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Abstract 

Following the demonstration in Part I that the Ising moqel with three-spin interactions on a triangular 
lattice is equivalent to a colouring problem on a hexagonal lattice, and that a generalized Bethe 
ansatz can be used to obtain equations for the eigenvalues of the transfer matrix of this colouring 
problem, the resulting equations are solved here to obtain the largest and next-largest eigenvalues 
in the limit of a large lattice. This gives the free energy and correlation length. The free energy is 
obtained as a simple algebraic relation and critical exponents cc = cc' = v = v' = 2/3 are derived. 
The scaling relation dv = 2-cc is satisfied. 

1. Introduction 

In the preceding Part I (Baxter and Wu 1974; present issue pp. 357-67) we 
considered an Ising model on a two-dimensional triangular lattice of N sites, with 
solely a three-spin interaction. If (J i = + 1 or - 1 is the spin on the site i then the 
Hamiltonian is 

Yf = -JL (Ji(Jj(Jk' (1) 

where i, j, k are the vertices of a triangular face of the lattice and the summation is 
over all such faces. Our aim is to calculate the partition function 

Z = Iexp(-:#'/kD, (2) 

the summation here being over all possible spin configurations of the lattice. 
We saw in Part I that the above problem is equivalent to a colouring problem 

on a related hexagonal lattice, and that it can be solved by a generalized Bethe ansatz 
for the eigenvectors of the transfer matrix. Thus we found that for N large 

Z1/N = (2sinh4K)1/3 A~/3M, (3) 
where 

K = IJI/kT (4) 

and Ao is the maximum eigenvalue of the transfer matrix for a hexagonal lattice of 
M sites per row. 

In this paper we calculate Ao and the next-largest eigenvalue A1 for M large. 
This gives us the free energy f and the correlation length~. Our principal results 
are that Z1/N is an algebraic function of eK , given by equations (6), (56) and (61) 

• Part I, Aust. J. Phys., 1974, 27, 357-67. 
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below, and that the critical exponents rx and v satisfy 

rx = rx' = v = Vi = 2/3, (5) 

This agrees with the scaling prediction dv = 2-rx (Fisher 1967, equation 9.3.15). 
The results for J, rx and rx' have been reported earlier (Baxter and Wu 1973). The 
derivation of these and of ~, v and Vi are given here. 

2. Equations for Eigenvalues 

Putting 
t = sinh2K, (6) 

the results of Part I can be summarized as follows. Consider n wave numbers 
k1' ... , k n and define Ej, Bj,l and Aj in terms of them by 

cosh2Ej = cos2kj +t +t-1 , 

Bj,l = -cosh(Ej+ikl)/cosh(EI+ik) , 

Aj = exp(Ej-ik) , 

(7) 

(8) 

(9) 

for j and I = 1, ... , n. Let k1' ... , k n be distinct (modulo n) and given by the n equations 

n 

exp(iMkj) = - n Bj,l' j = 1, ... ,n. (10) 
1=1 

Then the eigenvalue A of the transfer matrix of the colouring problem is given by 

A = A1 ••• An • (11) 

There will be many solutions of equation (10), corresponding to the various 
eigenvalues. In addition, the integer n can take any even value from 0 to 2M. Out 
of all these possibilities we must choose the numerically largest eigenvalue Ao to 
substitute into equation (3). Fortunately we are interested only in the limit M -+ 00, 

when we expect A~/M to tend to a limit. It should be noted that the above equations 
are invariant with respect to inversion of t. The critical temperature Tc occurs 
when t = 1. 

3. Low Temperature Limit 

Largest Eigenvalue 

We first consider the low temperature limit, when K and t are large and positive. 
(From the duality relation t -+ t -1, this is also equivalent to the high temperature 
limit.) This enables us to explicitly locate the largest eigenvalue Ao. 

We look for a solution of equation (10) such that k1' ... , kn are real. It was remarked 
in Part I that such a solution is expected to exist, since the Bjl are then unimodular. 
From equation (7) we can choose E1 , ••• , En to be real and positive, and for t large 

exp(2E) ::::= 2t. (12) 
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Thus to first order E10 ... , En are the same. Substituting into equations (8) and (10) 
and retaining only dominant terms, we obtain 

exp(iMkj ) = (-l)n-l exp(i Itl (k,-kj »). (13) 

Let 
Zj = exp(2ikj ). (14) 

Equation (13) can then be written 

zj(M+n) +( -l)n(zl'" zn)t = O. (15) 

This is a polynomial equation of degree t(M +n) for each z. There must be at least 
n distinct roots Z10 ... , z"' since if any two z/s coincide it follows from equations (30) 
and (48) of Part I thatf(m, x) == 0 and our eigenvalue equations become meaningless. 
Thus we must have 

!(M+n) ~ n, that is, n~M. (10) 

Provided this is so, there will be solutions of equation (15). From equations (9), 
(11) and (12) it follows that 

I A I = (2/)n/2 . (17) 

Thus to maximize A we must choose n as large as possible, consistent with the 
condition (16), i.e. 

n=M. 

Substituting equation (17) into (3), we obtain in this limit that 

N-l lnZ = 2K, 

(18) 

(19) 

which is the correct low temperature value. This suggests that we have indeed found 
the maximum eigenvalue Ao. Inspection of the transfer matrix as defined in Part I 
shows that in this limit there should be two equally large maximum eigenvalues, 
one corresponding to eigenvectors which are symmetric with respect to incrementing 
all colours m by 4, and another which is antisymmetric. Since we have assumed 
symmetry, we only find the former, but for finite 1 and M we expect this to be the 
larger, so all is well. 

When n = M, Zl' ... , Zn are the complete set of roots of the polynomial equation 
(15) for Zj' so we must have 

Zl",Zn = (Zl",Zn)t = 1. (20) 

Hence from equation (14) we can choose kl' ... , kn to be 

k j = n(2j-n-l)/2n, j= 1, ... ,n. (21) 

Thus k10 ... , kn are distributed throughout the interval (-tn, tn) and tend to a con­
tinuous distribution as n -+ 00. 

In subsequent sections we shall use corresponding properties of k10 ... , kn to obtain 
Ao as an analytic function of 1 in the domain 1 ~ 1 < 00 (for n large). We assume 
that Ao remains the maximum eigenvalue throughout this domain, i.e. that no other 
eigenvalue crosses it. 
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Next-largest Eigenvalue 

To obtain the correlation length e and the critical exponents v and v' we need the 
next-largest eigenvalue A1 in the n = M subspace (other than the antisymmetric 
eigenvalue referred to above, which is asymptotically degenerate with Ao for M 
large). Some inspection suggests that this corresponds to k1' ... , kn again being real 
but one of the E/s, say E1, being negative (the rest positive). In the low temperature 
limit, the equations (10) become 

zr1+(-I)n(z1 ... zn}i- = 0, 

z~-1+(-1)n(z1 ... zn)-t = o. 
j = 2, ... ,n, (22a) 

(22b) 

Since Z2' ... , Zn are the n -1 distinct roots of the equation (22a) for Zj' it follows that 

Z2 ... Zn = (Z1 ... zn)t = Z1' (23) 
and so from equation (22b) 

Z~ = (_1)n-1 . (24) 

Thus in this limit there are n possible values for k1 which are real and lying in the 
interval ( - -!n, -!n); k2' ... , kn are distributed uniformly throughout the interval and 

I A1/Ao I = (2t)-1 . (25) 

4. Change of Variables 

We now return to considering finite values of t. To the author's knowledge, in 
every previous application of the Bethe ansatz (Yang and Yang 1966; Lieb 1967a, 
1967b, 1967c; Baxter 1969, 1970, 1971, 1972) it has been found possible to transform 
from the wave numbers k1> ... , kn to some new variables U1> ... , Un so as to make Bjt 
a function only of uj-Ut (and parameters such as t). The present model is no excep­
tion. Suppose there exists a function u(k) such that 

B1,2 = F{u(k1)-u(k2)}. 

Differentiating with respect to k1 and k2 and taking ratios, we find 

aB1,2/ak1 _ u'(k1) 
- aB1,2/ak2 - u'(k2)' 

(26) 

(27) 

Thus for the required transformation to exist it is a necessary condition that the 
left-hand side of equation (27) be a function of k1 divided by the same function of 
k 2 • This condition is also sufficient, since it ensures that the Jacobian of B1 ,2 and 
U(k1) - U(k2) vanishes. 

Differentiating equation (8), using (7), we find after some manipulation that the 
left-hand side of equation (27) is 

(sinh 2E2)/(sinh 2E1) • (28) 

Remembering that Ej is a function E(kj) of kj' we see that the condition (27) is 
indeed satisfied and that 

u'(k) oc cosech 2E(k). (29) 
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Introduction of Elliptic Functions 

We can integrate equation (29), using equation (7), and obtain k and E as functions 
k(u) and E(u) of the new variable u. We find that we are forced to introduce elliptic 
functions. Since the direct derivation is not particularly illuminating, the results 
are only quoted here and are justified by using certain identities between elliptic 
functions, as given in the Appendix. We use the notation of Gradshteyn and Ryzhik 
(1965; hereinafter designated GR), except that we denote the modulus of the elliptic 
functions by m and the conjugate modulus by m' = (l-m2)t. As usual, we write 
the complete elliptic integrals of the first kind of these moduli as K and K' respectively. 

Define m by 
m = min(t2 , t- 2) 

(so 0 < m ~ 1) and set 
1f = !K'. 

Then we find that k(u) and E(u) are given by 

exp{2ik(u)} = sn(i1f - u)/sn(i1f + u), 

exp{ -2E(u)} = msn(u-i1f)sn(u+i1f). 

(30) 

(31) 

(32) 

(33) 

The relation (7) is now satisfied identically for all complex numbers u, as we can 
verify by substituting equations (31) and (32) into (7) and using (30) and the identity 
(A3) of the Appendix. 

To summarize: we are transforming from kl' ... , kn to new variables Ul' ... , Un 
such that 

k j = k(u) , Ej = E(u) , j=l, ... ,n, (34) 

where the functions k(u) and E(u) are defined by equations (30)-(33). If u is real 
then k(u) and E(u) are real and E(u) is positive. We shall find that Ul' ... , Un are real 
for the maximum eigenvalue Ao. 

Substituting equations (32) and (33) into (8), we obtain (using sn( - u) = - sn u) 

B. == _ sn(uz-i1f) -m sn(uj-i1f) sn(uj+i1f) sn(uz+i1f) (35) 
J,Z sn(u j -i1f) - m sn(ul-i1f) sn(uz+ i1f) sn(u j +i1f)' 

Multiplying the numerator and denominator by m sn(uj + 3i1f), and using equations 
(31) and (Alb), this becomes 

B. = _ m{sn(u j + 3i1f) sn(uz-i1f) -sn(uj +i1f) sn(uj + i1f)} . (36) 
J,I 1 - m2 sn(u j+ 3i1f) sn(ul-i1f) sn(u j +i1f) sn(uz+ i1f) 

From equation (A4) it follows that 

Bj,l = -msn(2i1f)sn(uz-uj-2i1f) = -im-!-sn(uz-uj-2i1f), (37) 

using equation (A2). Thus Bj,z is a function only of Uj-UZ (and t), as was required. 
Following Yang and Yang (1966), we define one further function e(u) by equation 

(37) and 
Bj,z = -exp{ -i e(Uj-uz)}. (38) 

This e(u) is not the elliptic theta function. 
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Fourier Expansions 

Using equation (A5b), we obtain the Fourier expansions of k(u), E(u) and 8(u), 
which are convergent in a strip containing the real axis: 

where 

k(u) = nu + f q'/4(1 + q,/2) sin (nru) 
2K ,=1 r(l+q') K' 

_ nK' <Xl (q,/4_ q3,/4) (nru) 
E( u) - 8K + I ( ') cos K ' 

,=1 r l+q 

nu . ,. <Xl q./2 (,",ru) 
8(u) = 2K +2 '~1 r(1+q,)sm K ' 

q = exp( -nK' jK). 

(39) 

(40) 

(41) 

(42) 

Note that 8(u) is a real function and is odd. This verifies our observation that Bj " 

is unimodular when kj and k, are real. 

5. Integral Equation for Distribution of uis 
We can now employ standard methods (Yang and Yang 1966) to solve the equations 

(10) for Ao when nand M are large. First we substitute equation (38) into (10) and 
take logarithms, choosing the branches so as to obtain the equations 

n 
k(u) +M- 1 I 8(Uj-u,) = n(2j-n-l)jM, j = 1, ... ,n. (43) 

1=1 

Suppose that for every u, there is a - u,. Then as u] increases from - K to K 
(a period of the elliptic functions), the left-hand side of equation (43) increases from 
-tn(1 +njM) to -in(l +njM). Correspondingly, as j increases from 1 to n the 
right-hand side increases from -n(n-l)jM to n(n-l)jM. Thus there will be real 
solutions to equation (43) if (n-l)jM < t(1 +njM), that is, if n :::;; M (n must be 
even). Further, to every Uj there will be a -Uj, as assumed. 

We restrict attention to the case n = M, which we know contains the maximum 
eigenvalue in the low and high temperature limits. Then from the above reasoning 
we expect U1>"" Un to be distributed throughout the interval (-K, K) and to tend 
to a continuous distribution as n -+ 00. Let M p(u)du be the number of u/s between 
u and u+du. Then we require that the total number of u/s be 

M f~KP(U) du = M. (44) 

The equation (43) becomes, for -K < u < K, 

k(u)+ JK 8(u-v)p(v)dv = 2n r" p(v)dv. 
-K Jo (45) 
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Differentiating with respect to u, the resulting linear integral equation for p(u) can 
be solved by Fourier transforms. Using equations (39) and (41), we find 

p(u) = !K- 1 + !K- 1 f q,/4(1 + q,/2) (rcru) 
,=1 (1_q,/2+ q') cos K . (46) 

This does indeed satisfy equation (44). 

6. Maximum Eigenvalue and Free Energy 

Noting that for every k j there is a -kj' we see from equations (9) and (11) that 

1= M- 1 1nAo = M- 1 f Ej = fK E(u)p(u)du 
}=1 -K 

rcK' 00 qt'{1- q') 
= -8K- +! '~1r -(-1 +-q=-')-'-{1------'q::"'::t'-+-q-') ' (47) 

using equations (40) and (46). At low temperatures t is large while m and q are small 
and q ~ m2/16, so equation (47) becomes 

M-1 1nAo ~ -tlnq ~ -!In!m ~ !ln2t. (48) 

This agrees with equation (17), verifying that we have found the maximum eigenvalue 
at low temperatures, and by duality at high temperatures. As t decreases from CX) 

to 1, m and q increase from 0 to 1, so the expression (47) is analytic throughout 
this interval (and through 0 < t < 1). We conjecture that the result is the maximum 
eigenvalue throughout these ranges, i.e. no other eigenvalue crosses it. 

The problem is now solved, since for a given t we can calculate m, q, Ao and Z 
from equations (30), (42), (47) and (3) respectively. However, it is a remarkable 
fact that we can eliminate the elliptic parameters m and q and express equation (47) 
directly in terms of t by an algebraic equation, as is now shown. 

Set 
p = qt (49) 

and multiply the numerator and denominator of the summand in equation (47) by 
1 +p'. The summand can then be re-arranged to give 

rcK' 00 1( p' 2p2, 3p3, ) 

1= 8K +! '~1 r l+p' + l+p2, -1+p3, . (50) 

Writing this summation out and collecting terms proportional to p' /(1 + p') for 
r = 1,2,3, ... , we find 

rcK' 00 , ( ) I = 8K + L p cos(rcr) - 3 cos(j-rcr) . 
,=1 r(l+p') 

(51) 

Comparing this with the identity (A5a), we see that we can write I in terms of sn 
functions of modulus m1 such that if K1 and K{ are the corresponding elliptic integrals 
then 

exp( -rcK{/K1) = p, that is, K{/K1 = K'/2K. (52) 
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From equations 8.126.1,3 of GR it follows that, using equation (30), 

m 1 = 2m-t/(1+m) = 2/(t+t-1). (53) 

Evaluating the sums in equation (51), using the identity (A5a) and the result 
sn(K!> ml) = 1, we obtain 

1= tln(27 m 1 y3/4) , (54) 
where 

y = {mtsn(~K1> m1)} - 2 . (55) 

With m replaced by m1 in the identity (A6) and using equation (53), we see that 
y is the root of the equation 

(y-1?(1 + 3y)/y3 = 2(1- t)4/(t+ t 3), (56) 

lying in the interval 1 ~ y < 00. There is one and only one such root. 
Noting from equations (3) and (47) that 

Z l/N = (2 sinh 4K)1/3 exp iI, (57) 

it follows from equations (53), (54) and (6) that in the limit of N large 

Zl/N = (6ty)t. (58) 

This is the result reported earlier by Baxter and Wu (1973). From equation (56) we 
can verify that y is an analytic nonzero function of t, and hence of temperature T, 
except at t = 1 where 

y = 1 +4- 1/ 3 1 t_11 4 / 3 + smaller terms. (59) 

Since t is an analytic monotonic decreasing function of T for all real T, it follows that 
a phase transition occurs at (and only at) the temperature Tc given by t = 1, that is, 

sinh(2J/kTc) = 1 or kTc/J = 2/ln(J2 + 1) = 2·269185 .... (60) 

The free energy per site of the three-spin Ising model is, using equation (58), 

/= -N-1kTlnZ = -tkTln(6ty). (61) 

Near Tc we see from equation (59) that this has a dominant singularity proportional 
to 1 T - Tc 14 / 3 • Differentiating twice to obtain the specific heat, it follows that the 
critical exponents IX and IX' are 

IX = IX' = 2/3, (62) 

which is an unusually large value. 
We note that the present problem is similar to the three colourings of the square 

lattice (Baxter 1970), in that with both problems one is led to introduce elliptic 
functions to solve the Bethe ansatz equations, but these functions can finally be 
eliminated to express Z l/N as a simple algebraic function of the Boltzmann weights. 
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7. Next-largest Eigenvalue: Exponents v and v' 

We now evaluate the next-largest eigenvalue A1 in the n = M subspace of the 
transfer matrix. Guided by the results of Section 3, we assume that U2' ... , Un are 
real but U1 = iK' +v with v real. This ensures that k1' ... , kn and E1, ... , En are real, 
E2, ... , En are positive and E1 is negative. The equations (34) and (38) remain true 
and can be used as they stand for j, 1 = 2, ... , n. From equations (32), (33), (37) and 
(Alb) we see also that 

k1 = n-k(v), 

B1 " = exp{i8(v-u,)}, 

E1 = -E(v), 

Bj ,1 = exp{i8(uj-v)}, 

(63a) 

(63b) 

for j,l = 2, ... , n. (The inclusion of n in k1 ensures consistency with equation (8).) 
Substituting into equation (10), taking logarithms and choosing appropriate branches, 
we obtain 

n 

-Mk(v) = 2ns+ L 8(v-uJ, 
'=2 

n 

Mk(u j) = n(2j-n-2)+8(uj-v)- L 8(Uj-u,) , 
1=2 

(64) 

(65) 

where s is an arbitrary integer and j = 2, ... , n in equation (65). There will be n distinct 
solutions of equations (64) and (65), corresponding to different values of s, all with 
v and U1, ... , Un real. The values of v are distributed throughout the interval ( - k, k). 
It follows that in the limit of n, M large we can regard v as an arbitrary real parameter 
and s/M as defined by equation (64). Thus we need only consider equation (65). 

Let M p(u)du be the number of u/s (for j = 2, ... ,n) between u and u+du. Pro­
ceeding as in Section 5, taking n = M, we obtain 

k'(u) = 2np(u) +n- 1 8'(u-v) - f~K 8'(u-w)p(w) dw. (66) 

(At first sight the replacement of sums by integrals would seem suspect here, since 
we wish to retain terms of relative order n -1. However, because u2 , ••• , Un tend to a 
continuous distribution over a period 2K of the elliptic functions, the error involved 
in replacing sums by integrals is of order exp( - p,n), where p, is some positive number. 
Thus these errors are still relatively negligible and all is well. The author has obtained 
the results of this section independently by a 'perturbation expansion' method 
(similar to that used by Baxter 1971, 1972) that makes these points clearer. However, 
it involves developing more formalism than seems worth while for this section.) 

Solving equation (66) by Fourier analysis, using (3) and (41), we obtain 

p(u) = Po(u) _n-1 P1(U-V) , (67) 

where Po(u) is the maximum eigenvalue distribution given by equation (46) and 

P1(U) = !K- 1 +K- 1 '" q 'ft.ru , ex> t, () 
t... (1 t, cos K . ,=1 -q +q') 

(68) 
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From this we can readily deduce that 

M JK p( u) du = n -1 , 
-K 

which is indeed the total number of u/s for j = 2, ... , n. 
From equations (9), (11) and (63a) we see that 

n 

InAl = -E(v) -in+ik(v) + L (Ej-ikj ). 
j=2 

R. J. Baxter 

(69) 

(70) 

Adding equation (64) to the sum of the equations (65) for j = 2, ... , n, using B( - u) = 
- B(u), we obtain 

M{ -k(v)+k2+'" +kn } = 2ns. (71) 

Thus equation (70) can be written 

InAl = -in(I+2s/M) -E(v) +n f~K E(u)p(u) du. (72) 

Using equations (40), (47), (67) and (68), it follows that 

n cos _ . K ' co qr/4 _ q3r/4 (nrv) 
IniAl/Aol = - 4K - r~lr(l-qr/2+qr) K (73) 

Since equation (73) represents a band of n eigenvalues Al , and remembering 
that, for n sufficiently large, v can approach as close as desired to any real value, 
the largest eigenvalue is obtained by choosing v = K, to give 

, co r/4 _ q5r/4 
. nK _ ~ (-1)' q~~;-;;-:-

In I Al/Ao I = - 4K rf'l r(1 + q3r/2) (74) 

(multiplying the numerator and denominator of the summand by 1 +qr/2). Com­
paring the result (74) with equation (A5b), we are led to define a third elliptic modulus 
m2, with associated elliptic integrals K2 and K;' such that 

K;'/K2 = 3K'/2K, (75) 

and consequently find that 

In I Al/Ao I = In{m1sn(K2 +iiK;"m2)}' (76) 

The author has used methods similar to those employed above to derive the 
identity (A6) in order to eliminate the elliptic functions and write I At/Ao I as an 
algebraic function of t, involving the roots of equation (56). However, the result 
seems rather complicated and not particularly illuminating. We content ourselves 
here with obtaining the behaviour of Al/Ao near Te, that is, when t, m and m2 are 
close to unity. 
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Successively applying the formulae 8.151.2, 8.153.2,3 and 8.146.25 of GR to 
equation (76), we have 

In 1 Ad Ao 1 = In {m! cn(!iKz, m2)/dn(!iK2, m2)} 

= In{m!/dn(!K2,m~)} 

= -4 ~ _1_(q~)2r-lcos{!n(2r-1)} (77) 
r~l 2r-1 ~, ,,? • , 

where 
q; = exp( -nK2/K2) = exp( -2nK/3K') = (q')2/3. (78) 

Near Te the quantities q' and q; are small, so from equation (77) 

In 1 AdAo 1 ~ -2J3 q; = -2..)3 (q'i/3 • (79) 

Replacing k by m' in equation 8.197.3 of GR we have that near Te 

4(q')t ~ m', 
that is, using equation (30), 

q' ~ /c;(1-m2 ) ~ !llntl· (80) 

As In t has a simple zero at T = Te, it follows that 

In 1 Al/Ao loci T-Te 12/ 3 • (81) 

Since correlations decay to their asymptotic values at large distances r as (Al/Ao)', 
the correlation length e is given by 

C 1 = IniAdAol, 

(Fisher and Burford 1967, equation 5.21). Hence near Te 

e oc 1 T - Te 1-2/3 , 

(82) 

(83) 

so that the critical exponents v and v' describing the singularity in e are both equal 
to 2/3. 
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Appendix. Elliptic Function Densities 

We use the notation of Gradshteyn and Ryzhik (1965; designated GR), except 
that m and m' denote the elliptic moduli, instead of k and k'. 

Identity 1 

sn(u+2K) = -sn(u) = sn( -u), sn(u+iK') = (msnu)-l. (Ala, b) 

These relations are given in Section 8.151 of GR. 

Identity 2 
sn(-FK') = im-t . (A2) 

This is given in equation 8.151.3 of GR. 

Identity 3 

(mtsnu +m-tjsnu){mtsn(u+-!iK') +m-t/sn(u+-!iK')} = 2(mt+m-t), (A3) 

for all complex numbers u. 

Proof From equations (AI) we can verify that the left-hand side of (A3) is a 
doubly periodic function of u, with periods 2K,-!iK'. Also, snu is a meromorphic 
function with only simple zeros and poles, at u = 2rK+2sK'i and 2rK+(2s+1)K'i 
respectively, for all integers rand s (equation 8.151.1 of GR). Thus the left-hand 
side of (A3) is a merom orphic function of u. The residue of the pole at u = 0 is 

sn(-!iK') +m- 1 jsn(-!iK'). 

From the identity (A2) we see that this residue is zero, so the pole is spurious. From 
periodicity, so are all other possible poles. Thus the left-hand side of (A3) is an entire 
doubly-periodic function, and hence is bounded. From the Cauchy-Liouville 
theorem it must be a constant. Setting u = K and using 

snK = 1, sn(K+-!iK') = m- t 

(equations 8.151.2,3 of GR), we find that the constant is 2(mt +m-t ). This proves 
the identity. 

Identity 4 

sn(u) sn(v+w) -sn(v) sn(u +w) = sn(u -v) sn(w) , 
1 - m 2 sn(u) sn(v) sn(u +w) sn(v+w) 

for all complex numbers u, v and w. 

(A4) 

Proof Regard the ratio of the left-hand side to the right-hand side of (A4) as a 
function of v. From equations (AI) it has periods 2K and 2iK'. For these moduli 
its only possible poles are at v = u, u+iK' and iK'-u-w, but all these have zero 
residue. Thus the ratio is an entire function of v, and by the Cauchy-Liouville 
theorem is a constant. Setting v = 0 we find that the ratio is unity. This proves 
the identity. 
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Identity 5 

In(mtsnu) = In{2qt Sin(;Ku)} +2 f q', cos(re~u), (A5a) 
,=1 r(l+q) 

provided I Im(u) I < K'. This follows from either equation 8.146.20 or 8.146.23 of 
GR. (The latter equation contains an error: the square root of q should be qt.) 

A simple corollary, obtained by writing the sine function in terms of imaginary 
exponentials and using the Taylor expansion of In(1 + x), is 

In{mtsn(u)} = In{ -mtsn( -u)} 

_ ire ( K 1 ·K') 2· ~ qt, . (rer( u - tiK')) - - - u - -21 - 1 1... sm , 
2K ,=1 r(l+q') K 

provided 0 < Im(u) < K'. 

Identity 6 

If y = {mt sn(tK)} - 2 then y is the real root of the equation 

(y-1)3(1 +3y)/4y 3 = m+m- 1-2, 

lying in the interval I ~ y < 00. 

Proof Set u = v = tK in equation 8.156.1 of GR to obtain 

sn(tK) = 2sn(j-K)cn(j-K)dn(j-K)/{1 -m2 sn4 (j-K)}. 

Also, using snu = sn(2K-u), we have 

sn{tK) = sn{j-K). 

(A5b) 

(A6) 

Eliminating sn(tK) between these equations, cancelling sn(j-K), squaring and using 
equations 8.154.4,5 of GR and the above definition of y, we find 

1= 4{1_(my)-1}(I_my-l)/(I_y-2)2. 

Re-arranging, we obtain the equation (A6) for y. The left-hand side of (A6) increases 
monotonically from 0 to 00 as y increases from I to 00, so there is one and only 
one solution of (A6) in the interval I ~ y < 00. Since we have 0 < m ~ I and 
o < sn(tK) ~ I, y must lie in this interval. Thus this is the desired root of equation 
(A6). 
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