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Abstract 
A scheme is proposed for systematically generalizing Boltzmann's equation in order to describe 
the non-equilibrium behaviour of an arbitrarily dense gas. The method avoids the divergences 
that arise from considering the dynamics of groups of isolated particles by introducing appropriate 
damping terms. Transport coefficients are obtained from the kinetic equations by using the auto
correlation formulae. For a one-dimensional gas of impenetrable point particles, approximations 
to the coefficient of self-diffusion may be obtained readily from the proposed generalization. A 
first correction to Boltzmann's equation yields the self-diffusion coefficient to within 1 % of its 
exact value. 

1. Introduction 
. A long standing problem in non-equilibrium statistical mechanics is to determine 

the transport coefficients of a gas of arbitrary density. A dilute gas is adequately 
described in terms of the one-particle velocity distribution function which satisfies an 
equation first derived by Boltzmann. By his H-theorem, Boltzmann was able to show 
that the solution to the equation approaches the equilibrium velocity distribution 
for long times. Chapman and Enskog (Chapman and Cowling 1970) were the first 
to show how transport properties may be obtained from Boltzmann's equation. 
By their method of solution it is possible to calculate values for the coefficients of 
viscosity, thermal conductivity, self-diffusion etc. which are in good agreement with 
experiment for dilute gases. 

Boltzmann's equation may be derived by assuming that the velocities of a pair of 
particles about to collide are uncorrelated. This is an approximation to the actual 
situation in a gas since two particles about to collide may have previously interacted 
but, through collision with other particles, may once again be on precollision tra
jectories. In this situation their velocities are certainly not independent. If collision 
sequences involving three or more particles are taken into account, it should be 
possible to derive an equation valid for a greater range of densities than is Boltzmann's 
equation. Generalizations of Boltzmann's equation proposed by various authors 
(Cohen 1973) systematically consider sequences of collisions among 2,3,4, ... isolated 
particles. In a formal fashion, equations for the one-particle distribution function 
can be derived in a form which enables the Chapman-Enskog methods to be applied. 
However, analysis of these equations shows that they contain infinite terms which 
can only be eliminated by taking into account collision sequences among an arbitrarily 
large number of particles, so that the original aim of describing the system in terms 
of the dynamics of small numbers of particles apparently has to be abandoned. 
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These 'renormalized' equations predict that, in two and three dimensions, the trans
port coefficients can be expressed as a power series in the density and in the logarithm 
of the density. However, it is not easy to see how these renormalization techniques 
can be applied systematically to describe a gas of arbitrary density. No generalization 
of Boltzmann's H-theorem has been proved either. 

Nevertheless it is possible to obtain formally exact expressions for the transport 
coefficients in terms of the autocorrelation formulae first considered by Green (1954). 
To evaluate these formulae, one needs to be able to describe the position and velocity 
at all times of a single particle of a gas in equilibrium (Green 1961), and so the problem 
is equivalent to finding a generalization of Boltzmann's equation that is valid for all 
densities. 

It is the purpose of this paper to show that Boltzmann's equation can be generalized 
systematically to enable the transport coefficients of an arbitrarily dense gas to be 
calculated. One difference between this work and previous schemes is that use is 
made of the autocorrelation formulae rather than the methods of Chapman and 
Enskog. 

We restrict our considerations to a one-dimensional gas of impenetrable point 
particles, a model which has been considered in detail by Jepsen (1965), Lebowitz 
and Percus (1967) and Anstis et al. (1973). The coefficient of self-diffusion is known 
exactly for this model, and so we have the advantage of being able to test the validity 
of proposed generalizations of Boltzmann's equation. Extension of the present 
work to a gas of rigid discs or rigid spheres is straightforward, although complicated 
by the dynamics of such systems. 

In Section 2 we define the distribution functions which enable us to determine the 
behaviour of a particle of a gas in equilibrium. In Section 3 we see that the one-particle 
velocity distribution function h(v, t) satisfies an equation of the form 

8h(v, t)/8t = U(t, plh(t») 

or, alternatively, of the form 

8h(v,t)/8t = f~ dt' V(t-t',plh(t'»), 

where U and V are time-dependent functionals and p is the density of the gas. 

(1) 

(2) 

Previous attempts to generalize Boltzmann's equation have been concerned with 
expressing the rate of change of the velocity distribution function as a time-independent 
functional. Such equations may be solved by the methods of Chapman and Enskog. 
In the present work, however, we calculate transport coefficients from equations of 
the form (1) or (2). 

Evaluation of U and V requires that the complete dynamics of the system is 
known. We note that these functionals maybe expressed as sums of contributions 
from the dynamics of subsystems involving either a finite or infinite number of 
particles. The two-body contributions lead to the Boltzmann collision operator. 
However, as is the case in two- and three-dimensional models, contributions from 
3,4, ... -particle systems increase without limit as the time increases. Hence care 
must be taken to ensure that any approximations to equations (1) and (2) contain 
only finite expressions. 

We outline two approaches for finding approximate equations for h(v, t). One 
is to write the functionals in terms of the dynamics of 2, 3, ... particles interacting in 
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the fluid environment which contains an infinite number of particles. This approach, 
in effect, takes into account the fact that in an actual fluid there is a vanishing proba
bility that a particle can avoid collisions for an arbitrarily long time. The functionals 
U and V are then expressed as sums of terms which remain finite for all times. 

The alternative method of avoiding divergences comes from recognizing that the 
result of U and V acting on the equilibrium velocity distribution is zero. Hence, if 
the velocity distribution function h(v, t) approaches its equilibrium value rapidly 
enough, the contributions to U and V from isolated groups of particles will be modified 
so that only finite terms are involved. As we show, the properties of the Boltzmann 
collision operator suggest that h(v, t) does approach its equilibrium value rapidly 
enough. 

In Section 4 we show how the transport coefficients may be obtained from the 
equations for h(v, t) derived in the previous section by using the autocorrelation 
formulae. The self-diffusion coefficient may be calculated to within 1 % of its exact 
value from a first correction to Boltzmann's equation. Finally, the implications of 
the present approach for two- and three-dimensional systems are examined in Section 5. 

2. One-dimensional Model 

The purpose of this section is to review some of the properties of a one-dimensional 
gas. We make use of some standard results of equilibrium and non-equilibrium 
statistical mechanics (for further details see Green and Leipnik 1970). 

Consider a system of identical impenetrable point particles of mass m free to 
move on an infinite line. This gas can be described in terms of the properties of an 
ensemble of systems each of which is specified by the number of its particles and their 
positions and velocities at some time. The position and velocity of particle i are 
denoted by z<i) = (q(i), v(I). The phase space distribution function FN is defined as 
follows: F N(Z<l), ... ,zeN), t) dz(l) ... dz(N) denotes the fraction of N-particle systems 
of the ensemble in which at time t particle i is in the phase space element dz(l) about 
the point z(i). The N-particle distribution function satisfies Liouville's equation 

(ajat+-0)FN(zU), ... ,Z(N),t) = 0, (3) 

where 

-0 - f (I) a -1 aiPN a ) 
- 1= 1 V aq(l) - m aq(l) ave!) (4) 

and iPN is the potential energy of the system. A formal solution to Liouville's equation 
is 

FN (Z(l>, •.. , Z<N), t) = exp( _1(N(t- to») FN (Z(l), ... , zeN), to) 

== S(N)(Z(l), ••• , zeN), t- to)FN(z(1), ... , Z<N), to). (5) 

We have introduced the streaming operator S (N)(Z(1), ... , Z<N), t - to), which transforms 
the coordinates Z(l), ... ,Z(N) into the coordinates that the N particles would have had 
at a time t - to earlier if they had interacted only among themselves. 

In order to calculate transport coefficients we need to consider a sub-ensemble 
of the grand canonical ensemble for which the position and velocity of some particle, 
which we define as particle 1, are q(1) = 0 and v(1) = v' at time to (Green 1961). 
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The theory of equilibrium statistical mechanics enables us to write down the initial 
value of the N-particle distribution function as 

F(N)(Z(l>, ... , zeN), to) = b(q(l») b(V(1) - v')B- 1 exp{p(/L(N -1) -!m It}V(l»)2 + 4>N)}. 

(6) 

The factor p = IjkT is related to the temperature T of the system, /L is the chemical 
potential, and B is the grand canonical partition function, which is a normalization 
factor depending on p and /L. 

The ensemble average of any property G(Zlo ... , Zk, t) of the system is given by 

(G(Zlo".,Zko t) = N~o(N~l)! f dz(1) ... f dz(N) FN(z(l), ..• ,Z(N),t)G(Zlo""Zk,t), (7) 

where, both here and below, the range of integration is not specified when it is 
unrestricted. This average is taken over all possible configurations of an N-particle 
system as well as over all possible values for the number of particles in the system. 
The factor Ij(N -I)! results from considering all particles, except for particle 1, 
as being identical. The grand partition function B is chosen so that (I) = 1. 

The n-particle velocity distribution functions are defined by 

j<n)(Zlo""Zn,t) = L (b(z(1)-Zl)b(Z(l2L z2)···b(Z(in)-zn), (8) 
l*h* ... */n 

where f(n)(Zlo ... , ZRO t) dz1 .'. dZn is the fraction of systems of the ensemble in which at 
time t particle 1 is in the element dZ1 about the point Zl of phase space and some other 
unspecified particles are in the elements dz2 , ••• , dzn about the phase space points 
Z2, ... , Zn' From the definition (7) of the ensemble average, we obtain 

j<n)(Zl"·,,ZRO t) = f U!)-l fdZn+1' .. f dzlI +jF(n+j)(Zlo""ZlI+j,t). (9) 
J=O 

Using this equation and the initial condition (6), we can show that 

f(1I)(Q1' V1,Q2, V2, •.. ,qRO Vn, to) = pn-1 hO(V2) ... ho(vn) b(Q1) b(V1 - v'), (10) 

where p is the density of particles in the system and ho(v) is the equilibrium velocity 
distribution: 

ho(v) = (pmj2n)t exp( -!pmv2). (11) 

We now show that it is possible to write the n-particle velocity distribution function 
at time t in terms of the one-particle velocity distribution function at time to. First 
we note that the set of equations (9) implies the equations 

F(lI)(Zlo,,·,ZlI,t) = f (_1)1U!)-l fdZlI+1 ... f dZlI +j!<lI+ j)(Zl",.,Z,,+j,t). (12) 
J=O 

This can be verified by direct substitution of equation (12) into equation (9). By 
using the formal solution (5) to Liouville's equation, we can write equation (9) as 

j<n)(Zlo···,Z",t) = f U!)-l fdZn+1". fdZ,,+js<n+j)(t-to)F<n+j)(Zl, ••. ,Zn+j,to). 
}=O (13) 
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Evaluating equation (12) at to, substituting it into equation (13) and invoking the 
initial condition (10), leads to 

00 i (.) l(n)(zl> ... ,zm t) = pn-l }~o (j!)- l pi 1e~0 (_I)J-1e k 
x f dzn + 1··· f dzn +) s(n+1c)(t- to) hO(V2) ... hO(vn+ })j<I)(ql' VI' to)· 

(14) 

It is convenient to write equation (14) in the form 

00 

l (n)( t) - "" (.,)-1 }-1 T(II+})( t t )1(1)( t) zl,···,zlI' - P £.J J. P zl,···,zm - 0 ZI, 0 , (15) 
}=o 

where 

(II+J) _. }-Ie J } ( .) T (Zl> ... ,ZII,t-tO) - k~O (-1) k 

x f dzll +1··· f dZII+iS(II+k)(t-to)ho(V2) ... ho(vlI+i)· (16) 

Thus we have achieved our aim ofwriting/(II)(t) in terms ofj<I)(to). 
The velocity distribution functions satisfy the hierarchy of equations (Anstis et af. 

1973) 

(%t+ K(n»I(n)(z 1, ••• , ZII' t) 

= lim fdVII+1 IVI -vl+II{j<"+1)(q~, VII + 1, Z2, ... , Zm ZI, t) 
..... 0 

1(11+ 1)( • t)} - Zl>Z2,···,ZII,ql,VII+l>, (17) 

where q: = q1 -esgn(vlI+1-v1), and K(II) is the Liouville operator which includes 
only interactions between particle 1 and the other particles. All other collisions 
may be ignored, as the effect of such collisions is that the particles just exchange 
velocities. 

Having written down the hierarchy of equations we can now state that the funda~ 
mental problem that we have to consider is how to obtain a closed equation for 
1(1)(t) from the infinite set of equations (17). One such closed equation may be obtained 
by assuming that 

j<2)(Zl> Z2, t) = P hO(V2)/(I)(ZI, t) (18) 

for precollision values of ZI and Z2, i.e. for (ql -q2)(VI -V2) < 0_. Substituting 
equation (18) into (17) with n = 1 leads to Boltzmann's equation 

(:t +V :q) j<1)(q, V, t) = pB{j(I)(q, V, t)} 

== p f dw Iv-wi {hO(V)/(I)(q, w, t) -hO(W)j<I)(q, v, t)}. (19) 

Properties of the Boltzmann collision operator B are given in the Appendix. 
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The autocorrelation formula for the self-diffusion coefficient D is 

D = Loo dt f dq f dv f dv' J<l)(q, V, t) vv' ho(v'). (20) 

We shall find it useful to define the quantities 

h(v, t) = f dq J<1)(q, v, t) and ¢(v) = fooo dt f dv' h(v, t) v' ho(v'). (21,22) 

From equation (17) we see that h(v, t) satisfies 

oh(v, t)/ot = f dVllv-V21{h(2)(Vl, V, t) -h(2\V, Vl, t)}, (23) 

where 

h(l\V, Vl, t) = lim fdq j(l)(q, v, q", V1 , t). 
. £-+0 

(24) 

For our one-dimensional model the self-diffusion coefficient can be evaluated exactly 
(Jepsen 1965). It is found to be 

D = (2nfim)-t p-1. (25) 

All other transport coefficients are undefined for this system. 

3. Equations for Velocity Distribution Function 

In this section we show how to derive for the one-particle velocity distribution 
function h(v, t) equations which have the forms (1) and (2). We first show that the 
two-particle velocity distribution function /(2)(t) can be expressed as a functional of 
/(l\t) in two alternative ways and that, when these expressions are substituted into 
the first equation of the hierarchy of equations (17) and an integration over position 
is performed, we obtain equations of the desired form. That/(2)(t) can be expressed 
in terms of /(1)(t) follows from equation (14) which shows that both J<1)(t) and 
/(2)(t) may be expressed as functionals of J<l l (to). By writingj<1)(to) as a functional 
of j<1)(t) and substituting into the equation for J<2)(t) we obtain j<2)(t) in terms of 
/(1)(t). 

The resulting expressions for the functionals U(p, t) and V(P, t) are sums of 
contributions from subsystems of particles to the time-evolution of the whole system. 
Thus we express U as a sum of contributions from the dynamics of small groups 
of particles. Although these contributions are unbounded in time, their contribution 
to U acting on h(v, t) remains finite, and in fact approaches zero for large times. 
This is because the Boltzmann collision operator takes into account the interactions 
between an isolated group of particles and their environment. Hence it appears that 
it is possible to approximate U by retaining only the first few terms in the 2, 3, ... -body 
expression. On the other hand, we express Vas a sum of many-body contributions. 
The 3,4, ... -body contributions are modified by taking into account the possibility 
of a collision with another particle. Each term in the expansion of V remains finite 
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for all times, and we may approximate the functional by retaining just the first few 
terms. 

If we consider equation (15) for n = 1, we have 

f(1)(Zl' t) = S(1)(t- to)f(1)(Zl, to) 

<Xl 

+ L (j!)-1 pi TU+1)(Zl' t-to)!(1)(Zl, to). (26) 
}=1 

This is an integral equation which can be solved for f<l)(tO) in terms of f<l)(t) by 
iteration. The first two terms of the series expansion of the solution are 

S(1)(t-tO)f<l)(Zl' to) = f(l)(Zl, t) 

-p f dZ3 {S(2)(Zl,Z3,t-tO)-S(1)(Zl,t-tO)} 

x S(l)(Zl> - (t- to) )hO(V3 )f<1)(Zl, t) + .... (27) 

If this expression is substituted into equation (15) for n = 2 we obtain f(2)(/) as a 
functional of f(1)(t): 

f(2)(Zl' Z2, I) = p S(2)(Zl' Z2, t- to) S(1)(Zl, - (t- to) )hO(V2 )f<1)(Zl, t) 

+p2 f dZ3 {S(3)(Zl,Z2,Z3,I-to)-S(2)(Zl,Z3,t-tO)} 

XS(1)(Zl, -(I-lo»)ho(V2)ho(V3)f(1)(z1,1) + .... (28) 

The term proportional to p2 in equation (28) is nonzero only for those configurations 
of the fluid in which particle 1 interacts with two other particles in the time interval 
t - 10 , In general the term associated with k-body collisions in the expansion (28) 
of f(2)(I) in terms of f(l)(I) is nonzero only when there are k collisions in the time 
interval 1- to. Equation (28) is the one-dimensional analogue of a well-known 
expression for f(2)(t) obtained in higher dimensions (Cohen 1973). 

Evaluating the effect of the streaming operators leads to the result 

h(2)(V1, V2, I) = p hO(V2) h(V1, I) 

+p2(I-to) f dV3 e(v1-v2)(V2- V3») IV2-V31 

x hO(V1){ho(V3) h(v2, I) -hO(V2) h(V3, In +.... (29) 

Here e(x) denotes the step function 

e(x) = 1 

=0 

for x> 0, 

x < O. 

The k-body term in expansion (29) contains the factor (l-tO)k-2. We note that if 
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h(v, t) = ho(v) then h(2)(t) assumes its equilibrium value. Substituting the above 
expression for h(2)(V1' V2, t) into the hierarchy equation (23) gives 

ah(V1' t)/at = p f dV21v1 -v21 {hO(V1)h(V2, t) -hO(V2)h(V1' t)} 

+p2(t-tO) f dV2 f dV3 e(v2- v1)(V1-V3») IV1-V21Iv1-V3Iho(V2) 

x {hO(V3)h(vut) -hO(V1)h(V3,t)} 

- p2(t_ to) f dV2 f dV3 e(v1 -V2)(V2 -V3») IV1 -v211v2 -v31 hO(V1) 

x {hO(V3)h(V2,t) -hO(V2)h(V3,t)} + ... , (30) 

which is of the form (1). 
Let us now consider approximations to equation (30) obtained by retaining only 

2,3, ... , n-body contributions to the operator U(p, t). We may write this equation as 

ah(v, t)/at = pB[h] + p2 U2(t)[h] + ... + p" U,,(t)[h]. (31) 

If we rewrite equation (31) as 

h(v,t) = exp(pB(t-to»)h(v,to) 

+ rt dt' exp(pB(t-t'»){p2 U2(t') + ... +p" U,,(t')}h(v,t'), (32) 
)to 

we can see that the divergent 3, ... , n-body contributions are damped by the Boltzmann 
term. In Section 4 below we solve this equation iteratively. As is shown in the 
Appendix, apart from the eigenvalue zero, the eigenvalues of the Boltzmann operator 
are less than -a:(0), where a:(v) is defined by equation (34) below. Each term of the 
iterative solution of equation (32) remains finite because of the damping factor 
exp pBt. The sum of the terms also remains finite since, as can be seen from equation 
(31), the condition 

f h(v, t) dv = 1 

holds for all times. 
Let us now derive an equation of the form (2). We express V(p, t) in terms of 

certain many-body dynamical contributions because approximations to V must 
contain, at least approximately, effects of aU particles of the system if finite values 
of the self-diffusion coefficient are to be obtained. Rather than start with equation 
(15) for the distribution functions, we derive new expansions by writing the hierarchy 
equations (17) as 

{a/at + K(n) + Pa:(V1)} j<")(Z1' ... , z,,' t) 

= lim fdV,,+1 IV1 -v,,+ll 
..... 0 

x {f("+ 1) (qi, V,,+1' Z2' ... , z,,' Zl' t)+ phO(V"+1)j<")(Zl' ••. , Z,,' t) 

f ("+ 1)( 8 t)} - Zt> Z2,···,Z",q1,V"+1,, (33) 
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with 

a(v) = I dw Iv-wi ho(w), (34) 

where pa(v) is the frequency of collisions experienced by a particle moving with 
velocity v in an equilibrium environment. 

Equation (33) has the integral form 

j(n)(t) = exp( - {pa(vI) + K(n)}(t- to) )j(n)(to) 

+ lim r' dt' exp( -{pa(vI) +K(n)}(t-t')) IdVn+1 IVI-Vn+ll 
8-+0 J to 

x {J(n+l)(q:, Vn+l, ... , t') - j<n+1)(Zl> ... , t') + phO(vn+1)j<n)(t')} . (35) 

By a series of successive substitutions, expansions for the one- and two-particle 
velocity distribution functions are obtained: 

j(1)(ZI' t) = exp( - pa(vI)(t- (0) )S(I)(Zl> t- (0)j(1)(ZI' to) 

+ limp rt dt' exp( -pa(vI)(t-t'))S(1)(ZI, t-t') IdV3IVI-V31 
0-+0 Jto 

x S(Z)(z:, Zl> t' - (0) hO(VI)j(I)(Z:, to) + ... , (36) 

j(Z)(ZI, Zz, t) = pho(vz) exp( - pa(vI) (t- to) )S(l)(ZI' t- to)f(1)(ZI' to) 

+ Iimpz rt dt' exp( - pa(vI)(t- t')) S(Z)(ZI' Zz, t- t') IdV3 IVI -v31 
0-+0 Jto 

x S(3)(z:,ZZ,Zl> t' _/O)j(I)(Z:, to) + ... , 
where 

Z: = (q:, V3). 

From equations (36) and (37) we obtain 

j(Z)(Zl> Zz, t) = pho(vz)j(I)(ZI, t) 

+limpz rt dt'exp(-pa(VI)(t-l'))S(Z)(ZI,zz,t-t') 
8-+0 Jto 

(37) 

x I dV3 IVI -v31 {S(3)(Z:, Zz, Zl, t ' -to)-s(Z)(Z:,ZI' t ' -to)} 

x hO(VI)ho(vz)j(l)(Z:, to) + ... , (38) 

where we have indicated only the first few terms of the expression. 
We thus have obtainedj<Z)(t) as a linear functional ofj(I)(/O) which we write as 

j(2)(ZI' Zz, I) = pho(VZ)j(I)(ZI' t) +pz K(ZloZZ, I, plj(1)(to)) 

= phO(VZ)j<I)(ZI.t) +pz rt dt' K'(ZI,ZZ,t-t',plj<I)(tO))' (39) J,o 
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where K' is the time derivative of the functional K. We need to be able to express 
/(1)(to) as a functional of /(1)(t') if equation (39) is to lead to an equation of the type 
(2). By inverting equation (36) we obtain a suitable expression which, when substituted 
into equation (39), yields 

/(2)(Z 1, Z2, t) = phO(V2)f(1)(Z1' t) + p2 rr dt' L(Z1' Z2' t- t', plt<1)(Z1' t'»), (40) 
Jto 

where L is a functional. Substitution of equation (40) into the first hierarchy equation 
and integration over position yields an equation of the desired form (2). 

To obtain an explicit expression for V we first evaluate the effects of the streaming 
operators in equation (38) to obtain 

h (2)(V1, V2' t) = phO(V2) h(V1' t) 

+p2 {dt' fdV3e((V1-V2)(V2-V3»)IV2-V3Iho(V1) 

x {hO(v3)h(v2, to) -hO(v2)h(V3' to)} 

x exp( - plX(V1)(t- t') IV2 - v31/1v1 - v31) + ... . (41) 

The function h(v, to) can be expressed in terms of h(v, t') by equation (36). Substituting 
such an expression into equation (41) then enables us to write 

ah(V1, t) = p fdV21V1 -v21 {hO(V1) h(V2' t) -hO(V2)h(V1' t)} 
at 

+p2 { dt' f dV2 f dV3 e((v2-v1)(V1-V3»)lv1-V21Iv1-V3i hO(v2) 

x {hO(v3) h(V1' t') -ho(v1) h(V3' t'n exp( - plX(V2)(t- t')IVl - v31/lv2 - v31) 

- p2 { dt' f dV2 f dV3 e(v1 -V2)(V2 -v3») IV1 - v211 v2 -v31 hO(v1) 

x {hO(V3) h(vz, t') - ho(vz) h(v3, t')} exp( - plX(V1)(t- t')lvz - v31/1v1 - v3 1) 

+ .... (42) 

We have thus indicated two of the terms in the expansion of Yep, t). The exponential 
damping terms are contributions from those configurations of the fluid in which 
some particle of the gas interacts with a group of three particles with velocities 
v1, Vz and v3 • 

The inclusion of multibody effects in each term of equation (42) ensures that 
each term approaches zero for long times. At this stage in the evolution of the system 
only the Boltzmann term may be nonzero but, by the H-theorem, we are assured 
that h(v, t) will approach its equilibrium value. This argument also applies when 
equation (42) is approximated by retaining only the first few terms of the right-hand 
side. Such is not the case if many-body effects are not included. For instance, the 
equation which takes into account only two- and three-body contributions may be 
obtained by expanding the exponential terms in equation (42) in powers of the 
density and retaining terms in p and p2 only. This is an equation also derived by 
Lebowitz and Percus (1967). However, it does not have the property that ah/at -+ 0 
for long times. 



Generalizations of Boltzmann's Equation 783 

4. Calculation of Self-diffusion Coefficient 

We now show how the self-diffusion coefficient may be evaluated from the approx
imate equations for the above-derived velocity distribution function. The self
diffusion coefficient is given by the autocorrelation formula (20). For our one
dimensional model it can be evaluated exactly to obtain D = 0·282/ p, where we 
have taken pm = 2. 

We first show that Boltzmann's equation leads to the value DB = 0·328/p. We 
next consider the approximation to equation (30) which results from retaining only 
two- and three-body contributions, and we show that this yields a value of 0·317/ p. 
Finally the self-diffusion coefficient is calculated from equation (42), with only the 
explicitly indicated terms retained, and is shown to be just 1 % off the exact value. 

Starting with Boltzmann's equation (19), we can obtain 

Iooo dt I dv' v' ho(v')8h(v, t)/8t = p I dV2Iv-v21{ho(v)cf>(V2) -hO(V2)cf>(V)}, (43) 

where cf>( v) is defined by equation (22). Using the initial condition h( v, 0) = b( v - v') 
and the fact that h(v, t) ~ ho(v) as t ~ 00, we obtain the integral equation 

-vho(v) = p I dv2 Iv- v21{ho(v)cf>(v2) -hO(v2)cf>(v)}. (44) 

The solution of this equation is given by equations (A9) and (AW) of the Appendix, 
with s = O. The self-diffusion coefficient is then given by equation (20) which we 
write as 

D = I dv cf>( v)v . (45) 

By numerical evaluation of the integral, we obtain DB = 0·328/ p. 
Let us now consider equation (30) which we approximate by retaining only two

and three-body contributions. Equation (32) may be solved iteratively for h(v, t) 
to give 

h(v,t) = exp(pBt) h(v, 0) + I~ dt' exp(pB(t-t'») t'Cexp(pBt') h(v, 0) + .... (46) 

We have here taken to = 0 and have written U3(t) = tC, where C is a time-independent 
integral operator in velocity space and is given explicitly in equation (30). 

From equation (46) we obtain the following expression for cf>(v) 

cf>(v) = p-1(1+.B-1CB- 1 + ... )B-1{vho(v)}, (47) 

where B-1 is the inverse of the Boltzmann operator which is given by equations 
(A9) and (A10) of the Appendix. The expression (47) for cf>(v) may be evaluated 
numerically. From equation (45) D is then found to be 0·317/p, a small correction 
to the Boltzmann value. 

Finally we calculate the self-diffusion coefficient from the approximation to equation 
(42) in which only the indicated terms are retained. Putting to = 0, we write the 
resultant equation as 

8h(v,t)/8t = pB{h(v,t)} +p2 f~ dt' A(t-t',p)h(v,t'). (48) 
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Thus l/J(v) now satisfies the equation 

-vho(v) = pB{l/J(v)} +p2 fooo 
dt f~ dt' f dv' v' ho(v')A(t-t', p) h(v, t') } 

(49) 

= pB{l/J(v)} +p2 fooo dt A(t, p) l/J(v). 

From equation (42) we see that, because of the exponential terms, the operator 

fooo 
dt A(t,p) 

is finite and is proportional to p -1 . Hence we can write equation (49) as 

-vho(v) = p(B+A)l/J(v) , where A = p fooo 
dtA(t,p). (50a, b) 

The solution to the integral equation (50a) is 

l/J(v) = -p-1(l+B-1 A)-l B- 1 {vho(v)} 

= -p-1(l-B-1 A +B-1 AB-1 A + ... )B-1{vho(v)}, (51) 

which is an expression suitable for numerical evaluation. We find D = 0·280/ p, 
just 1 % off the exact value. 

5. Conclusions 

In this paper we have shown that Boltzmann's equation may be generalized to 
describe a gas of arbitrary density. The one-particle velocity distribution function 
satisfies an exact equation which may be approximated to enable transport coefficients 
to be computed. By taking into account the dynamics of the whole system, at least 
statistically, we can be assured that each approximation contains only finite contribu
tions. Alternatively we may approximate the exact equation by retaining only 
2,3, ... -body contributions. In this case, 3,4, ... -body contributions are modified 
by the Boltzmann term which takes into account the interaction of an isolated group 
of particles with the rest of the system. 

The present approach is general enough to apply to a gas of rigid discs or spheres 
but for more general interaction potentials, such as those for which bound states 
can occur, further generalization may well be necessary. In particular, equations 
of the type of (32) and (42) might be obtained, but the time dependence of the operators 
appearing in those equations would differ in an important way from the one-dimen
sional case. In two dimensions Uit) ~ In t as t becomes very large, while in three 
dimensions the four-body term U4(t) exhibits similar long time behaviour. We are 
then led to consider integrals of the type 

fooo 
dtexp(-pt) f~ du(l+u)-l, 

which for small values of p behaves like In p. 
Two methods of modifying the contributions from isolated groups of particles 

have been proposed here for a one-dimensional model. Equations of the type (42), 
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in which the term exp( - poc(v)t} is present, also lead to finite expressions in two and 
three dimensions. However, analysis of the two-dimensional Boltzmann operator 
suggests that the operator exp(pBt) may not be adequate to provide the necessary 
convergence of the integrals that arise. This leads to the possibility that the self
diffusion coefficient may not exist in two dimensions. No such problem occurs for 
a gas of rigid spheres. Reference to the growing body of work on this problem may 
be found in an article by Cohen (1973). 
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Appendix 

The purpose of this appendix is to solve the one-dimensional form of Boltzmann's 
equation 

oh(v,t)/ot = p f dw Iv-wl{ho(v)h(w,t) -ho(w)h(v,t)}, 

which results from equations (19) and (21). We define 

g(v, t) = f dv' v' ho(v') h(v, t) 

(AI) 

(A2) 

and note that h(v, t) is also a function of v'. In fact, we have h(v,O) = l5(v-v'), so 
that g(v, 0) = vho(v) is an odd function of v. If we let 

g(v,s) = foaJ dtexp(-st)g(v,t) (A3) 

be the Laplace transform of g(v, t) then g(v,s) satisfies the relation 

sg(v,s) -g(v,O) = p f dw Iv'-wl {ho(v)g(w, s) -ho(w)g(v,s)}. (A4) 

Since g(v,O) is an odd function of v, the linear equation (A4) implies that g(v,s) is 
also odd. 

Introducing the auxiliary function 

G(v,s) = f dw Iv-wlg(w,s), (AS) 
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we can write equation (A4) as 

02G(V, s) a ( dac OG) 
S ov2 -2g(v,0) = P ov G(v,s) dv -ac(v) ov (A6) 

where ac(v) is defined by equation (34). Integrating equation (A6) and using the 
boundary conditions 

G(O,s) =0 and oG I = -2 [00 dw g(w,s) , 
ov v=o Jo 

we obtain 

G(v,s) = {S+PIX(V)} J: dwf(w){s+pac(w)}-2, 

where we have 

f(v) =2 J: dwg(w,0)-2{s+pac(0)} LOO dwg(w,s), 

and hence 

(A7) 

(AS) 

g(v,s) = 1- a2~(~, s) = pho(v) [V dw f(w){s+ pac(w)} -2 +g(v, O){s+ pac(v)} -1. (A9) 
ov Jo, 

The integral in the second term of the right-hand side of equation (AS), which is an 
unknown quantity in (A9), can be obtained by integrating (A9) to obtain 

(1+2{S+Pac(0)} JoOO dv J: dWho(v){s+pac(W)}-2) JoOO dvg(v,s) 

= 2p JoOO dv ho(v) J: dw {s+ pac(w)} -2 Jo'" du g(u, 0) 

+ JoOO dv g(v,0){s+pac(v)t 1 • (AIO) 

The quantity </J(v) defined in equation (22) is given by equations (A9) and (AW) 
with s = o. 

If we now consider the eigenvalue equation 

Ab(v) = B{b(v)} , (All) 

we see that one solution is b(v) = ho(v) with A. = O. To find other solutions we note 
that the eigenvalue equation has the form of equation (A4) with g(v,O) = 0 and 
sip = A.. Hence its solution is given by equations (A9) and (AIO). In particular the 
right-hand side of equation .(AW) vanishes. By considering the left-hand side of 
this equation, we see that we have A. < - ac(O). 
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