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Abstract 

A theoretical and experimental study has been made of the photoelectric setting 
technique for fringes of equal thickness. The predicted departures of the theory from 
that for fringes of equal inclination have been confirmed and the parameters suitable 
for various practical applications have been calculated. . 

I. INTRODUCTION 

Photoelectric scanning interferometers have been used with remarkable success 
in the precise measurement of wavelengths (Baird and Smith 1960; Bruce and Hill 
1961). The principle of a scanning interferometer is that the optical path difference is 
varied sinusoidally and the modulated flux is detected photoelectrically and then 
analysed into its harmonic components. The vanishing of the component at the 
scanning frequency is taken to define a setting on a fringe maximum. Figure 1 is a 
schematic diagram of an interferometer of this type. The limits to the precision of this 
method of measurement have been calculated by Hanes (1959, 1963) and by Hill and 
Bruce (1962, 1963). The specific instruments to which these calculations referred were 
the Fabry-Perot interferometer and its two-beam analogue the Michelson interfero­
meter. It was assumed that settings were always made on a fringe maximum, by 
changing the mean separation of the oscillating interferometer, as is usual in precise 
interferometry. 
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Fig. 1.-Schemati9 diagram of a scanning interferometer. 

In the present paper the above calculations are extended to the case of Fizeau­
type interferometers, in which interference fringes of equal thickness are used. The 
application of photoelectric scanning to such interferometers would increase the 
accuracy and convenience of many metrological observations. The term "Fizeau 
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interferometer" is used here to describe any instrument in which localized fringes of 
equal thickness are produced, and therefore includes the Twyman-Green and Kosters 
modifications of the Michelson interferometer. Following Hanes (1959, 1963) and 
Hill and Bruce (1962, 1963), the limiting precision of setting is considered in terms of 
the ratio of the signal to the shot noise in the photoelectric detector. The theory for 
the Haidinger fringe case (Fabry-Perot interferometer) is first summarized briefly and 
some of the results are quoted for reference and comparison. 

Raymond (1970) has considered a particular application of the scanning 
technique to a Kosters interferometer of the type used in metrology. His analysis is 
directed to the problem of the optimum conditions of operation for a given plate 
separation. On the other hand, Raymond considers several topics which are not 
covered in the present paper, namely the effect of dark current in the photo detect or, 
the relative merits of setting on dark two-beam fringes or bright fringes, and the 
difference between operation with variable slit width and with variable fringe spacing. 
Where Raymond's treatment overlaps the present work, full agreement is found. 

II. HAIDINGER FRINGE SYSTEM 

The intensity distribution function for multiple-beam fringes is described by 
the Airy function, which may be written in the form given by Krebs and Sauer (1953): 

(1) 

where 

Tand R are the transmittance and reflectance of the interferometer plates respectively, 
n is the order of interference, and f.l = 2t Lla = n Lla/a, 2t being the optical path 
difference, a the wave number of the spectral line, and Lla its full width at half intensity. 
The distribution of power available in the interference pattern is given by the product 
of this distribution function and the total power available in one order of interference. 
Hanes (1959) showed that the power per order is given by 

(2) 

where L is the radiance of the source, Zo the transmittance of the external optics, and 
D the diameter of the illuminating beam. 

Hanes (1959, 1963) and Hill and Bruce (1962, 1963) have used equations (1) and 
(2) to derive expressions for the signal and noise currents in a photo detector, with 
particular reference to settings on a fringe maximum and to the use of the fundamental 
component of the modulated signal. The corresponding equations for the general case 
of setting at any order N, including the possibility of using various harmonics of the 
modulated signal, are set out below. 

The mean current io is given by 

io = 2PH bZ{1 + 2 L Gk Jo(2nka) (2nkb)-1 sin 2nkb cos2nkN}8e/hca, (3) 

while the fundamental component il and the second harmonic i2 of the difference 
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signal for offset of 0 N orders are 

i1 = 8PH Z{'L GkJ1(2nka)sin2nkbcos2nkN}(()e/hco)oN (4) 
and 

i2 = 8PH Z{'L Gk J2(2nka) sin2nkb sin2nkN}(()e/hcu)oN, (5) 

where 2b is the range of orders accepted by the aperture of the detector, a is the 
amplitude of oscillation, N = 2tu is the mean order over the aperture, oN is a small 
offset from the setting N, Jm(x) is a Bessel function of the first kind of order m and 
argument x, () is the quantum efficiency of the detector, and e is the electronic charge. 
The shot noise in the detector is given by 

(6) 

dv being the detector bandwidth. Substitution for io from equation (3) then yields the 
noise current in the form 

(7) 

where Vo is the term enclosed in braces in (3). The signal-to-noise ratio for the funda­
mental signal is therefore 

(8) 

where U1 is the term in braces in (4). Equation (8) may be written in the form used by 
Hanes (1959, 1963) and Hill and Bruce (1962, 1963), namely 

( PH Z ui)t r1 = 64()T--- oN 
2hcu v ' 

(9) 

where T = l/dv and v = 2bvo. Similar expressions involving U2' u3 , etc. apply for 
higher harmonic terms. Substitution of equation (2) into (9) finally gives the expression 

(10) 

(11) 

where A is an "interferometer constant" and <P1 is the noise factor (Hill and Bruce 
1962). 

III. FIZEAU FRINGE SYSTEM 

(a) Basic Relations 

The relations for the multiple-beam Fizeau system differ from those for the 
Haidinger system because the power PF available per order of interference is different. 
The form of the calculation ofthe signal and noise currents is the same, however, since 
it follows from the form of the Airy function. 

In Figure 2, a source of radiance L and area A, which is assumed to be sufficiently 
small not to affect the coherence of the light, is at the focus of a lens of focallengthf 
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and diameter D. The amount of power in the collimated beam is given by 

This power is distributed uniformly over an area -l-nD2 and so the power per unit area 
(the irradiance) is LA/f2 = LQ, where Q is the solid angle subtended by the source at 
the lens. The interference pattern will consist of linear fringes, the spacing of which 
will depend on the angle a between the plates but not on their separation t. This 
characteristic of Fizeau fringes has a significant effect on the calculation of PF. 

Fig. 2.-Photometric parameters of a Fizeau interferometer: A is the area of the 
source, D and fare the diameter and focal length of the lens, oc is the angle between the 
plates, Y is the width of the detecting aperture, and K is the spacing of the fringes. 

The detecting aperture will be a rectangle of some convenient length Y and 
width X = 2b fringe spacings. In practice the fringes will be projected into the aperture 
by an auxiliary optical system but initially we shall assume that the aperture is located 
in the plane of the fringes (i.e. between the plates). The geometric spacing of the 
fringes will be ).,/2a, so that one order of interference will occupy an area Y).,/2a or 
Y/2aa. The power incident in this area, allowing for a transmittance factor Zo in the 
external optics, will be 

PF = ZoLQY/2aa. (12) 

Equation (12) may be contrasted with the corresponding relation (2) for 
Haidinger rings. If we now substitute PF as given by (12) for PH in equation (9), and 
use the identity 

1 _ 1 4t2 Aa 2 _ Jl2 
a2 - a2 4(2 Aa 2 - N 2 Aa 2 ' 

we obtain the result 

= (QY_l_ Z Or ~)t(32 2Z ui)t oN 
r 1 a 2hc 0 Aa2 Jl v N (13) 

(14) 

where we have used lower case Greek letters to distinguish quantities relevant to the 
Fizeau interferometer. There are several important differences between equations 
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(13) and (10): 

(i) The radiometric properties of the source enter as L//1(12, rather than as 
L//1(1. Consequently the remarks of Hill and Bruce (1962) and Hanes (1963) 
about the ineffectiveness of narrowing the bandwidth of the source are not 
applicable. Instead, the precision would increase if both Land /1(1 were 
reduced in the same proportion. 

(ii) The angular size Q of the source is significant. An upper limit to this 
quantity is set by the requirement that the coherence should be sufficiently 
high for visual alignment. 

(iii) The noise function cP1 depends on J1 rather than on J11. 

The numerical values of band .,1, and also of cP1 and !P1, turn out to be comparable for 
practical interferometers. 

(b) Limiting Precision of Setting 

Following the previous work of Hanes (1959) and Hill and Bruce (1962), we 
define the limiting precision as N/bN, where bN is that value which makes the ratio 
r1 equal to unity, 

N/bN = .,1t!P1 (Haidinger) (1 Sa) 
or 

(Fizeau) . (15b) 

Bell (1960) has demonstrated that values of N/bN calculated in this way should be 
reduced by 30% to allow for secondary emission noise in a photomultiplier. 

Hill and Bruce (1962) showed that, for a typical Fabry-Perot interferometer, 
detector, and isotopic light source, .,1 would be about 5 x 1019 and that the maximum 
attainable value of!P1 was about 0·6. The resultant limiting precision was (5 x 1019)1 
xO·6/l·3, or about 3·2xl09 • For comparison we may consider a Fizeau inter­
ferometer with the following parameters: 

for a source aperture of radius r and angular radius p = 10 - 3 rad; rJ. = 6 x 10 - 5 rad, 
corresponding to a 5 mm fringe spacing; Y = 25 mm, corresponding to one-half of a 
50 mm field (this choice of Yassumes that the field of view contains two sets of fringes, 
as will frequently be the case for Fizeau fringes); and also 

Zo = 0·2, e = 0·07, r = 1 s, 

These values yield the result 
b = 8 X 1018 • 

We shall find in the following subsection that cP1 can be as large as 0·3 for multiple­
beam Fizeau fringes, giving a limiting precision of (8 x 1018)1 x 0·3/1· 3 = 6·5 X 108 , 

which is comparable with the value for the Haidinger case. The magnitude of b can 
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be varied by a factor of about 10 with the particular choice of Yand 0(. The ultimate 
lower limit to 0( is set by the finite size of the field of view. The detecting aperture 
cannot be wider than D, so that, since 2b is equal to the ratio ofthe aperture size to the 
fringe spacing, we must have 

or 0( > b/Du. 

The corresponding precision would be about five times greater than was calculated 
for 0( = 6 x 10- 5 rad. A somewhat higher limit to 0( is set by the practical need to have 
at least two fringes in the field of view in order to ensure that they are aligned parallel 
to the aperture. 

0·4 
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b 0·2 ~:0~'3~===-__ --___ 7i~_ 
0·2 
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0'05 

°O~'O~I-~O'~02--~-~--~--~-~I'OO 

Fig. 3.--Optimum half-aperture 
b as a function of f1. for five 
values of the amplitude a 
of a scan. 

(c) Results of Calculations of Noise Functions 

The noise function CPl has been calculated for a wide range of values of the 
parameter /1. From equations (10) and (13) we have 

and since this equation does not involve R, a, or b explicitly their optimum values will 
be the same for Fizeau and Haidinger fringes. Figure 3, which is an extended version 
of Figure 11 of Hill and Bruce (1962), shows the optimum value of b for each choice 
of a and /1. The optimum value of a for multiple-beam fringes is 0 ·125 for values of 
/1 up to 0 '15, and 0·3 for larger /1. (Because of the rapid convergence of all the Fourier 
series for large values of /1, the multiple-beam case reduces to the two-beam one, for 
which the optimum value of a is O· 3, independent of /1.) Hill and Bruce (1963) showed 
that for multiple-beam fringes the best value of R was O· 73, and this value has been 
used throughout the present calculations. For the two-beam case R should be 1·0. 

Figures 4(a) and 4(b) show a selection of the calculated results for multiple-beam 
and two-beam fringes respectively. In each figure, curve H is the ideal noise function 
CPl for Haidinger fringes and curve F is the corresponding function CPl for Fizeau 
fringes, the functions having been optimized at each value of /1 by adjustment of the 
parameters a and b. It can be seen that the peaks are shifted to larger values of /1 for 
the Fizeau fringes, and that the best values of CPl are within a factor of two of the best 
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values of cPl' (The other curves and the experimental points in these figures are 
discussed in Section V.) 

The two-beam interferometers are marginally superior to the multiple-beam 
instruments, for both types of fringe, but the large values of J1 would present mechani­
cal problems in a Michelson interferometer. Although the optimum values of a are 
rather large, detailed calculations show that CPl remains within 10% of its peak value 
for a as small as 0'1, with b in the range 0·1-0·3. Raymond (1970) has pointed out 
that, for two-beam fringes of high visibility, setting on a dark fringe improves the 
signal to noise ratio by as much as a factor of two. This advantage is rapidly lost as 
the visibility falls below about 0·5. 
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Fig. 4.-Noise functions versus fl for (a) multiple-beam fringes and (b) two-beam fringes. The curves 
Hand F are the ideal noise functions t/h and "'1 for Haidinger and Fizeau fringes respectively, and 
have been obtained by optimizing a and b at each value of fl. The theoretical curves E are the calcu­
lated functions for Fizeau fringes with the experimental parameter values (a) a = b = 0·2 and (b) 
a = O· 3, b = O· 2. Curve E is identical with the optimum curve F for two-beam fringes. The points 

show the experimental results for the precision, scaled to the corresponding E curve. 

IV. EFFECTS OF DEPARTURES FROM IDEAL GEOMETRY 

The theory presented so far has assumed that the detecting aperture conforms 
exactly to the shape of the fringes. In spectroscopic instruments it is possible to ensure 
that this is so to a very high degree of accuracy, since the optical surfaces can be made 
flat to 0·01 fringe so that the fringe pattern is circular (Haidinger) or linear (Fizeau) 
to a corresponding degree, while the alignment of the surfaces and of the aperture to 
the fringes also can be carefully controlled to an adequate degree. In the metrology of 
practical end-standards oflength, on the other hand, we are faced with three departures 
from ideal geometry: 

(i) the surfaces are not optically smooth, but show scratches of various depths 
and widths which are left by the lapping process and by subsequent wringing 
of the surfaces; 

(ii) the surfaces commonly depart from flatness by as much as O· 2 fringe, and 
sometimes by as much as O· 5 fringe on longer standards; 
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(iii) it is not possible to make the end faces perfectly parallel, which means that 
the fringe pattern from the end of the standard will not be parallel to that 
from the base plate to which the standard is wrung and consequently that 
an aperture cannot be aligned simultaneously with both patterns. 

The effects of surface roughness are to reduce the visibility of the interference 
pattern and to slightly change the mean order of interference (averaged over a 
region that is large compared with the scale of the roughness). These effects have 
been discussed by Hill (1963) and will not be considered further here. 

(no + x/K) A/2 
no >../2 ~ 
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e(x,y) ),/2 

W/2 

Fig. 5.-Geometry of a wedge 
interferometer: no is the order 
of interference at the centre of 
the aperture and e(x, y) )./2 
represents the departure from 
ideal fringe spacings at the 
point (x, y). 

Suppose that ideally the two surfaces of a two-beam Fizeau-type interferometer 
form a wedge, oriented so that straight fringes lie along the y direction and have 
spacing K in the x direction. The irradiance in the interference pattern is given by 

len) = Z(I+ Vocos2nn), (16) 

where n is the order of interference, Z the transmittance of the interferometer, and Vo 
the visibility of the fringes, which depends on path difference, line width, source size, 
etc. The order of interference at any point in the aperture is 

n(x,y) = no +X/K, (17) 

no = n(O, 0) being the order at the centre. We shall describe any departure from this 
ideal geometry by a function e(x,y), where e(x,y»)./2 is the difference between the 
actual and ideal spacings at (x,y) (see Fig. 5). The full expression for n(x,y) therefore 
becomes 

n(x,y) = no +X/K +e(x,y). (18) 

The result of integrating over the aperture is 

F(no) = XYZ{1 + Vi cos 2n(no - LlN)} , (19) 
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where X and Yare the dimensions of the aperture (in units of K), 

AN = (2n)-1 arctan( - C/B) , (20) 

with 

B = Is cos2n{x/K +e(x,y)} dS, c = Is sin2n{x/K +e(x,y)} dS, (21) 

S being the area of the aperture. 
A comparison between equations (16) and (19) shows that the effect of an error 

e(x, y) is simply to change the visibility and introduce a phase shift AN. The subsequent 
calculations of signal strengths and limiting precisions are unaffected in form and only 
the numerical results are altered, to an extent that is dependent on the characteristics 
of e(x,y). Several general comments may be made at once. If e(x,y) is anti symmetric 
about (0,0), the integral C in (21) vanishes and therefore AN is zero. This will be the 
case, for example, when the interferometer surfaces are tilted about the y axis and the 
fringes are not parallel to the aperture. If e(x,y) vanishes everywhere, C again vanishes 
and V1/Va reduces to the (sin x)/x function that is characteristic of slit apertures. In 
general AN will not vanish but will be a correction to the apparent order of inter­
ference, analogous to that which arises in a Haidinger system. 

To proceed further it is necessary to assume a specific form for e(x,y). A simple 
model, which is roughly descriptive of a typical end-standard, is a spherical cap of 
geometric radius r, for which the sagittal depth at (x,y) is approximately given by 

The evaluation of the integrals Band C in (21) involves straightforward but extensive 
expansions of the trigonometric functions and leads to expressions involving Fresnel 
integrals. Only some of the results will be indicated here. It is convenient to express 
these results as functions of the spherical error t/I, defined as e(O,! W) where W is the 
geometric width of the end-standard in the y direction. This form accords with the 
practical assessment of the flatness error of an end-standard. The relation between t/I 
and r is 

The noise function <P1 for a two-beam Fizeau system has been calculated for 
various values of the spherical error. The results confirm the intuitive expectation that 
Y should generally be as large as possible, to increase the amount of usable light. 
However, for severe errors (t/I ~ 0·5) the rapid decrease in visibility as Y is increased 
overcompensates for the gain in signal, and the noise function decreases when Y 
exceeds 0'75 W. For moderate values of t/I (:(;0,2), the visibility remains as high as 
0·7 Va even when Y = W. 

The optimum value of X is found to be O' 4, which agrees with the result 2b = 

0'4 for the ideal case when t/I = O. The optimum scan amplitude remains close to 
a = 0·3. The variation of the noise function <P1 with t/I under these conditions is 
shown in Figure 6. The curve for VdVa is virtually identical with that for <P1 because 
the Bessel function in equation (3) is small and the dominant term in <P1 is u1 and hence 
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Vt (see equation (4)). The loss in precision is not very severe for practical values of ljI; 
for example, an end-standard of rather poor flatness (ljI = 0·2) would still allow 93 % 
of the ideal precision of setting. Rather surprisingly, the variation of CPt with ljI is 
practically independent of the fringe spacing K. It is therefore desirable to use as 
large a fringe spacing as possible, subject to the requirements mentioned above that 
the orientation of the fringes should be observable. A practical point here is that there 
is generally a narrow boundary region on an end-standard where there is pronounced 
curvature, and this region, which could be 10 % of W, should be excluded from the 
aperture. 

The phase shift, or aperture correction term !J.N, also varies little with the fringe 
spacing. It is independent of the actual order of interference because it is the result of 
integrating over a given fringe pattern, no matter how that pattern is generated. (This 
is jn contrast to the usual correction for the integration over the entrance aperture, 
which does depend on no.) 

0-6 

0-4 

0-2 

o 
<f (fringe units) 

Fig. 6.-Effects of increasing 
spherical error I/f on the noise 
function q,1(1/f), visibility Vh 

and aperture correction f!..N 
(in fringe units) for the optimum 
conditions a = 0-3, X = 0'4, 
and Y = W. 

Since the spherical error ljI, as defined above, is positive for a convex surface, 
while the mean length of an end-standard with a convex surface is less than its defined 
length at the centre of the surface, a positive correction to the length is required when 
ljI is positive. The converse is true for a concave surface. If the base plate supporting 
the end-standard is curved, the preceding rule is applicable in reverse, but in practice 
base plates are of such quality that no correction is necessary. 

The geometric defect (iii) referred to above was the relative misalignment of the 
aperture and the fringes. Goldberg and Brockman (1962) showed that the photo­
electric visibility and signal to noise ratio in this case depend on the function 

sin 2nX sin 2n Y 
2nX 2nY' 

where X and Yare the aperture dimensions relative to one fringe spacing. The 
phase shift is zero because of the anti symmetry of the arrangement. Goldberg and 
Brockman showed that some advantage could be gained by using a circular aperture 
instead of a rectangular one, because of the reduced loss in photoelectric visibility as 
the fringes rotated. The optimum diameter of the aperture was shown to be 0 . 59 fringe. 
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v. EXPERIMENTAL TESTS OF THEORY 

The Fabry-Perot interferometer described by Bruce and Hill (1961) and Hill 
and Bruce (1962) was modified for the present work. Initially the plates were adjusted 
to produce Fizeau fringes in transmission, which were projected onto an adjustable 
slit in front of the photomultiplier. The light source was a cooled electrodeless 198Hg 
lamp with a filter to isolate the 546 nm radiation. The output of the photomultiplier 
was synchronously detected. The decade fringe-controller (Bruce and Hill 1961) was 
calibrated as usual by setting on successive fringe maxima. 

The technique adopted for determining the precision of setting on a fringe 
differed from that used previously. The time constant of the detecting system ('t' in the 
theoretical equations) was objectively defined by setting the filter on the d.c. output 
of the lock-in amplifier to 1 s. A digital voltmeter was set to sample and display the 
output once each 5 or 10 s (sampling time 0·1 s). The sole function of the observer was 
to record the displayed readings, so that no SUbjective integration was involved. The 
controller was set to 0·01--0·02 fringe from a peak and five voltmeter readings were 
taken. The controller was then adjusted by 0·01 or 0·02 fringe and five more readings 
were taken. Alternate groups of readings made in this way were used to construct 
two drift lines of detector output against time. (It was assumed that, for these small 
offsets, the detector output would be proportional to the fringe offset.) Each drift 
line was fitted by a least-squares straight line, and the difference between the intercepts, 
combined with the prior calibration of the controller, gave the scale factor (volts per 
fringe). The uncertainty of setting (~N) was taken to be the standard deviation of the 
residuals of the observed points about the fitted line. The precision of setting was taken 
as before to be N/~N, with N the order of interference. 

Suppose that the drift lines at controller settings C1 and C2 are 

and 

with standard deviations 0"1 and 0"2 respectively. In this case 

where C controller units correspond to one fringe, and therefore 

C2 -C1 0" . 
0" (volt) == ~N = C -- (fnnge). 

C2- C1 

A typical set of results is shown in Figure 7, where it can be seen that the difference 
between the intercepts is not much larger than the scatter of the points. Consequently 
the calculated values of ~N show considerable scatter. 

The experimental values of N/~N were compared with theory in the following 
way. The theoretical noise function was calculated for the experimental values of a 
and b. (For the multiple-beam experiment it was convenient to fix each of these at 
0·2 instead of optimizing them at each value of jl, while, for the two-beam experiment, 
the constant optimum values a = 0·3 and b = 0·2 were used.) A polynomial 
approximation was found for each curve. In Figure 4(a) the curve E shows this 
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polynomial; in Figure 4(b) the polynomial is identical with the optimum curve F. 
Each set of values of N/1JNwas then fitted to its appropriate polynomial by adjusting a 
scaling factor. The factor which yielded the closest fit was taken as the experimental 
value of 1Jt . The quality of the fits may be seen from Figure 4. The multiple-beam 
results (a) have their peak at the theoretical value of fl and fit the curve reasonably well. 
The two-beam results (b) were restricted to fl = 0 ·42 by mechanical limitations when 
the interferometer was converted to a Michelson system, but the peak appears to be in 
the expected region. 

15 

10 

40 50 

-5 

Fig. 7.-Typical plot of detector output against time as used in the determination 
of the experimental precision of setting. 

The experimental values of 1Jt found by the above method were 

multiple beam 2·61 X 108 ; two beam 2·23 x 108 . 

The interferometer constants used here differed somewhat from the values adopted 
in the earlier work. In particular, the effective transmittance of the external optics was 
very low ( < O· 002), largely because of considerable overfilling of the various apertures 
and also because of losses in auxiliary components such as windows and relay optics. 
After including rough estimates for these losses together with a correction for the 
different radiance and quantum efficiency of the mercury green radiation, the resulting 
estimates of 1Jt were 

mUltiple beam 23·69 x 108 ; two beam 18 ·18 x 108 ; 

i.e. respectively 9· 1 and 8·2 times the corresponding experimental values. Considering 
the very approximate nature of the estimates of Zo and the sensitivity of the signal to 
slight errors in the alignment of the fringes, this degree of agreement is thought to be 
satisfactory. Certainly the functional form of the experimental graphs is in accordance 
with the theory and the peak values occur near the predicted values of fl. 
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VI. DISCUSSION 

(a) Practical Metrology with Large Two-beam Interferometers, using Thermal Sources 
of Light 

The practical problem that gave rise to this work was to extend photoelectric 
setting techniques to Michelson interferometers, which are used to calibrate line- and 
end-standards of length (Bruce 1956; Ciddor and Bruce 1967). In such instruments 
the optical separation t between the two mirrors may be as large as 0·25 m. The field 
of view generally contains two sets of fringes, the relative displacement of which must 
be measured to obtain the length of the standard. At such large mirror separations, 
the visibility is poor and visual observations are difficult and prone to error. Direct 
estimation of fringe fractions is limited to an accuracy of 0 ·05 fringe, but the use of a 
compensator or half-shade device can improve this to 0·01-0·02 fringe. 

Because of the division of the field, the quantity Y which was introduced in 
Section III must be less than one-half the diameter of the field (in fact Y should 
preferably be about 0·8 of this limit, as mentioned in Section IV). It has been shown 
in Section IV that even quite substantial errors in flatness (up to O· 2 fringe) produce a 
very slight loss in precision and that misalignment errors, although more serious, can 
be adequately controlled. The major limitation is the large value of Jl, which can 
reach 0 ·6-0·8 for values of t up to 0·25 m. These values are well beyond the peak of 
the curve of <P1 versus Jl and lead to <P1 values of O· 1-0·25, compared with a peak of 
0·38. Using () ~ 2x 1018 and {)N = 0·01 with N = 106 , we find 

(b) Practical Metrology with Large Two-beam Interferometers, using Laser Light 

The use of highly coherent light leads to fringes of high visibility. The narrow 
bandwidth of the laser affects both () and <P1 as follows. 

A typical helium-neon laser has a power output of 1 m W into a cone of semi­
angle 3 x 10-4 rad from a surface of diameter 2 mm. The radiance L is therefore 109 

Wm- 2 sr-1, compared with 0·3 Wm- 2 sr- 1 for the krypton 606 nm radiation. The 
relative spectral width is very small; even if we allow for broadening of the line by 
thermal and mechanical instabilities, we can reasonably expect to have Au/u = 10-9 , 

or Au = 1·6 X 10-3 m- 1 for the 633 nm radiation. The parameter L/Au2 is therefore 
4 x 1014 W sr 1 (c.f. 0·18 W sr- 1 for krypton 606 nm) and ()t is increased to 4·7 x 107 

times the value for krypton 606 nm radiation. 
The small value of Au leads to a very small value of Jl. Taking t = 0·25 m we 

find Jl = 0·0008. Now for Jl < 0 ·15, a very good approximation to <P1 in Figure 4(b) 
is <P1 = 1.58,).. This linear relation is to be expected from the form of equation (13), 
since both u and v tend to unity as Jl tends to zero. Substituting Jl = 0·0008 in the 
expression for <P1 we obtain <P1 = 0·0013. The precision is therefore 

N/{)N = 4·7 x 107 x (2 x 1018)t x 0·0013 = 8·6 x 1013 . 

In practice it would be necessary to attenuate and diffuse the beam, but it is clear that 
the precision far exceeds any practical requirement. 
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(c) Precise Refractometry of Gases 

An accurate measurement of the refractive index of air is an essential part of 
interferometric metrology. The usual way of determining the refractive index is to 
measure the difference between the optical lengths of two geometrically equal cells, 
one in air and the other in vacuum (Terrien 1965). The two paths are usually placed 
side by side in one or both arms of a Michelson interferometer so that the actual 
optical path differences between the interfering beams can be made very small. If the 
order of interference in the path containing the vacuum cell is made equal to zero, the 
corresponding value of {t is zero. The optical length of the air cell is (n -1)d greater 
than that of the vacuum cell, where n is the refractive index and d the common 
geometric length. For a cell 0·3 m long, which is a practical size, and n = 1·000276 
approximately, the value of {t is about 0·0005 for a relatively broad spectral line 
(cadmium 644 nm, ila = 3·3 m- 1). 

The noise function CP1 (Fig. 4(b» decreases almost linearly with {t, as mentioned 
above, and the calculated value of CP1 at {t = 0·0005 is 0·0008, giving a precision of 

N/oN = otcpdl·3 = 8·59 x 105 • 

Since N = 2(n -1 )d/ A is only about 250, oN can be determined to about 0·0003 fringe, 
corresponding to on/n = 3 x 10- 10 . This far exceeds practical requirements, but of 
course we have used an optimistic value of 0 based on a high value of Zoo 
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