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Abstract 

Equations resulting from the unitarity of the collision matrix are investigated in standard resonance 
theory. The nonuniqueness or otherwise of fitted resonance parameters is discussed. 

Introduction 

In a recent paper, Adler and Adler(1972) showed that, given a set of cross sections 
for a fissile material, then in a perturbation approximation there is no unique solution 
for the reaction matrix parameters when there are more than two fission channels 
present. One difficulty in their approach is that their perturbative solutions do not 
satisfy unitarity, and it remains unclear as to whether their conclusions are general 
or depend upon the approximation used. In the present paper, the resonance theory 
is presented in a way slightly different from theirs, but one in which unitarity is easier 
to investigate. The conditions under which Kapur-Peierls (1938) reaction matrix 
parameters may be found are considered. 

Background 

Following Lane and Thomas (1958), the collision matrix elements can be written as 

Ucc' = exp{i(Qc+Qc,))(Jcc' +iTcc')· 

The transition matrix Tcc' can be shown by standard theory to be given by 

Tcc' = L A;.;.'Y;,cY;.'c' , 
;.;.' 

(1) 

(2) 

where Y c is the reduced width of the reaction matrix, and A is the Wigner level matrix, 
defined as 

Ail = (E;.-E)J;.;.' -ir;.;., with r;.;.' = -2- L hCYA'CO 

while the reaction matrix R is given by 

Rcc' = LY;'cY;'c,/(E;.-E). 
;. 

c 
(3,4) 

(5) 
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The level matrix may be expressed in terms of its eigenvalues as 

Au' = L S).,.S).,,J(C,.-E) , where C,. = L S).,.(A).;/+<5u ,E)S).,,. (6,7) ,. ).).' 

are the complex eigenvalues of A -1 + IE, and S is a complex orthogonal matrix of 
the eigenvectors of A. The T matrix (2) can then be written in the Kapur-Peierls . 
(1938) form 

Tee' = Lg,.eg/lC·/(C,.-E), ,. 
where the Kapur-Peierls reduced width is 

The complex energy· 

g,.e = L S).,. 'l').c' 
). 

C,. = Jl,. -iv/l 

can be interpreted as arising from a resonance at energy Jl,. with half-width v,.. 
In the Adler-Adler theory, the cross sections 

take the form 

u(X)(E) = L I Une l2 

e(x) 

(8) 

(9) 

(to) 

(11) 

u(X)(E) = cE-t L L {G~x) v). +(Jl). -E)H~X)}/{CJl). _E)2 + vi} (12) 
J ). 

for reaction cross sections and, for the total cross section, the fonn 

u!(E) = cE-t {l: (L (IX~ cos w _ Pf sin w)v). + (Jl). -E)(IX~ sin w + Pf COsW)) 
J ). (Jl). - E)2 +v~ 

+2gJE~t(1- CoSW)}, (13) 

where c is a proportionality constant, w is the potential scattering phase shift and 
gJ is the spin statistical weight factor, while A. is summed over states with the same J 
and parity. In this theory we have the important restriction 

IX~ +iM = g~n = L S/l).Sv).'l',.n'l'vn· (14) 
,.v 

The Adler-Adler coefficients, in terms of the Kapur-Peierls parameters, are 

G(X) +iH(x) = " x(n) X(X)/(C*-C ) ). ). £...).,.).,. ,. ). , ,. where x~"'J = L g).eg:e· 
e(x) 

. (15, 16) 

We can show also, from the orthogonality of S and the hermiticity of X, that 

LP~ = 0, 
). . 

LH~X) = 0, 
). 

L (G~X) +iH~x» = g~. 
x 

(17a, b,c) 



Unitarity in Resonance Theory 3 

Adler-Adler Nonuniqueness 

Adler and Adler (1972) showed that to first order in r ;.).:/(E;. - E;.') their param­
eters are given approximately by: 

cx~ +iP~ = nn +2i L r/J;''/Itn'/An/(E/J-E;.) , (18) 
WF-;' 

Gi +iHi = r~r;'f/2ru +2i L r~;''//Jn'/An/(E/J-E;.), (19) 
wI';' 

GI = rfJ.n r ;.y/2ru and HI = 0, (20a, b) 
where 

r;'/J = ri/J +!'//In'/;'n, nn = 2gJ r;'n E- t = '/;'n' ri/J =! L '/;.c'/w (2Ia, b,c) 
c(F) 

Using equation (19) as an example, we have 

!HiIY;.n = L r~;''//Jn/(E/J-E;.), (22) 
wI';' -

and the whole argument of Adler and Adler concerning the nonuniqueness of param­
eters is based upon the observation that, in equation (2Ic), we cannot specify the 
individual '/;'c when the number Nc of channels is greater than two. Adler and Adler 
did, in fact, give alternative solutions which yielded the same cross section in a number 
of special cases. However, the role of unitarity in this approximate version of the 
theory is obscured because the approximation itself violates unitarity to a slight 
degree. 

Role of Unitarity 

Unitarity essentially implies the condition 

1m Tcc' = L Tcc" Tc:t;c" . (23) 
c" 

If we substitute the Kapur-Peierls form (8) into equation (23) and equate the residues 
of the resonance poles, we obtain 

g;.c = 2i L g:cX;'/J/(C: -C;.). (24) 
/J 

If we define the complex hermitian matrix B by 

R;'/J = 2iX;'/J/(C: -C;.) (25) 

then in matrix notation we have 

Uc = But and ut = B*Uc' (26a, b) 

from which we obtain 
BB* = I. (27) 
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We can associate a matrix B(x) with each reaction by defining 

B(X) = 2i X(x) /(C* - c ) A,. A,.,. A· (28) 

On denoting the hermitian conjugate by a dagger, we note also that 

S-1 Uc = (S*)-1 U: = stU:, (29) 
so that we have 

B = Sst. (30) 

The matrix which complex-conjugates the Kapur-Peierls widths must also obey the 
condition (30) where S diagonalizes the level matrix. 

In radiative capture channels we can write a random phase approximation as 

L YvcYpc ~ l'ybvp , 
c(y) 

where r y is the average radiative width. Thus we obtain 

X~~ = L LYVCSAVYPCS:p = ryBA,.· 
c(y) vp 

Also equations (28) and (16) yield 

B = B<n)+B(F)+B(Y) 
from which we obtain 

X~~) = Hi(C,.-CV -l'y}BA,.-gAng!n. 

(31) 

(32) 

(33) 

(34) 

The problem to be solved is, given a set of Adler-Adler resonance parameters 
which determine a cross section uniquely, how much information can be obtained 
about the Kapur-Peierls resonance parameters? From equation (14) we can deter­
mine the g An Up to a sign, and so from equation (34) we must find either of the matrices 
X(F) or B. We assume that the average radiation width t y is known. For fissile 
materials, equation (15) then gives 

and 

G(y) +iH(Y) = l' " x(n) B /(C* -C) 
A A Y L.. A,. A,. ,. A ,. 

G(F) +iH(F) = " x(n) X(F)/(C*-C ) 
A A L.. A,. A,. ,. A· ,. 

(35) 

(36) 

For N resonances, this represents 4N constraints upon B or X(F). These are insuffi­
cient to determine any of the fission widths, and we regard these widths as the unknowns 
in the problem. 

Now let us consider the effect of unitarity. We assume only one neutron channel. 
Equation (27) yields N 2 constraints while equations (26) give 2N(NF + 1) constraints, 
where NF is the number of fission channels. These constraints are not independent, 
and so we choose the greater number N 2. The equation 

X (F) -" g* A,. - L.. g).c ,.c 
c(F) 

(37) 
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yields an additional N 2 conditions, so that in all we have 2N 2 + 4N constraints and 
only 2NNF unknowns. The problem as posed, therefore, has no solution unless some 
of the constraints are redundant or relaxed. For example, the ep' are not really 
independent variables but are intimately connected with the reduced widths 9 p.c by 
way of equation (27). It follows that 2N 2 + 2N(2 - NF) redundancies must occur 
via these relations if the fission widths are to be determined. 

The most sensible approach to this problem is to fit cross sections directly to the 
Kapur-Peierls form while using the unitary nature of the T matrix as a constraint 
upon the fit. Then all of the above conditions are automatically satisfied and Adler­
Adler parameters can be derived rather than fitted directly. 

A knowledge of B obtained in this way does not permit the determination of S. 
It is a consequence of the work of Adler and Adler (1972) that S is not a unique 
matrix and, for more than two fission channels, a number of such matrices can be 
defined which obey equation (30) and diagonalize a suitable level matrix. Another 
problem related to the above is, given a set of Kapur-Peierls parameters, can one 
find a unique set of Wigner-Eisenbud (1947) parameters? 
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