanded around the interaction (Fig. 3), particle velocities 
on the two close particle paths differ by amounts dvu upstream and dVd downstream. 
The change in the velocity difference dvu due to passage through the interaction may 
be expressed as 

([dVZ] [dVI] )AX A(dv) = dVd -dvu = dx MHO - dx MHO 

( a [dV] ) dt Ax. 
= at dx MHO x=xo 

(4) 

In this equation the term expressed as a partial differential is the time rate of change 
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of [dv/dxlMHD as the electromagnetic parameters change in the interaction and as the 
properties of the gas change along the line x = Xo in Figure 3. Similar expressions 
below have parallel interpretations. Thus the effect of the interaction on a small 
density difference dpu upstream may be expressed as 

( a [dPJ ) dt ilx . il(dp) = dt dx MIlD X~Xo (5) 

Under the assumption of a quasi-steady process, conservation of mass provides that 

-~-[pvJ = o. 
dx MHD 

(6) 

Equations (5) and (6) then give 

A( dp) = - - -- --- + .~ - - - + - ~ dt ilx . p{ (a [dVJ) [dVJ ( 1 ap 1 av) } 
v at dx MHD X=Xo dx MHD p at vat X=Xo 

(7) 

Equation (2a) applies along all lines in the upstream expansion and therefore 

(~~)x=xo - ~(~~)x=xo· 
Including this in equation (7) then gives 

il(dp) = - - - - + - -- ~ dt Ax p{ (a[dVJ) [dVJ M+l(av) } 
v at dx MHD X=Xo dx MHD v at X=Xo ' 

(8) 

where M = via is the Mach number. 
Condition (ii) requires that equation (2a) apply along the line x = Xl' that is, 

dvd+(a/p)dpd = O. (9) 

The left-hand side of this equation may be expanded to give 

dvu + A(dv) + (a/p)dpu +il{(a/p)dp} = o. 
Noting that the first and third terms on the left-hand side sum to zero according to 
equation (2a) and expanding the fourth term gives 

( l[daJ a [dPJ) a A(dv)+dpu - ~ - 2 - ilx+ -A(dp) = o. 
pdXMHD P dXMHD P 

(10) 

il(dv) and il(dp) may be replaced according to equations (4) and (8). From equation 
(2a), the density change dpu in the expansion may be replaced by -(p/a)dvu, or 
-(p/a)(av/at)x=xo dt. The quantity [dp/dxlMHD is the density rate of change in the 
interaction, and from equation (6) may be replaced by -(p/v)[dv/dxlMHD. With these 
substitutions, and use of the definition of M, equation (10) becomes 

{M~I(fr[::JMHJx=xo -C~)x=xo~([~:JMHD - ~Z[::JMHJ}dtilX = o. 
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Dividing through by {(M -l)jM}(ovjot)x=xo dt dx and rearranging gives 

(:V[:~JMHJX=XO = ~l~([::JMHD-~{:;JMHD). (11) 

If the interaction is varied to make this equation true then the second condition (ii) 
will be satisfied. 

We now have that an interaction constrained by equations (3) and (11) will 
cause the downstream expansion to be a simple wave. Up to this point no reference 
has been made to a specific interaction geometry. We will now examine one such 
geometry. 

y 

Fig. 4.-Geometry of crossed­
field MHD interaction showing 
the directions of the magnetic 
field B, current density j, and 
flow velocity v. 

IV. CROSSED-FIELD INTERACTION 

The MHD interaction which will be considered here is of the crossed-field type 
illustrated in Figure 4. The top and bottom walls of the channel are electrodes 
between which a current density j exists. A magnetic field B is applied in the z 
direction. The effect of a Hall current, which may exist in the x direction, is the same 
as that of a reduced conductivity (Sutton and Sherman 1965, p. 394) and need not be 
considered here. 

The assumptions are made that: the ratio of the channel length to width is large 
and end effects are negligible; the transverse pressure differences across the channel 
are small; and the magnetic Reynolds number Rm = WJv(5, where u is the conduc­
tivity and (5 a typical dimension, is considerably smaller than unity. In Appendix I 
an electrode geometry is described for which the appropriate value of (5 is half the 
channel width and, for this geometry, the transverse pressure differences and end 
effects are assessed. 

The equations governing the MHD interaction are 

[d(pv)jdx]MHD = 0, 

pv[dvjdx]MHD = -[dPjdx]MHD+jB, 

pv[d(!v2+h)jdx]MHD = j2ju +vjB, 

where h is the enthalpy per unit mass. 

(12a) 

(12b) 

(l2c) 
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Condition (i) 

Equations (12b) and (12c) together with the exact differential 

Tds = dh _p-l dP, 

where T is the temperature, give 

[ds/dxlMHD = j2/aTvp, 

and the requirement presented by equation (3) is met by causing j to vary as 

j = C(aTvp)t, (13) 

where C is a constant. a is a property of the state of the gas and therefore the quantity 
aTvp at a position x may be calculated as a function of time, as described in Section II. 
Thus when a value of C and a position Xo of the interaction are chosen, equation (13) 
determines j as a function of t. 

Condition (ii) 

The quantity [dv/dxlMHD is a function of B,j, v, and the thermodynamic state of 
the gas. In a given expansion, all the thermodynamic properties are related to v 
through the integration of equation (2a), and with equation (13) j is also. In a given 
expansion therefore, [dv/dxlMHD may be considered to be a function of Band v. 
In this case the left-hand side of equation (11) may be written 

(o~[ :: JMHJ v = const :: + (:v[ :: JMHJ B = const . 

Setting this expression equal to the right-hand side of (11) and rearranging gives 

dB ~~([~lHD -~[~JMHJ-(fv[~JMHJB=const 
dv (0 [dVJ ) 

oB dx MHD v=const 

(14) 

This equation may be integrated to give the variation of B with v if expressions for 
[da/dx]MHD and [dv/dxlMHD are available. Such expressions result from solving 
equations (12) with a thermodynamic model of the gas, as is illustrated in the numerical 
example in Section VI. Since integration of equation (14) gives B as a function of v, 
and gas of velocity v arrives at the entrance Xo to the interaction at a time 
t = xo/(v -a) given by the equation for the negative characteristics, B may be deter­
mined as a function of t. 

V. FINAL SHOCK SPEED 

When the time variation of j and B have been determined, the time variation of 
the gas properties at the exit of the interaction may be calculated. The pressure at the 
exit of the short interaction will be given by P+ [dP/dxlMHDAx, where P is the pressure 
at the entrance. A similar expression will yield the exit velocity. When these are plotted 
against one another, a curve such as 3' in Figure 2 results. This is the relation along 
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the line x = Xl in Figure 3 but, following the discussion in Section III, it applies 
throughout the expansion. 

When the interaction starts, the secondary shock Ss propagates forward to 
overtake the initial shock Si (see Fig. 1) and accelerate it. At the same time a wave 
propagates into the gas upstream of the contact surface. This may be either the 
expansion 3" or a shock wave, depending on the type of interaction. When the 
secondary shock overtakes and accelerates the initial shock, a reflection wave travels 
back towards the contact surface. Once this reflection meets the contact surface, in 
general a wave will be transmitted beyond into the region 3' and a wave will be 
reflected back towards the main shock front. The final state will be the result of a 
series of reflections back and forth between the main shock front and the contact 
surface, together with a series of waves, which may be either rarefactions or com­
pressions, transmitted into the expansion 3'. The length of the shock tube down­
stream from the interaction must be great enough for these reflections to become 
negligible. 

As the short interaction does not alter the properties of the gas passing through 
it by more than a small fraction, the shock and expansion waves caused by it will be 
weak. Any expansion waves transmitted into the region 3' upstream from the contact 
surface will expand it further but will not alter its simple wave character; any weak 
shocks will affect the simple wave character only slightly. It may be expected that the 
strongest of the transmitted shocks, if any, would be the first to appear. This was 
suggested in Section I as an alternative to 3", and a technique for its avoidance is 
described in Section VII. Thus it is assumed that the final pressure-velocity relation­
ship in the region 3' is unaffected by these transmitted waves, and is given by the 
curve 3' in Figure 2. 

After the final shock is established, gas pressure and velocity are continuous 
between region 3' and the main shock front, and their values immediately behind the 
shock are given by the intersection of curves 3' and S in Figure 2. The velocity of the 
shock is related to the conditions behind it in a way which depends on the thermo­
dynamic nature of the gas, and this relation is derived for a perfect gas in appropriate 
texts (see e.g. Courant and Friedrichs 1948). Another relation is suggested in the next 
section when the gas is singly ionizing. 

VI. CALCULATED EXAMPLE 

To illustrate the techniques described in the previous sections, we consider the 
following numerical example. Both the driver gas and the gas into which the shock 
propagates are argon, which is taken to be a monatomic singly ionizing gas whose 
ionization fraction is governed by the Saha equation. In Figure 1, region 1 is assumed 
to contain gas at a pressure of 105 N m - 2 (0'8 mmHg) and a temperature of 300 K. 
Region 4 contains gas at a pressure of 4·5 X 106 N m - 2 (,...., 45 atm) and a temper­
ature of 19400 K. 

Appendix II gives details of the calculation of the shock and expansion curves. 
These are plotted as the curves Sand 3 in Figure 5. The speed of the gas behind the 
shock is 8500 m s -1. On the assumption used in Appendix II that the density ratio 
across the shock is high, this value closely approximates the shock speed. 
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(a) Determination of j and B 

As gas properties are constant along straight lines radiating from the origin in 
Figure 1, the time scale of events in the interaction is proportional to the distance Xo. 

The quantitiesj and B are therefore determined as functions of the parameter 't" = t/xo, 
the time per unit distance of the interaction downstream from the diaphragm. 

The assumed interaction length Ax is I m. However, it is evident from equations 
(12b) and (12c) that if the x scale is changed by a factor F say, andj and B are each 
scaled by F-t, the results of the interaction will be unaffected. Thus the values of j 
and B presented in Figure 6 below are plotted asj(Ax)t and B(Ax)t. 

10 
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-3 
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6 p ~ 1·7x10-3 v2 

4~1 ______ ~ ______ ~ ________ L-____ ~ 

o ~ 3 4 

P (l05 Nm- 2 ) 

Fig. 5.-Shock and expansion 
curves for the conditions 
described in Section VI. The 
curves 3'(A), 3'(B), and 3'(C) 
are expansions created by 
passing expansion 3 through 
three different interactions. 

The required current density is given by equation (l3). Apart from the arbitrary 
constant C, the right-hand side may be calculated as a function of't". Three curves ofj 
versus 't", corresponding to three different values of C, are plotted in Figure 6. 

In the calculation of the conductivity u the method of Lin et al. (1955) has been 
used. The result is a slowly varying quantity of magnitude approximately 104 mho m -1. 

The effect of a Hall current has been neglected for simplicity. The magnitude of this 
effect may be assessed as follows. Since u is approximately related to the average 
collision frequency v between electrons and ions or atoms by (Sutton and Sherman 
1965, p. 154) u = n.e2/m. v (n., e, and m. being the electron number density, charge, 
and mass respectively) while the cyclotron frequency w of the electrons in a magnetic 
field is eB/m., the Hall parameter w/v is therefore given by Bu/en.. The number 
density n. may be calculated from the value of the ionization fraction IX.. In the present 
example the largest value taken by IX. is O· 7, giving rise to an effective conductivity 
reduction by a factor of 1 ·5. 

The time variation of the magnetic field B requires integration of equation (l4). 
Details of this integration for the present case are given in Appendix III. To each of 
the current density curves in Figure 6 there corresponds a family of magnetic field 
curves resulting from variation of the arbitrary initial value Bo. One magnetic field 
curve is plotted in each case, and the values of Bo are indicated on the graphs. 

In Appendix I it is shown that, with the electrode geometry described there, the 
magnetic Reynolds number Rm is given by equation (AI). If a duct width of I cm 
is chosen then, with a conductivity of 104 mho m - 1 and a contact surface velocity of 
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8500 m s -1, Rm = 0·53. A lower value than this would be desirable, but it may be 
noted that this is the worst case; following the contact surface, the velocity decreases 
and Rm with it. As is argued in Appendix I, the more important considerations are 
the transverse pressure differences and the end effects. The former differences may 
be ignored so long as the inequality CA2) is observed. At the contact surface the 
pressure is 1 ·6 x 105 N m - 2 and (A2) gives, with W = 1 cm, 

j2 ~ 1016 A2m-4. 

0-28 I- ·f A \t -----10-35 
Fig. 6.-Variations of j(/'l.x)t and 
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Following the contact surface j increases, but P increases also and this constraint 
becomes less severe. It is also shown in Appendix I that the end effects are unimportant 
provided the inequality (A4a) is observed. The gas at the contact surface has a 
density of 4·3 x 10-2 kgm-3, and (A4a) becomes approximately 

j2 ~2x1016A2m-4. 

Following the contact surface p increases faster than v decreases so that their product 
increases, and this constraint also becomes less severe. 
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On the above analysis the transverse pressure differences impose the lower limit 
on j. The current densities given in Figure 6 taking Lix = I m all fall below this limit. 
The worst case is that of Figure 6(c), where the current density at the contact surface 
givesj2 = 5·6x 1013 A2m- 4 , well within the limit of 1016 A2m- 4 • 

The allowable limit on B is given by equation (A4b). At the contact surface this 
becomes approximately B2 ~ 0·9Wb2m- 4 • Following the contact surface the 
product pv in the right-hand side of (A4b) increases, and this constraint becomes 
less severe. The values of B given in Figure 6 all fall within this limit at the 
contact surface. The worst case is that of Figure 6(a), where the field at the con­
tact surface gives B2 = 0·032 Wb2 m- 4 . 

(b) Final Shock Speeds 

When j and B are known as functions of time, the velocity and pressure of the 
gas at the exit may be calculated as functions of time and hence of one another. 
In Figure 5, curve 3'(A) is the pressure-velocity relation in the expansion created by 
the interaction whose j and B curves are given in Figure 6(a). Conditions behind the 
final shock are given by the intersection of curves 3'(A) and S. The gas behind the 
shock has a velocity of 8900 m s -1. The shock velocity is approximately equal to the 
gas velocity and has increased by 400 m s -1 from its initial value. 

In Figure 6(b) the current density is greater and the magnetic field is slightly 
weaker than before. The expansion at the exit of this interaction is plotted as curve 
3'(B) in Figure 5. This interaction increases the shock speed to 9200ms- 1 . 

Figure 6(c) shows an interaction in which both pressure and velocity have 
increased by about 25%. They are plotted as curve 3'( C) in Figure 5. The shock 
velocity has increased by 1300 m s -1. In this example, the assumption of a short 
interaction as described in Section III may be unreliable, since the changes in gas 
properties in the interaction are no longer small fractions of their values at the entrance. 

VII. OPTIMUM PROPORTIONS FOR CURRENT DENSITY AND MAGNETIC FIELD 

The arbitrary constants which occur in the calculations of j and B allow control 
of the relative magnitudes of these parameters. In this section we seek a criterion for 
the optimum proportion between them. 

In Figure 2 the gas conditions at the contact surface upstream from the inter­
action are given by the point C. The driver gas at the contact surface passes through 
the interaction along a line of slope [dv/dP]MHD to a point on the curve 3'. The lines 
CC', CC", and CC'" indicate possible paths. The interaction along CC' produces a gas 
at the exit of higher pressure and lower velocity than is compatible with conditions at 
the contact surface (which must lie on the shock curve). Consequently the expansion 
3' must expand further until the shock conditions are reached. The expansion 3" 
achieves this. The interaction along CC", however, produces a gas whose pressure is 
too low and velocity too high to be compatible with conditions at the contact surface. 
Consequently the expansion 3' must be re-compressed and a shock will propagate 
upstream with coordinates in which the contact surface is stationary. Schneiderman 
et al. (1967) have discussed the possibility of a backwards propagating shock down­
stream from the MAARC accelerator. Thus, whether the wave propagating into region 
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3' is an expansion like 3" in Figure 1 or a shock depends on whether the slope of the 
interaction path in Figure 2 is less than or greater than the slope of the shock curve. 

If the upstream propagating shock is to be avoided, the slope of the interaction 
must be less than that of the shock curve. This may be expressed as 

[dv/dP]MHD .:;; [dv/dPlsh , (15) 

where [dv/dPlsh is the slope of the shock curve. It may be expected that the most 
accurate construction of the new simple wave will result when the proportional 
increments in pressure and velocity are approximately equal, or 

[dv/dP]MHD ~ v/P. (16) 

The optimum interaction is that in which equation (16) holds as closely as is consistent 
with equation (15). 

For the thermodynamic model employed in Section VI, the shock curve is 
parabolic (Appendix I) and the condition (15) becomes 

[dv/dP]MHD .:;; v/2P. (17) 

Equation (16) will most closely be met if (17) is written as an equality. Using the 
relations presented in Appendix III for the crossed-field interaction, this gives the 
relation between the current density and magnetic field of 

j = B- 1{(2+y*)/(2+y*M 2 )}O"vB. (18) 

There are two freedoms in the determination of j and B, resulting from the two 
arbitrary constants. Application of equation (18) at the contact surface removes one 
of these freedoms. Exercise of the remaining freedom gives control of the strength of 
the interaction and hence of the magnitude of the shock acceleration. 

VIII. CONCLUSIONS 

A technique has been described for creating a simple wave expansion down­
stream of an MHD interaction in a shock tube and thereby accelerating the shock. 
The accuracy with which the downstream expansion resembles a simple wave depends 
on the accuracy with which the specified current density and magnetic field can be 
reproduced. In many cases these quantities will be produced by discharging capacitor 
banks and will meet their specifications only approximately over a limited period. 
The reconstructed expansion will be an imperfect replica of the ideal and the final 
shock velocity will not be exactly constant. Other effects, such as transverse pressure 
differences, end effects, viscosity, and radiation will introduce further departures from 
ideal behaviour. 

The assumption has been made in this paper that the interaction is short enough 
to be treated as a linear process. Strict compliance with this restriction may be 
relaxed somewhat as the inaccuracy thereby introduced may be less than that due to 
the effects suggested above. The final shock velocity will be increased but will become 
less constant. The limit at which this defect becomes unacceptable will be determined 
by trial, and the application to which the shock-induced flow is to be'put, but one may 
perhaps hope for a velocity increase of up to 100%. 
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If the velocity of the final shock must be maintained within closer limits, a 
number of short interactions could be used in series. This may be preferable to the 
alternative of a single long interaction, for then the differential equations which 
describe the flow through the interaction would require integration. In addition it may 
no longer be valid to regard the integration as a quasi-steady process and the im­
plications of this would require examination. 
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ApPENDIX I 

Electrode Geometry 

Figure 7 shows an electrode geometry in which the return current flows in the 
negative y direction down the outside of the duct wall. This arrangement (Shercliff 
1965) confines the magnetic field Bi induced by the current to the x direction only, 
except at the ends. In the body of the field then the Maxwell equation curl B = flj 
becomes 8Bi /8z = flj. The induced field Bi is zero at the centre of the duct and 
reaches a maximum value of -!fljW at the edge, W being the duct width. If the elec­
trodes are short-circuited, the current density is j = (JvB and the ratio of the maximum 
value of the induced field to the applied field is given by 

Rm = -!fl(JV W, (AI) 

the magnetic Reynolds number based on the half-width of the duct. It is necessary 
to specify the electrode geometry in this way since in many realistic cases the value of 
Rm based on the interaction length is not less than unity. 

The induced field has two effects which may be deleterious: the longitudinal 
component inside the interaction may give rise to large pressure differences across the 
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duct, and the transverse component at the entrance to the interaction may cause 
current eddies in the gas as it enters, possibly causing a shock to be reflected upstream 
from the entrance. Provided these two effects are not serious, the value of Rm is 
relatively unimportant. Criteria for assessing these effects are now developed. 

The longitudinal induced field gives rise to a transverse pressure gradient 
oP/oz = jB;. If j is uniform, B; = j1.jz and the press~re difference between the axis 
and the walls may be found by integration to be lj1.j2 W 2. So long as this is a small 
fraction of the pressure of the gas entering the interaction, i.e. 

j2 ~ 8P/j1.W2, 

the gas may be assumed unvarying in the transverse direction. 

Current return 

Fig. 7.-Electrode geometry 
which maintains the induced 
field B. axial within the 
interaction. B is the applied 
field. Currents into and out of 
the paper are indicated by 
crosses and dots respectively. 

B 

., I" 

L 

Current density 
in fluid 

(A2) 

The end effects are assessed in the following manner. Kantrowitz (1957) has 
described the entry of a shock wave into the field created by a solenoid wound around 
the duct. Currents are induced in the supersonic flow behind the shock, which there­
fore reduces in velocity. If unity Mach number is reached, the flow chokes and an 
upstream facing shock is formed. Although the geometry proposed here is different 
from that of Kantrowitz, the important requirement is evidently that the flow must 
not approach unity Mach number. Johnson (1967) has found an expression for the 
parameter N = (JB2L/pv which causes a perfect gas flow to choke at the end of an 
interaction of length L. Applying his results to the case where the electrodes in 
Figure 7 are short-circuited, we find 

N = 1 - M; + y + Iln( (y + l)M; ) 
2yM; 4y 2+(y-l)M;' 

where y is the ratio of the specific heats at constant pressure and constant density and 
Me is the Mach number of the flow at the entrance. For a given y, as Me increases 
without bound N approaches a limiting value which is almost reached with Me = 3. 
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For y = 5/3, this limit is 0·26 and rises without bound as y decreases towards unity. 
The ionized gases, which are the usual fluids in the present application, behave in 
some respects like perfect gases with low values of y (Cashman 1971) and hence the 
value of N needed to choke the flow is greater than that for a perfect gas. Thus, if it 
is ensured that a perfect gas flow will not choke, it will be ensured a fortiori that 
the ionized flow will not choke. 

It is assumed here that the eddy currents and their effects on the flow at the 
entrance to the interaction will be similar in magnitude to those which would occur 
between the short-circuited electrodes of Johnson's (1967) analysis. The actual eddy 
currents have a return path through the gas of higher resistance and so should be 
smaller than those between the shorted electrodes. Thus, avoidance of undesired end 
effects with shorted electrodes constitutes a more severe precaution than that required 
by the real situation. The magnetic field giving rise to eddy currents is due to the 
applied field B and the transverse component of the induced field B j , both extending a 
distance comparable with the duct width W beyond the interaction. B j has a trans­
verse component whose order of magnitude is taken to be that of the axial field inside 
the duct, namely 1J1jW. In this case the effective value of N due to these end fields 
will be of order 

N ~ aW(B+1J1jW)2/pv . (A3) 

In a perfect gas flow with y = 5/3 and Me ;:;: 3, the value N = 0·26 would cause 
choking. Thus N must be much less than 0·26 if the flow is to be essentially un­
perturbed by the end effects. For this to be so equation (A3) gives approximately 

j2 ~ pV/J12aW3 and B2 ~ pv/4aW. (A4a, b) 

It is apparent from equations (AI) to (A4) that the limitations imposed by the 
need for small Rm , small transverse pressure differences, and small end effects are all 
made less severe by reducing the channel width. The limitations set by the second and 
third factors may be further relieved by reducing j and B and increasing the channel 
length. It may be noted that increasing the length ~x does not violate the assumption 
of a short interaction provided the conditions (1) and (2) given in Section III(b) are 
satisfied. 

ApPENDIX II 

Shock and Expansion Curves 

Under the conditions described in Section VI the gases in the expansion and 
behind the shock are both ionized. The thermodynamic behaviour of singly ionized 
argon is described by the equation of state 

P = 207·7 p(l + IX)T 
and the Saha equation 

1X2/(1-1X2) = 0·4P -1 T 5 / 2 exp( -18·2 x 104 T- 1), 

where IX is the ratio of the number of ions to the number of ions and atoms. All 
quantities are in SI units. 
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Shock Curve 

Conservation of mass, momentum, and energy across the shock gives the 
equations 

PI Vs = pzCVs -V2), 

Pl + Pl v; = P2 + P2(VS -V2)2, 

hl +-!-V; = h2 +-t(Vs -V2)2 , 

(ASa) 

(ASb) 

(ASc) 

where Vs is the shock speed and the subscripts 1 and 2 refer to regions 1 and 2 in 
Figure 1. These equations have been solved numerically with the above thermo­
dynamic relations for a range of cases (Lin et af. 19S2) and it is found that the density 
ratio across ionizing shocks is much greater than that across non-ionizing shocks, 
where it has an upper limit of four. Assuming therefore P2 ~ Pl' equations (ASa) 
and (ASb) yield the strong shock relation 

P2 = PIV~. 

Under the conditions described for region 1, Pl = 1·7 x 10- 3 kg m - 3, and this 
relation is plotted as the shock curve S in Figure S. 

Expansion Curve 

The isentropic relation between T and rL is given by (Cashman 1971) 

T 1+rL 

1S·2x 104 Co-frL -2In{rL/(1-rL)}' 

where Co is a constant. With the equation of state and the Saha equation, isentropic 
relations between all the thermodynamic variables may be determined. Then equation 
(2a) may be integrated numerically, using the boundary conditions of region 4 in 
Figure 1, to give the expansion curve 3 in Figure S. 

ApPENDIX III 

Integration of Equation (14) 

The integration of equation (14) requires evaluation of the terms [dv/dx]MHo and 
[da/dx]MHo. An expression for the first term may be found by solving equation (12) 
for singly ionizing argon to give (Cashman 1971) 

where 

and 

[~~lHO j(vB-ej/a) 
M2_1 Py* 

y* = a2 p/P 

e= 

S4>2+rL(1-rL)(f4>+1Y 

34>2+rL(1-rL){(t4>+ 1)(f4> + 1)-4>} 

24>2 +rL(1 -rL )(f4> + 1)4> 

34>2+rL(1-rL){(t4>+ 1)(f4> + 1)-4>}' 

in which 4> = T/1S·2x 104 • 

(A6) 

(A7a) 

(A7b) 
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An expression for [da/dxlMHo may be found as follows. Differentiating equation 
(A 7a) and rearranging gives 

[ d a] 1 (1 [dPJ 1 [dP] 1 [d1'*] ) 
dx MHO = za P dx MHO - P dx MHD + 1'* dx MHO . 

(A8) 

From equations (12a) and (12b), [dp/dxlMHD and [dP/dxlMHD may be expressed in 
terms of [dv/dxlMHD. Examination of the expression (A7b) for 1'* shows it to take 
values between 5/3 and 1 for the whole range of T and ex. Thus the approximation is 
used here that 1'* is constant and [d1'*/dxlMHo is set equal to zero. With these sub­
stitutions equation (A8) becomes 

[da] 1 ( * 2 l[dV] .iB) - = za (1 -1' M )- - + - , 
dx MHO V dx MHO P 

(A9) 

in which [dv/dxlMHD is given by equation (A6). 
The term (o[dv/dxlMH%v)B=const in the numerator on the right-hand side of 

equation (14) cannot easily be expressed in closed form, as most of the parameters of 
which [dv/dxlMHo is a function are related to v. However, it may be readily evaluated 
numerically for the expansion under consideration. The denominator term may be 
found from equation (A6) to be given by 

(O~[:~ ]MHJv= const 

.iv 
(M 2 -1)P1'* . 

Thus the right-hand side of equation (14) may be integrated numerically to give 
the variation of B with v and hence with 'L This integration introduces an arbitrary 
initial value Bo. 




