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Abstract 

A quantum-mechanical wave equation for two particles of arbitrary spin is 
derived for any instantaneous interaction. The starting point is an integral equation 
which is a relativistic generalization of the SchrOdinger integral equation and is similar 
to the Bethe-Salpeter equation. The final two-particle wave equation contains the sum 
of the Hamiltonians of the two particles and has only one time variable. It reduces 
to the two-particle Schrodinger equation in the non-relativistic limit. 

I. INTRODUCTION 

Previous discussions of the quantum-mechanical problem of a two-body 
system have been limited mostly to spin-O and spin--t particles. Thus the two-particle 
wave equation set up by Breit (1929) describes a system of two electrons whereas the 
well-known four-dimensional relativistic Bethe-Salpeter equation (Salpeter and Bethe 
1951), which can be derived from theoretical field considerations, has been solved 
mainly for particles of spin 0 and -t. This limitation is largely due to the fact that the 
wave equation for a single particle of higher spin is rather complicated and involves 
matrices which are difficult to handle. 

It is the objective of this work to derive a quantum-mechanical wave equation 
for two particles of any spin with an arbitrary instantaneous interaction. The 
derivation starts with an integral equation which is a relativistic generalization of the 
Schrodinger integral equation and is similar to the Bethe-Salpeter integral equation. 
Use is also made of the fact that the wave equation for a particle of any spin can be 
written in Hamiltonian form (Weaver et al. 1964). The problem is treated purely as 
a quantum-mechanical one, and there is no claim that the resulting equation will 
describe any theoretical field processes such as pair creation and annihilation of 
particles and antiparticles. Since the two-particle wavefunction contains a single 
time variable, it avoids the difficulty of having to interpret the relative time. The wave 
equation also does not contain extra solutions, as can be seen from the fact that the 
solution of the equation for two free particles is just the product of two free particle 
wavefunctions, one for each particle. Furthermore, the equation can be shown to 
reduce to the two-particle Schrodinger equation in the non-relativistic limit. 

Throughout this paper, quantities are expressed in natural units, in which fl, 
Planck's constant divided by 2n, and c, the speed of light, are taken as unity, 
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h = c = 1. The imaginary fourth component convention is also used in which the 
space-time four-vectors are XJl = (x,y,z,it) and the invariant is 

The scalar product of two real four-vectors a and b is denoted by 

where a4 = illo, b4 = ibo, and ao and bo are real. Greek indices f1 are used to represent 
summations over all four components while Latin indices i represent summations 
over the three space components. 

II. INTEGRAL EQUATION 

The non-relativistic Schrodinger equation 

(-=- - V +i~)t/I = 0 2m at 
(1) 

can be cast into an integral form by means of the non-relativistic free particle Green's 
function G. This function satisfies the equation 

G~ +i :t)G(X-X', t-t') = il5(x-x')!5(t_t'), 

and can be written in integral form as 

G(X_X', t-t') = _i_ IeXP{iP(X-X')} d3pdE. 
(2n)4 -p2j2m +E 

(2) 

With this Green's function, equation (1) can be put into the integral form 

t/I(X, t) = t/lo(x, t) -i I G(X_X', t- t') V(x') t/I(x', t') d 3X' dt' , (3) 

where t/lo(x, t) is the free particle wavefunction. 
Equation (3) can be generalized to give the following relativistic integral 

equation for two particles with an arbitrary interaction V, 

where t/lO(Xl' X2) is the wavefunction for two free particles, G1(Xl -xz) and G2(X2 -xz) 
are the free particle Green's functions for particles 1 and 2 respectively, and 

and 
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Equation (4) is similar to the Bethe-Salpeter equation which was derived from 
theoretical field considerations. The only difference between the two equations is 
that the Green's function in (4) is taken to be a retarded function like the one used 
in equation (3) whereas the Feynman Green's function is used in the Bethe-Salpeter 
equation. Equation (4) is assumed to hold true for particles of any spin. 

For two particles of specified spin, the Green's functions G1(Xl -xl) and 
G2(X2 -x~) in equation (4) are to be determined from the corresponding single­
particle wave equations. These latter equations can be written in the Hamiltonian form 

H(V)t/J = i8t/J/8t, (5) 

where t/J is the wavefunction and H(V) is the Hamiltonian ope~ator which depends on 
the spin of the particle: 

(i) For a spin-O particle (see Appendix) 

where 

p = [~ ~l· 
(ii) For a spino! particle 

H(V) = - i IX. V + pm, 

where IX and p are the usual matrices in Dirac theory. 

(iii) For a spin-1 particle (see e.g. Weaver et al. 1964) 

where 

the Si being the 3 x 3 spin-1 matrices. 

The Green's function for equation (5) satisfies the equation 

and can be written as 

(H(V') -i~)G(X'-X) = io4(x'-x) 
at' 

(6) 

where we have used the fact that H2(ip) = p2+m2 for any relativistic Hamiltonian 
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H(ip). Figure 1 shows the contour of integration in the E plane, in which the two 
poles are displaced an infinitesimal distance below the real axis. This corresponds to 
choosing G(x' -x) to be retarded so that, for t' < t, we have G(x' -x) = 0. The 
Green's function therefore relates the wavefunction at a particular time to its value 
at an earlier time. After evaluating the E integral, we obtain from equation (6) 

G(x'-x) =0, t'<t, (7a) 

with 

and 

=-tc53(x'-x), t'=t, (7b) 

= - 2(;n)3 J d 3pexp{ip. (X'-X)}{l&" + ~ + H~P)(~ -l&")}, t' > t, (7c) 

l&" = exp{iE(t' - t)} , 

Lim G(x'-x) = -c5\x'-x). 
t'-+t+ 

/' 
Poles 

Fig. I.-Contour of integration 
in the E plane for evaluation of 
the Green's function (6). The 
two poles are displaced an 
infinitesimal distance below 
the real axis. 

For a general instantaneous potential, equation (4) becomes 

l/I(X1,X2) = l/IO(X1,X2) -i J G1(X1-X~)Gix2-X;) V(x~,x;)c5(t~ -t;) 

x l/I(x~, xl) d4x~ d4x;, (8) 

with the Green's functions given by the relations (7). The expression (8) is an integral 
equation for two particles, each separately obeying an equation of the form (5) in 
the absence of interactions. Operating on both sides of equation (8) byH1(\\) -i 8/8t1, 
we obtain 

(H 1(V' 1) -i 8~Jl/I(Xl' x2) = J c5(Xl -x~) GiX2 -x;) V(x~, x;)c5(t~ - t;) 

x l/I(x~, x;) d4 x~ d4x; 

= J GiX2- X;) V(X1,X;)i5(t1-t;)l/I(x1,x;) d4 x; 

= J G2(X2 - x;, t2 - t1) V(x1, x;) l/I(x1, t1; x;, t1) d 3x; . (9) 
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The corresponding equation that is obtained from (8) by operating on both sides 
by H2('V2) -i a/at2 is 

( H 2eV 2) - i a~J "'(Xl, X2) = I G 1 (Xl - Xl' t 1 - t2) V(Xl' X2) "'(Xl, t2; X2' t2) d3xl· (10) 

Adding equations (9) and (10) and using the relations (7) and the fact that 

we finally obtain 

The result (11) is valid for all possibilities tl > t2, tl = t2, and tl < t2. 
For stationary state solutions with 

equation (11) becomes 

where E is the total energy of the system of two particles. This relation contains the 
sum of two Hamiltonians and has the same form as the Breit equation for spino! 
particles. In fact, the Breit equation is a special case of (12). 

Two Free Particles 

For the case of two free particles, with the interaction V(Xl' x2) set equal to 
zero, equation (12) becomes 

The solutions of this equation are 

with 

and El +E2 = E. 

Non-relativistic Limit 

Assume in the non-relativistic limit that 

i = 1,2, 
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and 

where we have used the same approximation as Schiff (1968), and a represents the 
linear dimensions of the system with 

-1 a ~ p ~ mv. 

Putting t2 = t1 in equation (9), t1 = t2 in equation (10), and writing 

we have 

(13) 

Operating on both sides of equation (13) by H;('V i) then leads to the expression 

(14) 

The order of magnitude of the additional terms is VV(X1' x2 ) ~ O(V3) or higher. 
Simplifying equation (14) and collecting terms up to order v2 , we obtain 

(15) 

with i = 1,2. Addition of both equations of (15) then gives the two-particle 
SchrOdinger equation 

III. CONCLUSIONS 

The two-particle wave equation derived here is simple in form and contains 
the sum of the two Hamiltonians for the particles rather than the product, as is the 
case in the Bethe-Salpeter differential equation. It is therefore of the same order 
as the single-particle equation. This new equation could be useful in the investigation 
of problems such as the quark-antiquark model and high energy scattering. The 
solution of the equation for some interactions of particles with spin 0, t, and 1 will 
be considered in subsequent papers. 
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APPENDIX 

The wave equation for a spin-O particle is the Klein-Gordon equation 

iPI/I/oxpoxp = m21/1. 
By defining 

ol/l/oxp = ml/Jp, 
equation (AI) can be written as 

ol/Jp/oxp = ml/l , 
or in matrix form 

0 %x1 O/OX2 O/OX3 alax, H~ 1/1 

%x1 0 0 0 o l/J1 l/J1 
O/OX2 0 0 0 

o Jl¢' =m l/J2 
O/OX3 0 0 0 o l/J3 l/J3 
O/OX4 0 0 0 o l/J4 l/J4 

Defining the vector <I> as l/J1 i + l/J2j + l/J3 k, equation (A2) becomes 

VI/I = m<l>, 

and, from equation (A4b), equation (A3) can be expressed as 

Equations (A4a) and (AS) can then be put in the matrix form 

or 

where 
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(AI) 

(A2) 

(A3) 

(A4a, b) 

(AS) 






