# T-MATRIX PERTURBATION THEORY IN THE THREE-NUCLEON BOUND STATE 

By I. R. Afnan* and J. M. Read*<br>[Manuscript received 11 December 1972]


#### Abstract

A $T$-matrix perturbation method has been used to calculate three-body binding energies for two local potentials. The results obtained indicate that the method provides one of the most attractive ways of solving by computation the three-body bound state problem for realistic interactions.


## I. Introduction

One of the many successes of the Faddeev (1961) equations has been a renewal of interest in the three-nucleon bound state as a means of investigating the off-shell behaviour of the two-body $T$-matrix (Afnan and Serduke 1973; Hadjimichael and Jackson 1972). Although a large number of calculations for the bound three-nucleon system have been made with separable potentials (see the review by Mitra 1969), the ultimate aim of these investigations has always been to calculate the binding energy and wavefunction of the three nucleons with realistic two-body interaction potentials such as the Reid (1968) potential. There have been a number of recent advances in this direction with the work of Malfliet and Tjon (1970) and Harper et al. (1972) on the direct solution of the two-dimensional Faddeev equations and that of Levinger's group (Harms 1970; Bhatt et al. 1972) who have used the unitary pole approximation. However, the binding energies obtained from these different methods and from the variational calculations of Jackson et al. (1971) and Hennell and Delves (1972), who used the Reid potential, do not all agree.

In the present paper, we describe the application of a $T$-matrix perturbation theory to the calculation of the binding energy of the three-nucleon system (Fuda 1968; Lu 1970; Kowalski and Pieper 1972; Sloan 1972). Our starting point is the solution of the Faddeev equations for a unitary pole expansion (hereinafter designated UPE) potential (Harms 1970), which is separable. The difference between the actual two-body $T$-matrix and that of the UPE potential is treated as a perturbation. The first few terms of the UPE are sufficient to yield a good approximation to the threebody binding energy and wavefunction. Any attempt to improve the results by increasing the number of terms involves an enormous increase in the necessary computer time and storage. This is apparent for central potentials from the results of Harms (1970) and the situation is even more pronounced in the presence of a tensor force (Afnan and Read 1972). The present perturbation approach appears capable of yielding very reliable results and has the advantage that it is much faster than methods which involve direct inversion of the Faddeev equations.

[^0]
## II. Two-body $T$-matrix in UPE

In the present section we consider the UPE for a central two-body potential, summarizing the results of Harms (1970), and demonstrate that the $T$-matrix of the original local potential can be reproduced if a sufficient number of terms are taken in the expansion. Our aim is to use the UPE to form a separable potential $V^{*}$ (hereinafter, asterisks are used to denote quantities obtained from the UPE) that gives the same $T$-matrix as does the original potential $V$ in the neighbourhood of the bound state pole. To accomplish this we start with the homogeneous Lippmann-Schwinger equation for the wavefunction

$$
\begin{equation*}
|\psi\rangle=-G_{0}\left(-E_{\mathrm{D}}\right) V|\psi\rangle \tag{1}
\end{equation*}
$$

where $G_{0}(E)=\left(H_{0}-E\right)^{-1}$ and $E_{\mathrm{D}}$ is the bound state energy. We assume that equation (1) is partial wave expanded and that the channel under consideration has a bound state energy $E_{\mathrm{D}}$. (In the ${ }^{1} \mathrm{~S}_{0}$ channel we choose $E_{\mathrm{D}}=0$, which is justified by the proximity to zero of the energy of the antibound state.) Since $G_{0}\left(-E_{\mathrm{D}}\right)$ is positive definite, we may define $G_{0}^{\frac{1}{2}}=\left(H_{0}+E_{\mathrm{D}}\right)^{-\frac{1}{2}}$ in order to rewrite the wavefunction (1) in the form

$$
\begin{equation*}
|\phi\rangle=-G_{0}^{\frac{1}{2}} V G_{0}^{\frac{1}{2}}|\phi\rangle, \quad \text { with } \quad|\psi\rangle=G_{0}^{\frac{1}{2}}|\phi\rangle . \tag{2,3}
\end{equation*}
$$

The advantage of equation (2) is that it represents a homogeneous integral equation with a symmetric kernel $K=G_{0}^{\frac{1}{2}} V G_{0}^{\frac{1}{2}}$ and so may be transformed to the eigenvalue problem

$$
\begin{equation*}
\left|\phi_{n}\right\rangle=-\lambda_{n} G_{0}^{\frac{1}{2}} V G_{0}^{\frac{1}{2}}\left|\phi_{n}\right\rangle=-\lambda_{n} K\left|\phi_{n}\right\rangle . \tag{4}
\end{equation*}
$$

Since $K$ is Hermitian, the states $\left|\phi_{n}\right\rangle$ form a complete set of orthonormal functions, in terms of which the kernel may be expanded as

$$
\begin{equation*}
K=\sum_{n, m=1}^{\infty}\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right| K\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right|=-\sum_{n=1}^{\infty}\left|\phi_{n}\right\rangle \lambda_{n}^{-1}\left\langle\phi_{n}\right| . \tag{5}
\end{equation*}
$$

By introducing a set of states $\left|\chi_{n}\right\rangle$ defined by

$$
\begin{equation*}
\left|\phi_{n}\right\rangle=G_{0}^{\frac{1}{2}}\left|\chi_{n}\right\rangle \tag{6}
\end{equation*}
$$

that is, the $\left|\chi_{n}\right\rangle$ satisfy the conditions

$$
\begin{equation*}
\left|\chi_{n}\right\rangle=-\lambda_{n} V G_{0}\left(-E_{\mathrm{D}}\right)\left|\chi_{n}\right\rangle \tag{7}
\end{equation*}
$$

we obtain from equation (5) that

$$
\begin{equation*}
V=-\sum_{n=1}^{\infty}\left|\chi_{n}\right\rangle \lambda_{n}^{-1}\left\langle\chi_{n}\right| \tag{8}
\end{equation*}
$$

The UPE potential $V^{*}$ is then formed by truncating the summation (8) after a finite number $N$ of terms

$$
\begin{equation*}
V^{*}=-\sum_{n=1}^{N}\left|\chi_{n}\right\rangle \lambda_{n}^{-1}\left\langle\chi_{n}\right| \tag{9}
\end{equation*}
$$

and the UPE $T$-matrix may be written as

$$
\begin{equation*}
T^{*}=\sum_{n, m=1}^{N}\left|\chi_{n}\right\rangle\left[M^{-1}(E)\right]_{n m}\left\langle\chi_{m}\right| \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{n m}(E)=-\lambda_{n} \delta_{n m}+\left\langle\chi_{n}\right| G_{0}(E)\left|\chi_{m}\right\rangle \tag{11}
\end{equation*}
$$

This truncation turns out to yield a better approximation for the $T$-matrix than for the potential, the explanation being that the bound state pole dominates the behaviour of the $T$-matrix on the negative energy axis and the series (9) reproduces the two-body bound state energy and wavefunction exactly for any $N$.

Table 1
exact and UPE s-State phase shifts for potentials (12) and (13)
Columns listing UPE phase shifts are labelled by the number of attractive (A) and repulsive (R) terms retained in the expansion (9) (for example, $4 A+2 R$ implies that the first four attractive and the first two repulsive terms have been used)

| $\begin{gathered} E_{\mathrm{cm}} \\ (\mathrm{MeV}) \end{gathered}$ | Phase shift for potential (12) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Exact | 1A | 2 A | 4A | 6A | 10A | 12A | 20A | 30A |
| 12 | $1 \cdot 5053$ | $1 \cdot 3374$ | $1 \cdot 3882$ | 1.4659 | 1.4913 | $1 \cdot 5015$ | $1 \cdot 5023$ | $1 \cdot 5034$ | $1 \cdot 5053$ |
| 24 | $1 \cdot 2818$ | 1.0263 | 1.1377 | $1 \cdot 2560$ | $1 \cdot 2712$ | $1 \cdot 2721$ | $1 \cdot 2723$ | $1 \cdot 2793$ | $1 \cdot 2818$ |
| 48 | $1 \cdot 0803$ | $0 \cdot 7283$ | 0.9422 | $1 \cdot 0475$ | 1.0496 | 1.0656 | $1 \cdot 0688$ | $1 \cdot 0767$ | $1 \cdot 0803$ |
| 72 | 0.9725 | $0 \cdot 5695$ | $0 \cdot 8493$ | 0.9163 | 0.9366 | 0.9616 | $0 \cdot 0629$ | $0 \cdot 9688$ | 0.9725 |
| 104 | $0 \cdot 8810$ | 0.4407 | 0.7660 | $0 \cdot 8053$ | $0 \cdot 8513$ | $0 \cdot 8636$ | 0.8639 | $0 \cdot 8771$ | 0.8810 |
| 152 | 0.7928 | $0 \cdot 3262$ | $0 \cdot 6718$ | 0.7134 | 0.7614 | $0 \cdot 7688$ | 0.7734 | 0.7872 | 0.7928 |
| 176 | $0 \cdot 7604$ | $0 \cdot 2875$ | $0 \cdot 6325$ | $0 \cdot 6840$ | 0.7231 | $0 \cdot 7377$ | $0 \cdot 7429$ | $0 \cdot 7558$ | $0 \cdot 7602$ |
| $E_{\mathrm{cm}}$ |  |  |  | Phase shi | ft for poten | tial (13) |  |  |  |
| ( MeV ) | Exact | $2 \mathrm{~A}+1 \mathrm{R}$ | $3 \mathrm{~A}+1 \mathrm{R}$ | $4 \mathrm{~A}+1 \mathrm{R}$ | $4 \mathrm{~A}+2 \mathrm{R}$ | $6 A+5 R$ | $7 \mathrm{~A}+5 \mathrm{R}$ | $10 \mathrm{~A}+6 \mathrm{R}$ | $16 \mathrm{~A}+8 \mathrm{R}$ |
| 12 | 1.0997 | 1.0841 | 1.0908 | 1.0943 | 1.0940 | 1.0961 | 1.0977 | 1.0997 | 1.0997 |
| 24 | $0 \cdot 8370$ | $0 \cdot 8100$ | $0 \cdot 8248$ | $0 \cdot 8315$ | $0 \cdot 8304$ | $0 \cdot 8336$ | $0 \cdot 8357$ | $0 \cdot 8370$ | $0 \cdot 8370$ |
| 48 | 0.5501 | $0 \cdot 5222$ | 0.5445 | 0.5513 | 0.5479 | $0 \cdot 5488$ | 0.5492 | 0.5499 | 0.5501 |
| 72 | $0 \cdot 3730$ | $0 \cdot 3578$ | $0 \cdot 3756$ | $0 \cdot 3784$ | $0 \cdot 3717$ | $0 \cdot 3698$ | $0 \cdot 3700$ | 0.3731 | $0 \cdot 3731$ |
| 104 | $0 \cdot 2083$ | $0 \cdot 2094$ | 0.2152 | $0 \cdot 2152$ | $0 \cdot 2031$ | $0 \cdot 2011$ | $0 \cdot 2043$ | $0 \cdot 2084$ | $0 \cdot 2084$ |
| 152 | 0.0358 | 0.0438 | $0 \cdot 0449$ | 0.0506 | 0.0282 | 0.0291 | 0.0345 | 0.0364 | 0.0361 |
| 176 | $-0.0311$ | $-0.0258$ | -0.0179 | $-0.0078$ | $-0.0363$ | -0.0358 | -0.0318 | -0.0301 | -0.0307 |

Harms (1970) has shown that, for $N \approx 3, T^{*}$ is a good approximation to the $T$-matrix from the potential $V$ on the negative energy axis. To complement Harm's result and at the same time show that for large enough $N$ we can reproduce the $T$-matrix for the potential $V$, we have made UPE calculations of the s-state phase shifts and half-off-shell function (Kowalski 1965; Noyes 1965) for different values of $N$ and compared the results with the exact values obtained from $V$ directly. The comparison of the phase shifts at different centre-of-mass energies $E_{\mathrm{cm}}$ is given in Table 1 and of the half-off-shell functions at different momenta $p$ for fixed $E_{\mathrm{cm}}=72 \mathrm{MeV}$ is given in Table 2. Two potentials were used: a one-term attractive Yukawa potential

$$
\begin{equation*}
V(r)=-V_{0} \exp (-\mu r) / r \tag{12}
\end{equation*}
$$

with $V_{0}=65.246 \mathrm{MeV}$ and $\mu=0.6329 \mathrm{fm}^{-1}$, which has a single bound state at an
energy $E_{\mathrm{D}}=2 \cdot 240 \mathrm{MeV}$; and the two-term Yukawa potential of Malfliet and Tjon (1969)

$$
\begin{equation*}
V(r)=-V_{\mathrm{A}} \exp \left(-\mu_{\mathrm{A}} r\right) / r+V_{\mathrm{R}} \exp \left(-\mu_{\mathrm{R}} r\right) / r \tag{13}
\end{equation*}
$$

with $V_{\mathrm{A}}=181.5422 \mathrm{MeV}, V_{\mathrm{R}}=457.8828 \mathrm{MeV}, \mu_{\mathrm{A}}=1.55 \mathrm{fm}^{-1}, \mu_{\mathrm{R}}=3.11 \mathrm{fm}^{-1}$, and $E_{\mathrm{D}}=0.35 \mathrm{MeV}$, which was used to test the effect of short-range repulsion on the UPE. For potentials with both attraction and repulsion, the eigenvalues $\lambda_{n}$ of equation (4) can be positive (designated by $A$ ) or negative (designated by $R$ ) whereas for purely attractive potentials all the eigenvalues are positive. The order in which the attractive and repulsive terms were added was that of increasing $\left|\lambda_{n}\right|$, so that terms with smallest $\left|\lambda_{n}\right|$ were included first, this choice being justified by the definition (9) of the UPE potential.

Table 2
exact and UPE s-State half-off-Shell functions for potentials (12) and (13)
The half-off-shell function is given for a centre-of-mass energy $E_{\mathrm{cm}}=72 \mathrm{MeV}$

| $\begin{gathered} p \\ \left(\mathrm{fm}^{-1}\right) \end{gathered}$ | Half-off-shell function for potential (12) |  |  |  |  | Half-off-shell function for potential (13) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Exact | 1A | 3A | 12A | 30A | Exact | $2 \mathrm{~A}+1 \mathrm{R}$ | $6 A+5 R$ | $16 \mathrm{~A}+8 \mathrm{R}$ |
| $0 \cdot 0064$ | 0.777 | 2-173 | 0.668 | 0.803 | 0.777 | $1 \cdot 550$ | $1 \cdot 697$ | $1 \cdot 539$ | $1 \cdot 549$ |
| $0 \cdot 1535$ | 0.781 | 2.136 | 0.692 | 0.800 | 0.781 | $1 \cdot 547$ | $1 \cdot 690$ | $1 \cdot 540$ | $1 \cdot 547$ |
| 0.4885 | 0.816 | 1.851 | 0.850 | $0 \cdot 812$ | $0 \cdot 817$ | $1 \cdot 514$ | $1 \cdot 618$ | $1 \cdot 526$ | $1 \cdot 513$ |
| 1.007 | 0.942 | 1.276 | 1.021 | 0.958 | 0.942 | $1 \cdot 292$ | $1 \cdot 307$ | $1 \cdot 307$ | 1. 291 |
| $2 \cdot 041$ | 0.786 | $0 \cdot 588$ | 0.782 | 0.797 | 0.786 | $0 \cdot 032$ | 0.129 | $0 \cdot 035$ | 0.033 |
| $2 \cdot 780$ | $0 \cdot 511$ | $0 \cdot 369$ | $0 \cdot 546$ | $0 \cdot 512$ | 0.511 | -0.691 | -0.576 | -0.688 | -0.690 |
| $3 \cdot 772$ | $0 \cdot 305$ | $0 \cdot 221$ | 0.334 | 0.306 | $0 \cdot 305$ | -0.893 | -0.899 | -0.900 | -0.892 |
| 5-182 | $0 \cdot 170$ | 0.125 | 0.179 | $0 \cdot 173$ | $0 \cdot 170$ | -0.614 | $-0.665$ | $-0.615$ | $-0.614$ |
| $7 \cdot 355$ | 0.087 | 0.064 | 0.085 | 0.086 | 0.087 | -0.257 | -0.278 | -0.263 | -0.258 |
| $11 \cdot 070$ | 0.039 | 0.029 | 0.034 | 0.040 | 0.039 | -0.074 | -0.131 | -0.078 | $-0.075$ |
| $14 \cdot 051$ | $0 \cdot 024$ | 0.018 | 0.021 | 0.024 | 0.024 | -0.039 | -0.095 | -0.037 | -0.037 |
| 18.42 | 0.014 | 0.011 | 0.012 | 0.014 | 0.014 | -0.020 | -0.061 | -0.016 | -0.019 |
| 25.239 | $0 \cdot 008$ | 0.006 | 0.006 | 0.008 | 0.008 | $-0.010$ | -0.035 | -0.010 | $-0.011$ |

Tables 1 and 2 show that the agreement is remarkably good in general provided $N$ is taken large enough. Together with the results of Harms (1970) at negative energy, this leads to the conclusion that, with a suitable choice of $N$, the UPE can reproduce the $T$-matrix of a local potential. The method has been tested for the Reid potential in the ${ }^{1} S_{0}$ and ${ }^{3} S_{1}-{ }^{3} D_{1}$ channels (Afnan and Read 1972) with comparable success in reproducing the on-shell $T$-matrix. Finally we note that to reproduce the $T$-matrix for the original potential we require $N \approx 12$. This makes it very difficult to use $T^{*}$ in the Faddeev equations because of time and storage problems on present computers. However, this problem can be overcome by the use of $T$-matrix perturbation theory.

## III. T-matrix Perturbation Theory

We now consider the three-body bound state, for which we require the two-body $T$-matrix to be on the negative energy axis where its behaviour is largely determined by the two-body bound state pole. Since the UPE with only three terms gives a reasonable result for the three-body binding energy, the remaining terms in the expansion may be treated by perturbation theory. This overcomes the numerical problem of solving the Faddeev equations with a large number of terms. The perturbation is introduced via
the truncated potential

$$
\begin{equation*}
v^{*}=-\sum_{n=1}^{N_{1}}\left|\chi_{n}\right\rangle \lambda_{n}^{-1}\left\langle\chi_{n}\right| \quad \text { for } \quad N_{1} \ll N \tag{14}
\end{equation*}
$$

where the $N$ of the expansion (9) is taken to be large enough to reproduce the $T$-matrix for the potential $V$. The Faddeev equations are then solved for the energy and wavefunction of the three-body system by using the $T$-matrix corresponding to $v^{*}$,

$$
\begin{equation*}
\tau^{*}(E)=\sum_{n, m=1}^{N_{1}}\left|\chi_{n}\right\rangle\left[M^{-1}(E)\right]_{n m}\left\langle\chi_{m}\right|, \tag{15}
\end{equation*}
$$

and treating the difference between the actual $T$-matrix and $\tau^{*}$ by perturbation theory. Explicitly the perturbation is

$$
\begin{equation*}
t(E)=T(E)-\tau^{*}(E) \approx T^{*}(E)-\tau^{*}(E) \tag{16}
\end{equation*}
$$

the separability of which, as is shown below, constitutes the crucial simplification of our method.

The formalism for such a $T$-matrix perturbation theory has been presented by Fuda (1968) who gives as the first-order correction for three identical particles

$$
\begin{equation*}
\Delta E^{(1)}=12\left\langle\Phi_{3}\right|(123) t_{3}\left(E_{0}\right)(123)\left|\Phi_{3}\right\rangle, \tag{17}
\end{equation*}
$$

where (123) is the permutation operator (Harper et al. 1970), $t_{3}\left(E_{0}\right)$ is the perturbing $T$-matrix for particles 1 and 2 , and $E_{0}$ is the binding energy for the three-body system with $\tau^{*}$. The wavefunction $\left|\Phi_{3}\right\rangle$ in equation (17) is a solution of the Faddeev equation for the bound state

$$
\begin{equation*}
\left|\Phi_{3}\right\rangle=-2 G_{0}\left(E_{0}\right) \tau_{3}^{*}\left(E_{0}\right)(123)\left|\Phi_{3}\right\rangle \tag{18}
\end{equation*}
$$

with normalization chosen such that

$$
\begin{equation*}
\langle\Phi \mid \Phi\rangle=1, \quad \text { where } \quad|\Phi\rangle=\sum_{\alpha=1}^{3}\left|\Phi_{\alpha}\right\rangle . \tag{19,20}
\end{equation*}
$$

The advantage of using $T^{*}$ instead of $T$ in equation (16) may be seen on transforming equation (17) to a momentum space representation and considering the case of three identical bosons interacting only in relative s-states, whence

$$
\begin{equation*}
\Delta E^{(1)}=12 \iiint \eta(p, q) t\left(p, p^{\prime} ; E_{0}-\frac{3}{4} q^{2}\right) \eta\left(p^{\prime}, q\right) p^{2} \mathrm{~d} p p^{\prime 2} \mathrm{~d} p^{\prime} 4 \pi q^{2} \mathrm{~d} q \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta(p, q)=2 \pi \int_{-1}^{1} \Phi_{3}\left(\frac{1}{2} \boldsymbol{p}+\frac{3}{4} \boldsymbol{q}, \boldsymbol{p}-\frac{1}{2} \boldsymbol{q}\right) \mathrm{d}(\hat{\boldsymbol{p}} \cdot \hat{\boldsymbol{q}}) \tag{22}
\end{equation*}
$$

Since $t\left(p, p^{\prime} ; E\right)$ is the difference between two separable terms we can write equation (21) as

$$
\begin{equation*}
\Delta E^{(1)}=E^{(1)}(N)-E^{(1)}\left(N_{1}\right), \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
E^{(1)}(L)=-12 \sum_{n, m=1}^{L} \int_{0}^{\infty} \mathrm{d} q q^{2} \Lambda_{n}(q)\left[M^{-1}\left(E_{0}-\frac{3}{4} q^{2}\right)\right]_{n m} \Lambda_{m}(q) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda_{n}(q)=\int_{0}^{\infty} \mathrm{d} p p^{2} \chi_{n}(p) \eta(p, q) \tag{25}
\end{equation*}
$$

Equation (25) can be reduced to (see Appendix)

$$
\begin{equation*}
\Lambda_{n}(q)=-\sum_{\mu=1}^{N_{1}} \int_{0}^{\infty} \mathrm{d} k k^{2} K_{n \mu}(q, k) F_{\mu}(k) \tag{26}
\end{equation*}
$$

where $F_{\mu}(k)$ is related to the spectator function and $K_{n \mu}(q, k)$ is the kernel of the integral equation for $F_{\mu}(k)$. Hence the problem of calculating $E^{(1)}(L)$ is reduced to the evaluation of a one-dimensional integral and two sums. The advantages of this approach over that of performing the three-dimensional integration are: there are no errors in the sums, the integrand is very simple to calculate, and the problem of calculating the full off-shell $T$-matrix for a local potential as a function of energy has been avoided. The latter point leads to a considerable saving of time in the numerical solution.

## IV. Numerical Results

To test the perturbation method described in Section III, we have examined the case of three bosons interacting via an s-wave potential. The reason for choosing this simple case is that it enables us to compare our results for different values of $N_{1}$ in the expansion (14) for $1 \leqslant N_{1} \leqslant N$, where $N$ is taken large enough to enable $T^{*}(E)$ to be a good approximation to the $T$-matrix for the local potential. It is worth noting that a similar calculation for a realistic potential with $N_{1}=N$ would require the storage of a matrix of dimension $3 N$ times the number of quadratures needed to approximate the integral in the Faddeev equations; a matrix larger than $360 \times 360$ for $N=12$. The results of the perturbation theory for the binding energy of three bosons interacting via potentials (12) and (13) are given in Table 3. In this table, $N_{1}$ is the number of terms in the UPE used to solve the Faddeev equations for zero-order energy while $N$ is the number of terms used in representing the $T$-matrix for the local potential.

If we consider the results for the one-term attractive Yukawa potential (12), we observe that $N=9$ is sufficient to reproduce the exact $T$-matrix as far as the threebody binding energy is concerned. However, the number of terms used in solving the Faddeev equations is very important in determining the accuracy of the results. Thus with $N_{1}=1$, the error is about 1 MeV even after using perturbation theory because $T^{*}-\tau^{*}$ is too large for the second-order perturbation correction to be neglected. This is apparent from Tables 1 and 2 for potential (12), where the difference between the exact and the $N_{1}=1$ unitary pole approximation (UPA) results is large, and from Table 3 for potential (12), where the difference between the results for $N=1$ and 9 is of the order of $2 \cdot 1 \mathrm{MeV}$. The latter is in contrast with the case $N_{1}=3$, where the difference between the results for $N=3$ and 9 is about $0 \cdot 2 \mathrm{MeV}$, thereby indicating that the second-order terms are small. It is clear from Table 3 that the case $N_{1}>6$ need not be treated since the correction will be less than
0.001 MeV . These results show very convincingly that a definite minimum number of terms are required for the solution of the Faddeev equations in order to obtain the binding energy to a predetermined accuracy.

We now consider the results in Table 3 for the Malfliet and Tjon (1969) potential (13). Using one repulsive term in $v^{*}$, we present results for an increasing number of attractive terms until the required accuracy is obtained. It is clear that two attractive terms are sufficient in $v^{*}$ and that the rest may be accurately treated by perturbation theory. Also it can be seen that the inclusion of a second repulsive term in $v^{*}$ does not change the results and that therefore one repulsive term is sufficient.

Table 3
UPE THREE-body binding energies for bosons interacting via potentials (12) and (13)
The table consists of two 2-dimensional arrays, one for potential (12) and the other for potential (13), in which the columns are labelled by $N_{1}$, the number of terms retained in the expansion (14) for $v^{*}$, and the rows are labelled by $N$, the number of terms retained in the expansion (9) for $V^{*}$. The diagonal elements were obtained by direct inversion of the Faddeev equations while the off-diagonal elements were obtained by $T$-matrix perturbation theory

| Binding energy ( MeV ) for potential (12)$N_{1}$ |  |  |  |  |  |  |  | Binding energy (MeV) for potential (13)$N_{1}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $N$ | 1 A | 2A | 3A | 4A | 5A | 6A | $N$ |  | $3 \mathrm{~A}+1 \mathrm{R}$ | $4 \mathrm{~A}+1 \mathrm{R}$ | $4 \mathrm{~A}+2 \mathrm{R}$ |
| 1 A | 21.947 |  |  |  |  |  |  |  |  |  |  |
| 2A | $23 \cdot 285$ | $24 \cdot 021$ |  |  |  |  | $2 \mathrm{~A}+1 \mathrm{R}$ | $7 \cdot 491$ |  |  |  |
| 3A | $23 \cdot 868$ | $24 \cdot 829$ | 24.886 |  |  |  | $3 \mathrm{~A}+1 \mathrm{R}$ | $7 \cdot 522$ | $7 \cdot 522$ |  |  |
| 4A | $24 \cdot 023$ | 24.974 | 25.037 | 25.040 |  |  | $4 \mathrm{~A}+1 \mathrm{R}$ | $7 \cdot 537$ | $7 \cdot 537$ | $7 \cdot 538$ |  |
| 5A | 24.065 | 25.008 | 25.069 | 25.072 | $25 \cdot 072$ |  | $5 \mathrm{~A}+1 \mathrm{R}$ | $7 \cdot 550$ | $7 \cdot 551$ | $7 \cdot 551$ |  |
| 6A | 24.077 | 25.017 | 25.076 | $25 \cdot 080$ | $25 \cdot 080$ | $25 \cdot 080$ | $6 \mathrm{~A}+1 \mathrm{R}$ | $7 \cdot 555$ | 7-556 | $7 \cdot 556$ |  |
| 7A | 24.082 | 25.021 | $25 \cdot 080$ | $25 \cdot 083$ | $25 \cdot 083$ | $25 \cdot 083$ | $4 \mathrm{~A}+2 \mathrm{R}$ |  |  |  | $7 \cdot 525$ |
| 8A | 24.083 | 25.022 | $25 \cdot 080$ | 25.083 | 25.084 | 25.084 | $5 \mathrm{~A}+2 \mathrm{R}$ |  |  |  | $7 \cdot 539$ |
| 9A | $24 \cdot 085$ | $25 \cdot 023$ | 25.081 | 25.084 | 25.085 | 25.085 | $6 A+2 R$ | 7-543 | $7 \cdot 543$ | $7 \cdot 544$ | $7 \cdot 544$ |
| 10A | 24.085 | 25.023 | $25 \cdot 082$ | $25 \cdot 084$ | 25.085 | 25.085 | $6 A+3 R$ | $7 \cdot 540$ | $7 \cdot 540$ | $7 \cdot 540$ | $7 \cdot 540$ |
| 11A | 24.085 | 25.023 | 25.082 | 25.084 | 25.085 | 25.085 | $6 A+4 R$ | $7 \cdot 539$ | $7 \cdot 539$ | $7 \cdot 539$ | $7 \cdot 539$ |
| 12A | $24 \cdot 085$ | $25 \cdot 023$ | $25 \cdot 082$ | $25 \cdot 084$ | $25 \cdot 085$ | $25 \cdot 085$ | $6 A+5 R$ | $7 \cdot 538$ | $7 \cdot 539$ | $7 \cdot 539$ | $7 \cdot 539$ |

From the foregoing discussion we conclude that, although $v^{*}$ with three terms does not accurately reproduce the $T$-matrix for the local potential, the approximation is sufficiently good that the difference may be treated by perturbation theory. For potentials (12) and (13), it was only necessary to solve the Faddeev equations for a three-term UPE in order to calculate the three-body binding energy to within $0 \cdot 1 \%$. Such accuracy is sufficient to study the dependence of the three-nucleon observables on the off-shell behaviour of the two-body $T$-matrix. On the other hand, if the UPA potential (that is, $N_{1}=1$ ) is used, the difference between the UPA and the actual $T$-matrices may be too large for first-order perturbation theory to be sufficient, as is shown by the results in Table 3 for potential (12).

With the success of our method for the two Yukawa potentials, we are optimistic about the inclusion of spin dependence and a tensor force. We have already shown (Afnan and Read 1972) that a UPE in the presence of a tensor force has a reasonably good convergence.

## V. Acknowledgments

This research was supported in part by the Australian Research Grants Committee and the Flinders University Research Budget.

## VI. References

Afnan, I. R., and Read, J. M. (1972).-Flinders Univ. Rep. No. FUPH-R-68.
Afnan, I. R., and Serduke, F. J. D. (1973).—Phys. Lett. B 44, 143.
Bhatt, S. C., Levinger, J. S., and Harms, E. (1972).-Phys. Lett. B 40, 23.
Faddeev, L. D. (1961).-Soviet Phys. JETP 12, 1014.
Fuda, M. G. (1968).-Phys. Rev. 166, 1064.
Hadjimichael, E., and Jackson, A. D. (1972).-Nucl. Phys. A 180, 217.
Harms, E. (1970).—Phys. Rev. C 1, 1667.
Harper, E. P., Kim, Y. E., and Tubis, A. (1970).-Phys. Rev. C 2, 877.
Harper, E. P., Kim, Y. E., and Tubis, A. (1972).—Phys. Rev. Lett. 28, 1533.
Hennell, M. A., and Delves, L. M. (1972).-Phys. Lett. B 40, 20.
Jackson, A. D., Lande, A., and Sauer, P. U. (1971).-Phys. Lett. B 35, 365.
Kowalski, K. L. (1965).—Phys. Rev. Lett. 15, 798.
Kowalski, K. L., and Pieper, S. C. (1972).-Phys. Rev. C 5, 324.
Lu, A. H. (1970).—Nucl. Phys. A 149, 86.
Malfliet, R. A., and Tjon, J. A. (1969).-Nucl. Phys. A 127, 161.
Malfliet, R. A., and Tjon, J. A. (1970).-Ann. Phys. 61, 425.
Mitra, A. N. (1969)-Adv. nucl. Phys. 3, 1.
Noyes, H. P. (1965).-Phys. Rev. Lett. 15, 538.
Reid, R. V. (1968).-Ann. Phys. 50, 411.
Sloan, I. H. (1972).-Nucl. Phys. A 188, 193.

## Appendix

## Evaluation of $\Lambda_{n}(q)$

We discuss here the procedure for calculating $\Lambda_{n}(q)$, which is defined as

$$
\begin{equation*}
\Lambda_{n}(q)=\int_{0}^{\infty} \mathrm{d} p p^{2} \chi_{n}(p) \eta(p, q)=\int \mathrm{d} \boldsymbol{p} \chi_{n}(p) \Phi_{3}\left(\frac{1}{2} \boldsymbol{p}+\frac{3}{4} \boldsymbol{q}, \boldsymbol{p}-\frac{1}{2} \boldsymbol{q}\right) \tag{A1}
\end{equation*}
$$

If we introduce a new integration variable $\boldsymbol{k}$, where

$$
\boldsymbol{k}=\boldsymbol{p}-\frac{1}{2} \boldsymbol{q},
$$

then equation (A1) becomes

$$
\begin{equation*}
\Lambda_{n}(q)=\int \mathrm{d} \boldsymbol{k} \chi_{n}\left(\left|\boldsymbol{k}+\frac{1}{2} \boldsymbol{q}\right|\right) \Phi_{3}\left(\frac{1}{2} \boldsymbol{k}+\boldsymbol{q}, \boldsymbol{k}\right) \tag{A2}
\end{equation*}
$$

For an $N_{1}$-term separable potential we can write

$$
\begin{equation*}
\Phi_{3}\left(\frac{1}{2} \boldsymbol{k}+\boldsymbol{q}, \boldsymbol{k}\right)=-\sum_{\mu=1}^{N_{1}} \frac{\chi_{\mu}\left(\left|\boldsymbol{q}+\frac{1}{2} \boldsymbol{k}\right|\right) F_{\mu}(k)}{2 \pi\left(q^{2}+k^{2}+\boldsymbol{k} \cdot \boldsymbol{q}-E_{0}\right)}, \tag{A3}
\end{equation*}
$$

where $F_{\mu}(k)$ is a solution of the integral equation

$$
\begin{equation*}
\sum_{v=1}^{N_{1}} M_{\mu v}\left(E_{0}-\frac{3}{4} k^{2}\right) F_{v}(k)=\sum_{v=1}^{N_{1}} \int_{0}^{\infty} \mathrm{d} k^{\prime} k^{\prime 2} K_{\mu v}\left(k, k^{\prime}\right) F_{v}\left(k^{\prime}\right) \tag{A4}
\end{equation*}
$$

with $M_{\mu \nu}$ given by equation (11) and $K_{\mu \nu}$ defined by

$$
\begin{equation*}
K_{\mu v}\left(k, k^{\prime}\right)=\int_{-1}^{1} \mathrm{~d}\left(\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{k}}^{\prime}\right) \frac{\chi_{\mu}\left(\left|\boldsymbol{k}^{\prime}+\frac{1}{2} \boldsymbol{k}\right|\right) \chi_{v}\left(\left|\boldsymbol{k}+\frac{1}{2} \boldsymbol{k}^{\prime}\right|\right)}{\left(k^{2}+k^{\prime 2}+\boldsymbol{k} \cdot \boldsymbol{k}^{\prime}-E_{0}\right)} \tag{A5}
\end{equation*}
$$

On substituting equations (A3) and (A5) in equation (A2) we obtain

$$
\begin{align*}
\Lambda_{n}(q) & =-\int_{0}^{\infty} \mathrm{d} k k^{2} \int_{-1}^{1} \mathrm{~d}(\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{q}}) \sum_{\mu=1}^{N_{1}} \frac{\chi_{n}\left(\left|\boldsymbol{k}+\frac{1}{2} \boldsymbol{q}\right|\right) \chi_{\mu}\left(\left|\boldsymbol{q}+\frac{1}{2} \boldsymbol{k}\right|\right)}{\left(q^{2}+k^{2}+\boldsymbol{k} \cdot \boldsymbol{q}-E_{0}\right)} F_{\mu}(k) \\
& =-\sum_{\mu=1}^{N_{1}} \int_{0}^{\infty} \mathrm{d} k k^{2} K_{n \mu}(q, k) F_{\mu}(k) . \tag{A6}
\end{align*}
$$

The important point to note is that when we solve the three-body bound state problem with $\tau^{*}$ we obtain $F_{\mu}\left(\mu=1, \ldots, N_{1}\right)$ and that part of the kernel $K_{n \mu}(q, k)$ has been evaluated. Thus, the evaluation of $\Lambda_{n}(q)$ takes very little extra time and the correction to the energy is then a one-dimensional integral.


[^0]:    * School of Physical Sciences, Flinders University of South Australia, Bedford Park, S.A. 5042.

