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Abstract 

The effect of rotation on nonlinear thermal convection is investigated, in 
particular at high Rayleigh number. The Boussinesq approximation is adopted in the 
basic equations and the free boundary conditions are applied. The results derived from 
asymptotic and perturbation methods are found to be in very good agreement with 
those obtained by numerical integration. 

I. INTRODUCTION 

Although the problem of thermal convection in a rotating fluid has not been 
as thoroughly investigated as the non-rotating case, the corresponding linear stability 
theory has been considered by a number of authors and an outline of the results is 
given by Chandrasekhar (1961). Finite amplitude convection in a rotating medium 
has been the subject of detailed experiments by Rossby (1969), while theoretical 
investigations have been undertaken by Veronis (1959, 1966, 1968) and Somerville 
(1971). 

An important physical quantity for any comparison between theoretical and 
experimental results is the Nusselt number, which gives a measure of the total con­
vective and conductive heat flux. In astrophysical applications the Rayleigh number 
is estimated to be large (Spiegel 1971), and the main aim of the present investigation 
has been to derive expressions for the Nusse1t number as a function of the Rayleigh 
and Taylor numbers by asymptotic and perturbation methods. The results have 
then been compared with those derived by numerical integration and very good 
agreement has been found for high values of the Rayleigh number. 

In this paper we consider only rolls and convective cells with square or rec­
tangular planforms. The Boussinesq approximation is adopted and the analysis is 
carried out for the case of free boundaries, which is the most appropriate condition 
for astrophysical applications. 

II. BASIC EQUATIONS 

The basic equations of the problem are derived from a variational principle 
first introduced by Prigogine and Glansdorff (1964, 1965). This principle states that 
the actual flow evolves in such a way as to keep the generalized entropy production 
a minimum with respect to arbitrary variations from it. A modified form, suitable 
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for finding stationary solutions for an incompressible fluid, can be written as (Unno 
1969) 

b¢ = fff dxdydz{bu.(pu.Vu+Vp-pF-fl V2U) 

+ T-1bT(pCv u. VT _Ky2T)} , 

where the body force F is given by 

F= -V¢-nx(nxr)-2(nxu)-nxr 

(1) 

(2) 

and fl, K, and Cv denote respectively the viscosity, conductivity, and specific heat at 
constant volume of the fluid. 

We consider here the case of steady rotation about the z axis, i.e. 

and follow the usual approach of neglecting density variations except in the buoyancy 
terms. As we have therefore neglected the density variation coupled with the centrifugal 
acceleration, the following analysis is only valid provided that the Froude number 

is small, where L is a characteristic length scale of the fluid (e.g. the thickness of the 
convective layer; Greenspan 1968) and g is the acceleration due to gravity. 

It is convenient to adopt the following expressions for the velocity u, temperature 
T, and density p (Chandrasekhar 1961; Roberts 1966) 

(DW 8j Z 8j DW 8j Z 8j ) 
u=u(U,V,w) = k28x+k2 8Y'k28Y-k2 8x,Wj, (3) 

T= To+Fj, (4) 

p = Po+Pj, (5) 

where W, Z, To, F, and P, functions of the vertical coordinate z, are to be determined. 
Here D denotes differentiation with respect to z and j = j(x,y) satisfies the 
differential equation 

(6) 

k being the horizontal wave number denoting the size of the convective cells. 
Equation (6) admits a number of solutions corresponding to various planforms of the 
convective cells (Roberts 1966) and, further, 

, = ov/ox -ou/oy = Zj 

is the z component of the vorticity. 
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We use here the notation 

<m) == A II (m) dxdy (7) 

to denote the horizontal average of a quantity m, the constant A being determined by 
the normalizing condition 

(8) 

It can be shown that the average C = 1</3 ) = ° for rolls or square and rectangular 
convective cells, whereas for hexagonal cells C = Ij,J6. In this paper we shall only 
consider the case where C = 0. 

If we intoduce the notation 
6 

M= ~Mi, (9) 
i=1 

where 
Ml = Po u. Vu, M2 = Vp, M3 = pV<fy, 

} (10) 
M4 = pon x(n xr), M 5 = 2po(nxu), M6 = -Jl V2 u, 

and use expressions (3) and (4) for the velocity and temperature, it is easily seen that 
the Euler-Lagrange equations corresponding to the Prigogine and Glansdorff (1964, 
1965) variational principle (1) are: 

Making use of the average 

and introducing the notation 

<PoCvu. VT-KV 2T) = 0, 

</(poCvu. VT-KV2T) = 0, 

O(Mi) = _k- 2 D<of Mi + of Mi) + <IMi) ax x dy Y z , 

it can be shown that 

O(Ml) = 0, 

O(M4) = 0, 

O(M2) = 0, 

O(M5) = - 2po Qo DZ, 

O(M3) = gk2p, } 

O(M6) = Jl(D2 - e)2 w. 

Substitution of all these expressions in equation (13) then gives 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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Proceeding in a similar way with equations (11), (12), and (14) we also obtain 

Po Cy D(FW) = KD2TO' 

K (D2 - k2)F = Po Cy WDTo , 

f.1(D2-k2)Z = -2PoQoDW. 

For an incompressible fluid the equation of state is 

P = Po + rxPo(To - T) 

or, on introducing equations (4) and (5), 

Pf = - rxpo Ff· 

After multiplying throughout by f and taking the horizontal average, 

P = -rxPoF, 

and substitution of this value of P in equation (18) then gives 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

The dimensionless forms of equations (19), (20), (21), and (25) are obtained by 
making the substitutions 

D ~ Djd, 

W ~ (Kjd)W, 

k 2 ~ a2jd2, 

Z ~ (Kjd2)rt Z, 

To ~ To (AT) , 

F~ F(AT) , 

where the thermal diffusivity K and Taylor number r are given by 

K = Kjpo Cy and 

} (26) 

(27) 

a is a dimensionless wave number, and AT is the temperature difference across the 
layer of thickness d. On introducing the Rayleigh number 

(28) 

where v = f.1j Po is the kinematic viscosity, the basic equations of the problem can be 
written 

(D2 - a2)F = WDTo, 

D2TO = D(FW) , 

(D2_a2)Z = -DW. 

(29) 

(30) 

(31) 

(32) 
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In the case of free boundaries, which we consider here, the basic equations have to be 
solved subject to the boundary conditions 

at 

To = 0 at z = 0 and 

z=O and z=l, 

To = -1 at z = 1. 

(33) 

(34) 

In addition the following boundary conditions on the normal component of the 
vorticity have to be satisfied (Chandrasekhar 1961) 

DZ=O at z = 0 and z = 1. (35) 

Equations (29)-{32) have been solved, subject to the conditions (33)-{35), 
for a number of values of the Rayleigh and Taylor numbers using asymptotic, per­
turbation, and numerical methods. An outline of these methods together with the 
results obtained are given in the following sections. 

III. ASYMPTOTIC METHOD 

Following the method outlined by Van der Borght et al. (1972) it can be shown 
that in the main body of the fluid layer, and for large Rayleigh number with a Taylor 
number of order unity, the differential equation that should be satisfied is 

and, introducing the variables '" and X defined by 

Z = (RaN}ix, 

this equation can be written as 

In addition, using the same variables, equation (32) takes the form 

Adopting 
00 

'" = ~ Ak sin(knz) , 
k=l 

00 

X = ~ Bkcos(knz) , 
k=l 

and noting that these expressions satisfy the free boundary conditions 

at z = 0 and 1, 

we obtain on substituting the forms (40) into equation (39) 

k = 1,2,3 .... 

(36) 

(37a, b) 

(38) 

(39) 

(40a, b) 

(41) 

(42) 
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Equation (38) can also be written as 

(43) 

and multiplying this equation b~ 2 sin(knz), integrating over z from 0 to 1, making 
use of equations (42), and retaining only the first two terms in the expansion for 
'" we finally get 

k = 1, (44a) 

k = 3, (44b) 

These equations can now be solved explicitly for A1 and A3. 
If in the boundary layer 

(45) 

then it follows from equation (40a) that 

(46) 

and substitution of the values of A1 and A3 obtained from equations (44) gives 

(47) 

As shown by Howard (1965), the Nusselt number is given by 

(48) 

where 
(49) 

Therefore, in this case 

N~ 

(50) 

A comparison has been made between the values of the Nusselt number obtained 
from the asymptotic formula (50) and those obtained by direct numerical integration. 
It can be seen from the results presented in Figure 2 below that the agreement is 
excellent for large values of the Rayleigh number, as long as the Taylor number 
is not too large. 
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IV. PERTURBATION METHOD 

The asymptotic values of N in Section III were obtained under the assumption 
that the Taylor number was of order unity. We now consider the nonlinear case 
where both Rand 't" are large. 

The linear theory predicts that the value of the critical Rayleigh number for the 
fundamental mode solution will be given by 

(51) 

and for large 't" this reduces to 
(52) 

Elimination of To and F from the basic equations (29)-(32) leads to the following 
differential equation in Wand Z 

Now let 
R = A't" (54) 

and assume that 't" is large, in which case equation (53) reduces to 

(55) 

where y = Aa2 N. 
If we introduce the expansions 

Z = L Ckcos(knz), W = L wksin(knz) (56a, b) 
k=l,3 k=l,3 

into equation (32), we find 

k = 1,3. (57) 

After multiplication of equation (55) by sin(knz) and subsequent integration with 
respect to z from 0 to 1, making use of the result (57), it can be shown that W3/W1 

satisfies the second-degree equation 

and W1 is then given by 

(59) 
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On introducing the notation 
¢ = FIN, (60) 

it follows from equations (30) and (31) that 

(61) 

and, adopting an expansion for ¢ such that 

¢ = ¢i sin(nz) + ¢3 sin(3nz) (62) 

and then proceeding as before, the following expressions are obtained for ¢31¢1 and 
¢i in terms of w31wi and Wi 

¢3 _ Wi(1- 4w3/Wi) + (W3/wi){4(n2 + a2)+wi(3 -2W3/Wi)} 
¢i - 4(9n2+a2)+2wi+wi(W3/W i) 

(63) 

and 

(64) 

The Nusselt number is then given by 

(65) 

A comparison of the values of N obtained from the formula (65), when a = n, 
with those obtained by numerical methods is included in Figure 2(a) and it can again 
be seen that the agreement is excellent for large values of Rand T. In fact, at large 
Rayleigh number the analytical results obtained from Sections III and IV, when used 
in conjunction, give quite good results for the Nusselt number over the whole range 
of values of the Taylor number that support convection. 

V. NUMERICAL METHOD AND RESULTS 

Numerical procedures described by Van der Borght et al. (1972) have been 
used here to obtain solutions of the equations which now incorporate the effect of 
rotation on thermal convection. It is convenient to first eliminate the vertical com­
ponent of the vorticity Z (z) from equation (29), using (32), and then introduce the 
following Fourier representations of the variables into the resulting equation and 
also into equations (30) and (31): 

M 

W = ~ Wn sin{(2n-l)nz}, (66a) 
n=i 

M 

F = ~ fnsin{(2n-l)nz}, (66b) 
n=i 

M 

To = ~ tn sin(2nnz) - z . (66c) 
n=i 
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Expansions including only sine terms are appropriate when considering the free 
boundary conditions and the symmetry of the solutions about z = t requires only 
the even or odd modes to be retained. The unknown coefficients in the expansions 
(66) are determined, using the generalized Newton-Raphson method, from the 
nonlinear system of equations 

M 

{(2n-l)z+ocZ}!n = Wn -n ~ Ptp{wn+p + Y(2n-1-2p)WtIZn-l-Zpl+t}, 
p=l 

M 

ntn = in ~ wp{Jn+p +Y(2p-1-2n)!tIZn-Zp+ll+t}, 
p=l 

where 
oc = a/n, 

and 
Y(x)=-l for x < 0, 

° x = 0, 

x> 0. 

(67) 

(68) 

(69) 

Solutions have been obtained for values of R up to 107 , with M ranging between 
30 at R = 104 and 90 at R = 107 to ensure the constancy of the Nusselt number N, 
over a wide range of values of a and r such that 

(70) 

Following the substitutions (26), the vertical component, of the vorticity is now 
related to Z (z) by 

(71) 
where 

M ( (2n-1)W ) 
Z(z) = ~ { Z n Z} cos{(2n -1)nz} 

n = 1 n (2n -1) + oc 
(72) 

in the case of free boundaries. 
Figures 1(a)-1(d), which are of particular physical interest, illustrate the 

dependence of the Nusselt number on the wave number for increasing values of the 
Taylor number when the Rayleigh number varies from R = 104 to 107 • The inhibiting 
effect of rotation on the convective processes is clearly illustrated, with the maximum 
value of N now occurring at a higher wave number or smaller cell size. It may also 
be concluded that, at high Rayleigh number, values of the Taylor number up to 
r ~ Rt have little effect on the maximum heat transfer but this maximum is shifted 
to higher wave number. On comparing Figure led), for example, with the correspond­
ing figure in the magnetic case (Van der Borght et al. 1972, Fig. l(c», it is seen that 
qualitatively Q and r act in the same way. 
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Fig. I.-Numerical results showing the dependence of the Nusselt number Non a/n for the indicated 
values of the Taylor number T when the Rayleigh number R is equal to (a) 104 , (b) 105, (c) 106, 

and (d) 107 • 
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Fig. 3 (a). R = 107, Y = 0·80 (a ~ n). 

Figs. 3(a)-3(d).-Numerical results for W, F, To, and Z across the fluid layer, 0 <; z <; 1, when 
R = 107 for the indicated values of 'Z". The solutions can be broadly grouped into four types: (a) y, 
as defined by equation (70), = 0·80 (a ~ n), (b) a = n, (c) a = 8n, (d) y = 0'85 (a:> n). 
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Fig. 3(b). R = 107 , a = n. 
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Fig. 3(c). R = 107 , a = 8n. 
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Fig.3(d). R = 107 , Y = 0·85 (a;> n). 
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Further quantitative evidence of the inhibiting effect of rotation, obtained from 
the numerical solutions, is given in Figure 2(a), which shows the log N versus log r 
depwdence for a = n and four values of R. Also included in this diagram are the 
asymptotic and perturbation results obtained from the solutions in Sections III and 
IV. At R = 107 it is seen that the agreement is very good and, in the case of the 
solutions from equation (50) in Section III, is over a surprisingly large range of r. 
Further comparisons between the asymptotic and numerical solutions are given in 
Figures 2(b)-2(d), where agreement with varying r is again very good. 

The characteristics of the detailed solutions obtained for W, F, To, and Z, 
with 0 ~ z ~ 1, are represented in Figures 3(a)-3(d) for R = 107 , varying values of 
r, and a sp~cified value of a or y. At high Rayleigh number and on the basis of wave­
number dep~ndence, the solutions obtained can be broadly grouped into four types, 
as illustrated for R = 107 : (i) In Figure 3(a), where y = 0·80 and a ~ n, a good 
representation of the solution is given by retaining only two terms in the expansions 
(66). (ii) The wide isothermal region in Figure 3(b), i.e. constant To, together with 
small thermal boundary layers characterize the a = n type solutions. (iii) When 
a = 8n the greatest changes in To are still in the boundary layers, but now a small 
mean temperature gradient exists over the central region and, in addition, the W 
solutions in Figure 3(c) no longer have the sine type profile. (iv) For y = 0·85 and 
a ;p n, the magnitude of the vertical velocity is considerably reduced and the W 
solution has a flat profile corresponding to a near constant convective vertical velocity 
over most of the layer (Fig. 3(d)), a property observed in the magnetic case; moreover, 
the To curve closely approximates the conductive profile and Z is zero over most 
of the layer except for sharp changes near the free boundaries. Another group of 
solutions, which arises for y ~ 1, a ;p n, and R large is well represented also by 
only two terms in the expansions (66) and is similar to type (i) above. 

VI. CONCLUSIONS 

It can be seen from Figure 1 that the introduction of rotation has a marked 
inhibiting effect on thermal convection and that maximum heat transfer occurs at a 
smaller cell size than before. There is no indication in this work of the non­
monotonicity of the Nusselt number as observed by Rossby (1969) at low values of 
the Rayleigh number. Somerville (1971) also could not detect this effect in his theo­
retical results unless he used the observed horizontal wave number. This discrepancy 
between the observed and theoretical values for the critical wave numbers has still 
to be completely explained. 

Veronis (1968) has indicated that the effects of rotation, in fluids with large 
Prandtl number, can be directly observed by noting the changes in the general features 
of the temperature field as r is increased. If we take f = ..}2 cos(ax), corresponding 
to rolls in the y direction, then we have a qualitative comparison with the two­
dimensional studies of Veronis (1968) for free boundaries and Somerville (1971) for 
rigid boundaries. Without rotation, the temperature field for rolls at low Rayleigh 
number exhibits the same anvil-like structure observed by Veronis, although not as 
pronounced, resulting from warm fluid being convected upwards and spreading 
horizontally at the top of the layer and cold descending fluid also spreading horizont­
ally at the bottom of the layer. With increasing r the isotherm diagrams show that 
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this spreading is gradually contained. Figure 4 gives the vertical isotherm diagram 
for rolls for the stated values of the parameters. 

Overall the present work has shown that excellent agreement exists between 
the values of the Nusselt number as predicted by the asymptotic or perturbation 
theories and the computed values. As indicated in the Introduction, the Rayleigh 
number for astrophysical applications will be large and it is unlikely that the 
Boussinesq approximation will hold in these problems. Alternatively, the full com­
pressibility equations (Van der Borght 1971) would have to be solved and this is 
likely to be a very difficult task. Asymptotic methods will again prove very useful 
and the present work shows that the predictions of such a theory are very good 
indeed and can be accepted with confidence. 
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