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Abstract 

From the observations of Warner and Telford (1963, 1967), it would appear that fair-weather daytime 
conditions can produce a field of isotropically packed convection cells in the lower atmosphere. 
It is argued here that turbulence plays an insignificant role in the mechanics of one such cell, 
whose horizontal extent is small compared with its height. Thus a simple model of a convection 
cell is developed, and the predictions of this model are apparently consistent with the observations 
in the atmosphere. 

1. Introduction 

Warner and Telford (1963, 1967) present observations of an apparently regular 
convection pattern which extends from a uniform horizontal surface to a well-defined 
inversion about a kilometre above the ground during fair-weather daytime conditions. 
The pattern is most obvious in the temperature structure which contains pulses with 
an excess of up to 1 K above the surrounding air temperature. Each pulse, as observed 
from an aircraft flying horizontally, extends about 200 m and the spacing between 
pulses is of the same order of magnitude. This geometry is essentially independent 
of height and shows no preferred horizontal orientation. (We note that other 
observations (e.g. Grant 1965) imply that the geometry does change with height, but 
Warner and Telford (1967) suggest that such observations probably correspond to 
situations in which the convection pattern is not fully developed.) Although the 
turbulence level is comparable with the mean vertical velocity, it is apparent that there 
is an updraft of about 1 m s -1 associated with each temperature pulse. Continuity 
requires a corresponding downdraft in the surrounding air. 

Simultaneous measurements of the temperature at four levels between 1·5 and 
32 m above the ground imply that the physical structure associated with a temperature 
pulse is an essentially steady plume which is passively advected by the mean wind 
(Priestley 1959). Such a structure is confirmed by Coulman (1970), who records 
temperature and velocity fluctuations up to 225 m above the ground. On the other 
hand, it has been suggested (e.g. James 1953) that the relevant structures are isolated 
thermals or 'bubbles'. Indeed, small-scale laboratory experiments by Sparrow et al. 
(1970) involving the uniform heating of a flat plate produce sequences of individual 
thermals regularly separated horizontally in space. The source of each sequence 
(an eruption of the thermal boundary layer) is fixed in space, and the thermals within 
each sequence are generated at regular intervals of time. James (1953) also states 
that the source of his observed atmospheric thermals are probably fixed. Thus, 
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averaged over a time that is large compared with the generation period of the thermals, 
a mean updraft and a mean temperature excess can be defined for each sequence. 
That is, the average structure is equivalent to that of a plume. 

It therefore appears that a fair-weather convection pattern exists essentially in the 
form of isotropically packed cells extending from the ground to an inversion about 
1 km above the surface. The horizontal dimension of each cell is somewhat less than 
its height and the cross section of the updraft or plume is independent of altitude. 
The purpose of the present work is to study the restriction placed by this geometry 
on any possible fluid motions and to develop a simple model of a convection cell, 
i.e. a plume and its associated downdraft, which predicts some of the observed features. 

Numerical simulations of an unstable atmospheric boundary layer by Deardorff 
(1972) display plume-like features which contribute to the vertical heat transfer of the 
system. However, the stochastic nature of that work makes it difficult to isolate the 
precise mechanics of these features. A deterministic model of a convection plume 
has been developed by Telford (1970, 1972). Although his model is more sophisti­
cated than the one studied here, and produces more extensive results, the present work 
shows that a complicated model is not required to explain some of the basic features 
of the convection process. 

2. The Role of Turbulence 

At heights less than the Obukhov length scale, which is typically some tens of 
metres, there generally exists a mechanically mixed, thermally unstable layer owing 
to solar heating of the ground during fair-weather daytime conditions (Webb 1964). 
In this region the background turbulence tends to mask any organized cell-like 
structure, although it is clear that the plumes observed at higher levels do originate 
here. 

The convection plumes of Warner and Telford (1963, 1967) are observed above 
the well-mixed layer. The behaviour of the turbulent fluctuations of velocity and 
temperature in this region appears to be somewhat paradoxical. The temperature 
pulses associated with the plumes are well defined because, whereas there are random 
fluctuations within each plume, the surrounding air is devoid of temperature fluctua­
tions. On the other hand, the turbulence intensity of the vertical velocity is essentially 
uniform horizontally, inside and outside the plumes. It is also found that, although 
the temperature fluctuations decrease with height, the turbulence intensity does not 
vary greatly with altitude. It is proposed that these features are consistent with the 
concept of a regular system of convection cells whose horizontal extent R is small 
compared with their vertical dimension H and in which turbulence plays a minor role. 

In the following discussion it is assumed that the mean wind shear above the 
well-mixed layer, which is observed to be small compared with that near the ground, 
is unimportant to the convection process. We also take the upper boundary of the 
convection layer to be fixed, stress free and nonconducting. In practice, the inversion 
rises at a rate that is slow compared with the mean updraft,· and there is often a small 
downward heat flux from the warmer air above the inversion. We expect the 
magnitude of this heat flux and the associated shear stress to depend upon the mean 
wind shear across the inversion. 

The basic physical purpose of the fluid motion within each cell is to transport 
uniformly over the whole cell the heat produced in the well-mixed layer near the 
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ground. (This may be compared with an isolated plume for which the environment 
acts as an infinite sink of heat.) The well-mixed layer is the only source or sink of heat 
in the system. Therefore, if all the air in the region is to be heated then either each 
parcel of air must be advected through the heated region (the well-mixed layer) or 
the heat must be transferred by turbulent diffusion. (Molecular diffusion is clearly 
unimportant in a system with a scale of I km.) There is also the possibility that each 
of these mechanisms is of equal importance. 

Because the mean wind shear is neglected, the source of any turbulence is associated 
with the heat transfer itself. If there were no organized motion in the convection layer 
then buoyancy forces within the well-mixed layer would be the only turbulence source. 
This turbulence would have a maximum length scale of the order of the Obukhov 
scale (tens of metres) and hence it would be unlikely to be sustained by diffusion over 
the whole region to be heated (about I km in scale). It would seem therefore that 
some sort of organized mean motion is required to transport the heat vertically. 
As there is no preferred horizontal direction, such motions ought to be within 
isotropically packed cells-ideally hexagonal cells. Now, the shearing motion 
associated with the mean convection itself acts as a source of turbulence and so some 
turbulence is always present with the mean flow. However, the basic vertical transport 
mechanism must be convective rather than diffusive. 

To consider the relative importance of the diffusive and convective terms in the 
equations of motion, we introduce a mean vertical velocity scale W, a vertical length 
scale of a cell H and a horizontal cell scale R. Thus any turbulent motion has a 
velocity scale of W, at most, and a length scale of R, and this implies that a turbulent 
diffusivity coefficient has a magnitude no greater than WR. The ratio of the rate of 
vertical advection to the rate of vertical diffusion of heat or momentum is of the order 

(W/H)+(WR/H2) = H/R. 

Therefore the condition that convection must be the dominant vertical transport 
mechanism implies that 

R/H ~ 1. (1) 

The ratio of the rate of vertical advection to the rate of horizontal diffusion is from 
the condition (I) 

(W/H)+(WR/R2) = R/H ~ I, 

that is, the magnitude of the horizontal diffusion terms in the equations of motion 
is large compared with that of the advection terms. On the other hand, the physical 
action of the turbulence is essentially unimportant to the basic convection process 
within a cell. We have assumed that the upper boundary of the convection layer is 
not a momentum sink. Also, the symmetry of the isotropically packed cells requires 
that there is no momentum or heat transfer across the vertical side boundaries of each 
cell. Thus the top and side boundaries of a cell do not support any shear stresses. 
Symmetry imposes the further restriction of no shear stress at the vertical axis of a cell. 
The geometry of the convection cell severely restricts the effects of lateral diffusion. 
Unlike turbulence in an unbounded plume, diffusion cannot attenuate the updraft by 
lateral spreading because the entire cell must be involved in the mean convection, 
and so there must be a mean updraft and a corresponding downdraft over the 
whole cell. 
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The source of turbulence leading to lateral diffusion is expected to be the mean 
velocity field rather than the mean temperature field. This is because the temperature 
difference between the updraft and the downdraft (about 1 K) is of order 1/300 
compared with the mean temperature, while the vertical velocity changes sign which 
implies a normalized velocity difference of order 2. That is, the velocity discontinuity 
is much greater than the temperature discontinuity. Thus the shear flow at the 
interface of the updraft and downdraft ought to generate turbulence over the whole 
vertical extent of the cell. However, the lateral constraints imposed by the geometry, 
namely no shear stresses at either the side boundaries or the central axis, and also 
the condition (1), imply that the turbulence is anisotropic with more energy in the 
vertical direction than the horizontal direction. This means that there is little diffusive 
transport of momentum or heat between the updraft and the downdraft. Therefore, 
although vertical velocity fluctuations occur over the whole cell because of the shear 
flow generation process, significant temperature fluctuations do not arise from the 
lateral exchange of air between the updraft and downdraft. 

Because the mean vertical potential temperature gradient is small, the vertical 
velocity fluctuations ought not to act as a source of temperature fluctuations. Indeed 
any temperature fluctuations in a parcel of air in the convection layer are simply 
residual from the original source in the well-mixed layer, and so they ought to decrease 
with time after the parcel leaves the well-mixed layer. Therefore we expect the 
temperature fluctuations to decrease with altitude in the updraft and consequently 
to be negligible in the return flow of the downdraft. 

In summary, we have found that the vertical transport of heat from a relatively 
thin well-mixed layer throughout a deep layer of air cannot be supported by diffusion 
alone: a system of convection cells is required whose geometry satisfies the condi­
tion (1). This geometric constraint implies that the turbulence within each cell is 
anisotropic and behaves in the manner observed by Warner and Telford (1963, 1967). 
We have seen also that the only significant mechanical action of the turbulence is to 
produce a smooth profile between the updraft and downdraft within a cell; turbulent 
diffusion does not tend to attenuate the updraft, as occurs in an isolated plume. 

The turbulence has also an unimportant thermodynamic effect on the convection 
process. Firstly, it does not affect the overall energy balance because, while the 
dissipation of turbulent energy acts to decrease the mechanical energy of the flow, 
the dissipated energy gives rise to a corresponding increase in heat energy. Since 
Wand R are representative velocity and length scales for the turbulence, the rate of 
dissipation of turbulent energy per unit mass is of order W 3 / R, that is, of order 
102 cm2 S-3 for W", 1 m S-1 and R '" 100 m. Now the heat flux at the ground into 
the air is typically of order 300 W m - 2. Thus, taking the height of the convection layer 
H", 1 km and the air density Po'" 1·2x 10- 3 gcm-3, we find that the ratio of the 
total rate of dissipation of turbulent energy in the layer to the rate of input of heat 
energy from the ground is of order 0·04. Therefore the turbulence acts as an insigni­
ficant heat source compared with the external heat source. We further note that, 
because there is turbulence over the whole convection layer, it acts essentially as a 
uniform heat source and so drives no mean circulation. 

Hence it is seen that the turbulence, which exists throughout the convection layer, 
is unimportant to both the dynamics and thermodynamics of the heat transport 
processes within the layer. This contention is supported by the observation of Warner 
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and Telford (1967) that the high frequency components of their measured vertical 
velocity are uncorrelated with the temperature fluctuations associated with the mean 
heat transport. They therefore 'conclude that there is little difference between the 
turbulence in the thermals and in the surrounding, thermally quiescent, descending 
air'. 

3. Formulation of Model 

We consider a model of a typical convection cell involved in the vertical transport 
of heat from a thin well-mixed layer near the ground to the ambient air up to a strong 
inversion about 1 km above the ground. The model is simplified by the inclusion 
of only those physical processes which the above discussion suggests playa dominant 
role. 
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Fig. 1. Axisymmetric convection 
cell with Rl ~ 1. (r,z) are 
cylindrical coordinates with z 
increasing vertically upwards. 
The well-mixed layer 
o < z < a ~ 1 is modelled as a 
region in which there is a 
uniform heat source. 

Isotropically packed cells ideally have a hexagonal planform. However, as a good 
first approximation, we consider an axisymmetric cell of constant radius. The 
observations of Warner and Telford (1963, 1967) imply that the cross section of the 
updraft within a cell is independent of height. Thus the model cell is divided into 
two regions, as shown in Fig. 1, where (r, z) are cylindrical polar coordinates 
normalized with respect to the height H of the inversion above the ground; z increases 
vertically upwards from the smooth ground at z = O. Region I, 0 < r < Rl = R/H, 
is a cylindrical core in which the primary mean motion is upwards, while region II, 
R 1 < r < R 2 , is an annular domain involving the remainder of the cell in which the 
mean motion is essentially downwards. The condition (1) now becomes 

Rl <1i: 1. (2) 

Because it has been shown in Section 2 that turbulence, although present throughout 
the whole cell, is physically insignificant with regard to the transport of heat within 
the cell, viscous and turbulent diffusion terms in the governing equations are 
neglected. To account for the heat input to the system from the ground, which is 
clearly a diffusive process, the well-mixed layer 0 < z < () ~ 1 is modelled as a 
region in which there is a uniform internal heat source. Thus, if Eo is the heat flux 
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from the ground into the air, then a model heat source is required which produces 
an average heating rate per unit volume of Fo/ H. The thermodynamics of the problem 
are further simplified by assuming that there is a single mass of a perfect gas within 
a cell, and so changes due to mixing with the external air are neglected. Also we 
consider the case where there is no Cloud formation in the cell and where radiation 
heat losses are negligible, which implies that any water vapour acts simply as a 
passive scalar. 

Representative scales are now introduced in order to normalize the variables in 
the problem: the mean updraft in region I is W, the density and temperature at the 
ground are initially Po and To respectively, the average rate of heating per unit volume 
of fluid within the cell is Fo/H, and the gas constant for the fluid is Ro. Thus the 
normalized equations for the conservation of momentum, mass and thermodynamic 
energy and the equation of state may be written as 

M 2 du/dt +y-lp -l Vp +G3 = 0, 

dp/dt +pV.u = 0, 

edQ == dT +(y-l)pd(p-l), 

p = pT, 

(3 a) 

(3b) 

(3c) 

(3d) 

where Ht/W is the time; Wu = (u, w)W is the fluid velocity at the point (r,z)H; 
Po p, To T and Po Ro Top are the density, temperature and pressure of the fluid; 
Fo Q/ Po W is the heat input per unit mass to the fluid; and 3 is a unit vector in the 
upward vertical direction. The constant parameters in equations (3) are 

M = W/(yRoTo)t, G = gH/yRoTo, e = (y-I)Fo/PoRoTo W, (4a,b,c) 

and y is the ratio of the specific heats of the fluid. 
Introducing a normalized entropy S defined by 

dS = edQ/(y-I)T, (5) 

we find that equations (3c) and (3d) may be integrated because there is a single air 
mass. Thus p and p may be eliminated from (3), and the equations of motion become 

M 2 du/dt +(y_1)-l VT - y- 1TVS +G3 = 0, 

(y-1)-lT- 1 dT/dt -dS/dt + V.u = 0, 

(y-I)TdS/dt = edQJdt, 

(6a) 

(6b) 

(6c) 

where dQ/dt is the constant and uniform rate of heating within the well-mixed layer, 
normalized such that 

fol {dQ(z)/dt} dz = 1. (7) 

We wish to solve equations (6) in regions I and II subject to certain boundary 
conditions which are discussed below. However, the equations are Clearly nonlinear 
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and so we consider a corresponding set of linear equations which approximately 
model the physical processes described by (6). It is noted first that the driving force 
in the system is the heat source term on the right-hand side of equation (6c), which 
is of order B. Because the normalized variables are of order unity, it follows that the 
change in the thermodynamic variables due to the heating is of order B. The heat flux 
at the ground Fo is typically of order 300 W m - 2, H,..., I km, To ,..., 288 K and 
Po"'" 1·2xlO- 3 gcm- 3 • Taking y,..., 1·4, Ro,...,2·9x106cm2s-2K-1 and W,..., 
1 m s -1, we see from equation (4c) that B is of order 1 ·2 x 10- 3. Thus the change in 
the thermodynamic variables induced by the heating is small. The change due to 
adiabatic movement of a parcel of fluid over the cell is of order G, which for g ,..., 
980 cm s - 2 and H ,..., I km is equal to 0·09. Provided that the vertical extent of the 
cell is not much greater than I km, it is seen therefore that the thermodynamic vari­
ables do not vary markedly within the cell. Thus, wherever the temperature T occurs 
as a coefficient of a differential term in equations (6), we replace the variable by its 
reference value, that is, by unity. 

The second approximation applied to equations (6) concerns the total derivative 
d/dt. Within region I the motion is essentially upwards. Although continuity requires 
a corresponding radial flow, the geometric condition (2) implies that this is small 
compared with W. Also, if the dependent variables do not change markedly in the 
radial direction within region I, then it would seem that the radial advection terms 
can be neglected. This is consistent with the notion that vertical advection is the 
primary function of the mean flow. Because the vertical velocity is not expected to 
change sign within region I, the behaviour of the nonlinear vertical advection term 
should be modelled well by replacing the variable vertical velocity with its average 
value over the region. Applying the corresponding arguments to region II, we 
therefore make the approximation 

dldt ~ O/ot + Uoloz, (8) 
where 

U = I in region I, 

- ()( in region II, 

()( being the magnitude of the normalized mean downdraft. 
By introducing the approximation (8) and the linearization of the thermodynamic 

terms, equations (6) reduce to the linear system 

M2(%t +U :z)u +(y_l)-l VT-y-1 VS +G3 = 0, 

(%t +U :z)(y-l)-lT-S)+ V.u = 0, 

( -l)(i a) dQ \y ot + U oz S = B dt . 

(9a) 

(9b) 

(9c) 

Thus the equations (9) for the conservation of momentum, mass and entropy within 
the convection cell can be expressed in terms of the velocity vector u and the thermo­
dynamic variables T and S. 
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We note that equation (9a) does not contain the common Boussinesq approximation 
in which the coefficient T of the entropy gradient is replaced by its adiabatic value, 
i.e. by l-(1'-I)Gz. Such an approximation permits of the generation of vorticity 
owing to the presence of horizontal entropy (or density) gradients. However, we have 
assumed already that radial gradients within regions I and II are small, and therefore 
the neglect of the Boussinesq term is consistent with this. Moreover, the Boussinesq 
term produces a formally second-order effect because it is of magnitude eG, where 
both e and G are small compared with unity. Thus any such hydrostatic imbalance 
at the interface between regions I and II is small compared with the heat-induced 
imbalance of order e. 

Because the well-mixed layer provides a steady heat source for the system, the 
overall entropy and temperature of the air must increase with time and so equations 
(9) do not admit of a steady solution. On the other hand, the assumption that the 
geometry of the cell is fixed implies that the mean air density within the cell is fixed. 
We therefore seek a quasi-steady solution within regions I and II such that the velocity 
and density fields are independent of time, that is, all the input heat energy appears 
as internal energy and not as kinetic energy or external work. Thus the 'initial' 
conditions on the system (9) may be written as 

au/at = ° and 0{(1'-1)-1T-S}/ot = 0, 

S = 1 and T= 1 at t = 0, Z = 0. 

We further introduce the energy integral for the overall system: 

d ( e r R2 ) e r R2 dQ 
dt J 0 dz J 0 dr 2nr p T = e J 0 dz J 0 dr 2nr Pdt· 

(lOa) 

(lOb) 

This may be linearized and simplified by using the conditions (7) and (10) to yield 

dz dr 2nr- = _2_ 11 IR2 as nR2 e 
o 0 at 1'-1· 

(11) 

If the top and bottom of the cell are rigid then the boundary conditions on the 
vertical velocity component are 

w=O at z = 0,1. (l2) 

These conditions are not satisfied in the physical situation where the convection cell 
is capped by an inversion. In this case the interface rises as the temperature of the air 
within the cell increases, and so the top boundary condition ought to ensure continuity 
of the normal stress across the interface. However, because the rate of heating is of 
order e which is much less than unity, it follows that the rate of rise of the interface 
is also of order e provided that the inversion is sufficiently strong. It would seem 
therefore that (l2) is valid because we are interested primarily in the internal mechanics 
of the convection cell. 

The remaining boundary conditions on equations (9) are taken to be 

U=O on r = R2 , (13a) 
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u=o on 

u is continuous at 

(y-I)-1T _y-1S is continuous at 

aT/or = 0 = as/or at 

r = 0, 

r = R1, 

r = R1, 

z = o. 
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(13b) 

(13c) 

(13d) 

(13e) 

The symmetry of the cell pattern imposes the condition (13a), while (13b) is a 
consequence of continuity at the axis of symmetry. The condition (13c) is found from 
integration of equation (9b) across the interface r = R1 , and it corresponds to the 
conservation of mass flux across the interface. Similarly (13d) is obtained from 
equation (9a), and it ensures the continuity of force at the interface between regions 
I and II. The conditions (13e) assert that the thermodynamic conditions at the ground 
are homogeneous so that each plume is not associated with a localized 'hot spot'. 

Applying the boundary conditions (10), (11) and (13e), we can integrate equation 
(9c) to obtain 

S = I +(y_1)-1/lt +(y_1)-1/lq/U, (14) 

where 

q(z) = f: ~~ dz - z . 

Also, by using the conditions (10), (12) and (13e), the vertical component of (9a) 
can be integrated to yield 

(y-I)-1T-y- 1S = {y(y-I)} -1 +y-1/lt -Gz":"M 2 Uw. (15) 

Equations (14) and (15) show that within either region I or region II the radial 
gradients of the thermodynamic variables are of order M2. However, M2, which is 
the square of the Mach number of the flow, is equal to W2/yRo To and is generally 
of order 10- 5• Thus the assumption used to obtain the approximation (8), namely 
that radial gradients are small within each region, is satisfied by the thermodynamic 
variables. Neglecting the term of order M2, we find from (14) and (15) that the 
normalized temperature of the air in the cell is 

T = I +et-(y-I)Gz+y-1/lq/U. (16) 

Equation (15) shows that the matching condition (13d) on the force at the interface 
between regions I and II implies that the dynamic pressure must be continuous. 
That is, any possible imbalance in the force at the interface is of order M 2, and so the 
condition (13d) is satisfied to that order provided that the velocity is correct to order 
unity. Therefore, by putting the relations (9a), (10), (14) and (15) into (9b), it is found 
that the conservation of mass is expressed by the equation 

" -1 dq 1 o(ru) + ow = GU +/lY dz' r or oz (17) 

in which a term of order M2, corresponding to the last term in equation (15), has 
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been neglected. As expected, the driving force for the velocity field is the heat source 
in the well-mixed layer which produces a divergence in the field. The first term on the 
right-hand side of (17) accounts for the adiabatic expansion of a parcel of air as it rises. 

By taking the curl of equation (9a) and using the conditions (12) and (13e), it can 
be shown that the velocity field is irrotational within each region, that is, 

ou/oz = ow/or. (18) 

This is consistent with the results (14) and (15), which imply that the density gradient 
and the pressure gradient are directed essentially in the same direction, that is, 
vertically. The equation for the vertical velocity is found from equations (17) and 
(18) to be 

1 0 (ow) oZw -1 dZq r or r or + ozz = I>y dzZ . 

This equation is readily solved and the application of the boundary conditions (12) 
and (13b) yields, in region I, 

w(r,z) = l>y-1(q(Z)+ n~1 anlo(nnr)Sin(nnz») 

and, in region II, 

(19) 

w(r, z) = l>y-1( q(z) + J1 {bn1o(nnr) +dnKo(nnr)}sin(nnZ») , (20) 

where 10 and Ko are the zeroth order modified Bessel functions and the constants 
an' bn and dn are to be determined. The functional form of the radial velocity 
component u may be found from equations (17), (18), (19) and (20). Application of the 
boundary conditions (13a) and (13b) then gives, in region I, 

00 

u = lGr _l>y-1 L anI1(nnr)cos(nnz) (21) 
n= 1 

and, in region II, 
00 

u = lIXGr{(Rz/r)Z-1}+l>y-1 L {dn K1(nnr) -bnI1(nnr)}cos(nnz) , (22) 
n=1 

where 
dn = bn11(nnRz)/K1(nnRz)· (23) 

It is seen from equations (19)-(22) that the heat source in the well-mixed layer 
gives rise to a uniform vertical flow over the whole cell, while the adiabatic expansion 
of a rising parcel of air produces a radial flow. The remaining terms in the equations 
for the velocity components correspond to an incompressible flow induced by the 
matching conditions at the interface between regions I and II. The normalizing 
condition that w is of order unity implies that an> bn and dn are of order I> -1, and so the 
motion is predominantly incompressible. 

From the condition (13c) and equations (21) and (22), the continuity of mass 
flux at r = R1 requires that 

1X- 1 = (Rz/R1)Z-1 (24) 
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and 
a" = {1- 11 (mr:R2 ) K1 (mr:R1)/11 (mr:R1) K1 (mcR2 ) }b" . (25) 

The condition (24) on the normalized mean updraft a implies that the volume flux 
is equal in regions I and II, that is, it is a further incompressibility condition and is 
therefore consistent with 8 being small. The heat source term q(z), which is zero at 
z = 0 and z = 1, may be expanded in the form 

<X) 

q(z) = L q"sin(mr:z), (26) 
,,=1 

where 

q" = 2 501 
q(z) sin(nnz) dz . 

Hence the condition (13d) on the continuity of force at the interface r = R1 and 
equations (15), (19) and (20) give 

(a" + ab,,) 10(mr:R1) + ad" Ko(mr:R1) = - (1 + a) q" . (27) 

Thus the constants a", b" and d" can be determined in terms of q" from equations (23), 
(25) and (27), and so the flow is specified fully to the zeroth order in M 2. 

Now the velocity components have been normalized with respect to the mean 
updraft W in region I, which implies that 

fRt e Jo dr 2nr Jo dz w(r, z) = nR~. 

Using equation (19), we find that this becomes 

<X) 

,),8- 1 = L (nn)-1{1-cos(nn)}{2a"I1(nnR1)/nnR1 +q,,}. (28) 
,,=1 

Equation (28) therefore specifies 8, and hence W, in terms of the rate of heating in 
the well-mixed layer. 

4. Discussion 

The velocity field of the present model is internally consistent with the initial 
assumptions used to obtain the approximation (8). Even for R2 as large as 0'2, 
that is, when the cell diameter is 0·4 of the cell height, the magnitude of the radial 
velocity u is found to be small compared with that of the vertical velocity w. However, 
because the flow is essentially incompressible, the radial gradient au/ar is not small 
everywhere. This suggests that perhaps the term uau/ar ought to have been included 
in the radial momentum equation (9a). On the other hand, away from the top and 
bottom of the cell, u and so au/ar are small, while wand au/az are not small. Thus the 
vertical advection term dominates over most of the cell. Equation (16) implies that 
the radial gradients of the thermodynamic variables are negligible within region I and 
within region II. Similarly, the radial gradients of w within each region are found to 
be very small. It appears therefore that the approximation (8) is valid, even when 
the condition (2) is relaxed somewhat. 
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We now compare the predicted properties of the model convection cell described 
in Section 3 with the observations of Warner and Telford (1963, 1967). It is consistent 
with the linearized model to define the normalized potential temperature () by 

() = T+(y-l)Gz. 
Hence equation (16) gives 

() = 1 +8t+y-1Bq/U. (29) 

Thus, in agreement with the findings of Warner and Telford, the time rate of change 
of temperature o()/ot is independent of height, and it is equal to B. For a heat flux 
at the ground Fo of 300 W m - 2, a cell height H of 1 km and an updraft Wof 1 m s -1, 

we found in Section 3 that B is of order 1·2 x lO- 3. This therefore corresponds to a 
potential temperature increase of about 1·2 K per hour. We note that the rigid-end 
conditions on the model cell imply that the fluid does no external work overall, and 
so o()/ot is probably less than B in practice. 

N 
o -X 
IV 

-I 

-Z~I ____________ ~~ __ ~ ______ ~~ 

1,405 

Rz/R 1 

Fig. 2. Behaviour of the heating 
parameter e with the radius ratio 
R2! R, from equation (28) for 
the indicated values of R2 when 
the heat source is described by 
the conditions (31). 

The fundamental property of the model convection cell is that its horizontal extent 
is small compared with its height, that is, R1 is small. By consideration of the 
behaviour of the modified B~~sel functions for small arguments, it is straightforward 
to show from equations (23 )-(25), (27) and (28) that the condition that B be small gives 

(R2/R1)2 :::::: 2. (30) 

It f:>1I0ws from the condition that the vertical velocity must not change sign in region I 
th·". the first term in the expansion (19) dominates the behaviour of w. Hence Band 
t' ,~ result (30) are essentially independent of the detailed behaviour of the heat source 
dQ/dt, provided that the height () of the well-mixed layer is small. A plot of B as a 
function of R2/ R1 is shown in Fig. 2 for the case where the heat source is givw by 

dQ/dt = lO 

=0 

for 0< z < 0'1, 

for 0·1 < z < 1. 

(31a) 

(31b) 

It is seen that for a fixed radius ratio R2/Rl the heating parameter B decreases with 
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increasing cell radius R2 • Since the overall rate of heating is determined by the heat 
flux Fo and the cell height H, this result implies that the updraft velocity W must 
increase with increasing cell radius R2 • Indeed equation (4c) defines the actual 
relationship between 8 and W. 

Fig. 2 shows that as R2/Rl increases for a fixed cell radius R 2, 8 decreases and 
eventually becomes negative. A negative value of 8 corresponds to W being negative, 
that is, the downdraft occurs in region I while the updraft is in the outer region II. 
lt appears that the convection cells in the atmosphere are generated by initially 
isolated plumes rising from the well-mixed layer, and so solutions with negative values 
of 8 must be considered as unphysical. 

The relation (30) implies that the areas of the updraft and downdraft are almost 
equal, and hence the normalized downdraft IX is approximately unity. The latter 
result can be seen intuitively from the condition (13d) and equation (15), which show 
that the continuity of force at the interface between regions I and II leads to the 
continuity of dynamic pressure. Thus the flow in region II ought to be simply equal 
in magnitude and opposite in sign to the flow in region I. 

Warner and Telford (1967) found that the ratio of the average space between 
plumes to their average horizontal dimension (the space to pulse ratio) was 
approximately equal to unity. However, this result was obtained from their raw data, 
that is, from an average along an arbitrary horizontal path through the convection 
field, and so it must be corrected for this statistical effect before it may be compared 
with the present model. The probability that any given point on a horizontal plane 
lies within a plume clearly equals the fraction of the cross sectional area of the field 
taken up by the plumes. Thus the space to pulse ratio is given by the ratio of the 
average area of the downdraft to that of the updraft, and so it equals unity when 
equation (30) holds. In fact, Warner and Telford found that the space to pulse ratio 
was often slightly larger than unity. This is still consistent with the model prediction 
if the convection cells in practice are not packed completely regularly, that is, if 
quiescent gaps occur between some cells. 

On the other hand, the model described by Telford (1972) yields values of R2/Rl 
which vary greatly with the heat flux Fo and with the cell height H (e.g. see Fig. 3). 
The observations of Warner and Telford (1963, 1967) do not seem to indicate such 
a vast variation in the value of R2/R1• Telford (1970) asserts that the solutions for 
which R2/ Rl is less than 21- are unphysical. He reasons that, because horizontal 
pressure gradients have been neglected and because there is no energy source at the 
upper boundary, the kinetic energy of the descending air must not be greater than 
that of the rising air. All the solutions with R2/Rl ~ 2t are, however, taken to be 
significant and, in fact, are taken to show that organized convection plumes cannot 
exist once the cell height reaches a critical value which depends upon the heat flux 
and surface turbulence intensity. 

The main difference between Telford's (1972) model and the present one is that the 
former includes the effects of turbulence. This suggests that the manner in which 
Telford models the turbulence (which is deemed to be unimportant in the present case) 
gives rise to the different predictions. Morton (1968) points out that the entrainment 
assumption of Telford leads to a gross overestimation of the magnitude of the 
production term in the turbulent energy equation. Moreover, the rate of dissipation 
of turbulent energy is surely underestimated by taking the turbulence length scale to 
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be the diameter of the plume, rather than some fraction of the diameter. Thus the 
net rate of change of turbulence intensity tends to be dominated by the production 
term which causes the turbulence to increase with height in the updraft and to decrease 
in the downdraft. Because the turbulence is taken to be horizontally uniform at the 
base of the cell, the difference between the turbulence intensity of the updraft and 
that of the downdraft tends to increase with height. The deeper the convection layer, 
the greater this difference tends to become. But the imposed boundary conditions 
require the turbulence in the updraft to equal that in the downdraft at the top and at 
the bottom of the cell, and so the turbulence must be forced not to behave in the above 
manner if a solution to the system is to be obtained. It can be shown from equations 

3 

a 100 

~ 

200 

H {m} 

Fig. 3. Variation of the down­
draft to updraft radius ratio 
Rz/R! and the normalized cell 
radius Rz with the cell height H, 
as predicted by Telford (1972) 
for a heating rate of 2 Kh- i 

and a turbulence intensity at the 
ground of 1 ms- i • 

(11), (17) and (18) of Telford (1970) that the ratio of the production term to the 
dissipation term in the updraft turbulence equation involves the factor R~/(R~ - Ri) 
while that in the downdraft equation involves the factor R1 R~/(R~ - Ri)3/2. The 
relative magnitude of the production term in the turbulent energy equations therefore 
decreases as R2/ R1 increases. In order to limit the difference between the updraft and 
downdraft turbulence, a larger value of R2/ R1 would seem to be required as the cell 
height increases. Thus it appears that the large values of R2/R1 predicted by Telford 
arise primarily from the overestimation of the rate of production of turbulent energy. 

It is seen from equations (8), (14) and (29) that the potential temperature gradient 
in region II above the well-mixed layer is 

80/8z = e/yrx. 

For To "" 288 K, H "" 1 km, e "" 1·2 x 10 - 3 and y "" 1· 4, this corresponds to a stable 
temperature gradient of about 0·25 K km -1, which is compatible with the observations 
that the environment through which the plumes rise is 'neutral to slightly stable' . 

Measurements of the average potential temperature at any level show that it is 
essentially independent of height. Using equations (14) and (29), we find that the 
potential temperature gradient averaged over the horizontal cross section of a cell 
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is given by 
(8()/8z)av = -y-16{2-(R2/Rl)2} for Z> b. 

However, the derivation of equation (30) implies that 2-(R2/Rl)2 is of order 6, 

and so the overall air mass above the well-mixed layer is neutrally stratified to first 
order in 6, as observed by Warner and Telford (1963, 1967). Their observations also 
indicate that the temperature excess of each pulse relative to the environment, which 
corresponds in the model to the difference between () in regions I and II at any level, 
is described well by a 'top-hat' profile and it decreases approximately linearly with 
height. In comparison, equation (29) yields precisely a top-hat profile for () at any 
level within the cell with a normalized temperature excess of 

t:..() = (R2/Rl)2y-:16(1-Z) for Z> b. (32) 

Thus, for 6 '" 1·2 x 10- 3 and To '" 288 K, the maximum temperature excess is about 
0·5 K, which is the magnitude of the results of Warner and Telford. 

The simple method presented here does not predict the actual value of the mean 
updraft velocity W corresponding to a given heat flux at the ground Fo. However, 
it can be shown readily from equations (4) and (32) that Wand the maximum 
(dimensional) temperature excess t:..To are related by 

W t:..To = (R2/ Rl)2(1 - b)Fo/ Po Cp , 

where Cp is the specific heat of the fluid at constant pressure. 
It would thus appear from the above discussion that the geometry and temperature 

structure of the model convection cell are compatible with the observations of 
Warner and Telford (1963, 1967). 
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