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Abstract 

A digital method of computing time-varying power spectra involving complex demodulation followed 
by low pass filtering is described. The method is illustrated by an application to records of geo­
magnetic Pi pulsations from Macquarie Island. These show a steady decrease in power with in­
creasing frequency in the range O· 1---{)' 5 Hz. 

1. Introduction 

Since the development of the sound spectrograph (Koenig et al. 1946), the 
production of time-varying power spectra or 'spectrograms' has been of great utility 
in many experimental fields, including the study of whistling atmospherics (Storey 
1953), speech sounds (see e.g. Flanagan 1965), animal and bird vocalizations (see 
e.g. Koenig et al.) and geomagnetic pulsations (Duffus et al. 1958), to name a few 
applications. The term spectrogram is used here to denote a three-dimensional 
representation of a time-varying power spectrum, showing power as a function of 
frequency and time in some form of contour map. Spectrograms of geomagnetic 
pulsations have commonly been referred to as 'sonagrams' because of the usual 
production method of recording signals on magnetic tape and then replaying them 
at speeds many times faster than the recording speed into a sound spectrograph. 
Such spectrograms have also been produced by recording signals in digital form and 
then using a computer to calculate the time-varying power spectrum (McPherron 
1968); these spectrograms were named 'digital sonagrams', which is surely an 
inappropriate terminology as no frequency multiplication into the audio frequency 
range was required before or during computer analysis. 

In McPherron's (1968) spectrogram production method, band-pass filtering was 
achieved by convolving the input time series with the impulse response of a symmetrical 
filter. The impulse response function was derived by multiplying that of an ideal 
band-pass filter with a Hanning function, so that the resulting function was nonzero 
only within a finite time interval. The present paper is devoted to a discussion of 
another digital method which makes use of complex demodulation followed by low 
pass filtering. Although the discussion is restricted to the problems of analysis of 
geomagnetic pulsation data, this technique is generally useful as it can be used to 
produce spectrograms of any time-varying phenomenon after the appropriate 
analogue-digital conversion has been performed. 

2. Method of Computation 

Geomagnetic pulsations were recorded in the field as a serial bit-stream on 6 mm 
magnetic tape. These data were re-recorded in the laboratory in computer-compatible 
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form (Yuan 1970). A computer program was written to select data sections which 
were then re-written onto magnetic tape in blocked form for convenience of processing. 
This program also provided for smoothing and resampling of the data and for 
filtering out the zero-frequency component prior to spectral analysis (see Section 3). 

Band-pass filtering was simulated by complex demodulation, which is equivalent 
to the heterodyning of a signal with a sine wave (see review by Bingham et al. 1967). 
The process of forming the complex demodulate at a frequency wand then filtering 
with a low pass filter having a 3 dB cutoff frequency Aw is equivalent to the process 
of filtering the signal with a symmetrical band-pass filter having a centre frequency w 
and 3 dB cutoff frequencies w ± Aw. 

Given the times series f(t) which has a value f(nT) at time t = nT, the complex 
demodulate of f(t) at frequency w is given by 

F (f,(nT) = f(nT) exp(iwnT) . (1) 

If a low pass filtering process, denoted by an operator S, is applied to the complex 
demodulate, we obtain 

F~(nT) = S [F",(nT)] = S [f(nT) cos wnT]+ is [f(nT) sin wnT]. (2) 

An instantaneous power function P'(w, t) is then given by 

P'(w,t) = IF~(nT)12. (3) 

All low and high pass filtering operations were effected with recursive digital 
filters, simulated by use of the bilinear Z-transform technique of Golden and Kaiser 
(1964). Cosine and sine values were efficiently computed using the equation 

[
SinW(n+ I)T] [COSWT SinWT] [SinWnT] .. 

cosw(n+1)T -sinwT coswT coswnT 
(4) 

The time-varying power spectrum P(w, t) is estimated by smoothing the power 
function P '(w, t) (Bendat and Piersol 1966). This smoothing is necessary because of 
a basic uncertainty principle in spectral analysis, namely, it is impossible to increase 
frequency resolution without decreasing the maximum possible time resolution and 
vice versa. For an ideal band-pass filter, with passband from frequency Wo to Wo + Aw, 
the maximum time resolution possible can be estimated using a sampling theorem 
in the time domain (Kohlenberg 1953). Provided Wo is an exact multiple of Aw, 
the output f(t) from the filter is completely determined by samples taken with a 
sampling interval AT = nj Aw. If AT is decreased below nj Aw, the increased time 
resolution gives no further information about the input signal; details of the filter 
impulse response function are revealed instead. 

For a gaussian white noise input time series which is stationary, the effect of 
smoothing the power function P'(w, t) can be calculated (see e.g. Blackman and 
Tukey 1958). If this smoothing is performed by taking a simple moving average of 
duration AT, estimates of the power spectral density can be made by sampling the 
resulting function. The statistical character of these estimates, as shown by the mean 
and variance, will be similar to that of a chi-square variate, with the number of 
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degrees of freedom being proportional to the duration fJ..T. The variance will be 
inversely proportional to fJ..T. When fJ..T = n/ fJ..w, the spectral density estimate has 
one equivalent degree of freedom. 

For the general case, i.e. a nonstationary input time series, the effect of smoothing 
P '(w, t) with a moving average cannot be calculated without comprehensive a priori 
knowledge of the input time series. Also, in trying to improve statistical reliability 
by increasing fJ..T, errors may be introduced because the spectrum may change 
significantly within the time interval fJ..T. From these considerations, it can be seen 
that a duration fJ..T = n/fJ..w for the moving average would be Close to optimum. 

Average frequency characteristics, over some interval of time t = jmT to kmT, 
can be examined by computing a time-averaged power spectrum 

k-l 

PavCw) = Ko L pew, rmT). (5) 
r=j 

The normalization constant Ko was chosen so that Pav(wo) was equal to unity, Wo 
being the lowest centre frequency in the array of filters used to estimate the time­
varying power spectrum. 

3. Digital Spectrograms of Geomagnetic Pi Pulsations 

Fig. 1 shows two spectrograms: (b) is a spectrogram of geomagnetic Pi pulsations 
(H component) recorded at Macquarie Island and was produced by the conventional 
analogue method (see Section 1); (a) is a digital spectrogram produced by simulating 
an array of band-pass filters with 0·02 Hz spacing between the centre frequencies of 
adjacent filter channels (the filters were contiguous, i.e. adjacent filters had common 
3 dB points). Low pass filtering of complex demodulates was performed using the 
following scheme. For input and output time series X(nT) and Y(nT) respectively, 
the value of the output time series at t = (n+ l)T was computed using the equation 

Y«n+ l)T) = A{X(nT) + X«n+ l)T)}+BY(nT) , (6) 

where 

A = Q/(2T- 1 +Q), B = (2T- 1 -Q)/(2T-1 +Q) with Q = 2T- 1 tan twc T, 

Wc being the 3 dB cutoff point for the low pass filter. The frequency response for 
this filter is shown in Fig. 2. 

Use of recursive digital filtering gives a considerable advantage in computation 
speed over non-recursive filtering schemes, such as that of McPherron (1968). Consider 
the computational effort, measured by the number of multiplications and additions, 
required to produce one point in the instantaneous power function P'(w, t). Assume 
that all time-invariant filter coefficients have been calculated. With the complex 
demodulation technique, firstly 4 multiplications and 2 additions are required to 
produce sine and cosine values using equation (4). Then 2 more multiplications are 
needed to compute the complex demodulate. Low pass filtering of the complex 
demodulate is effected using equation (6) with another 4 multiplications and 4 
additions. Another 2 multiplications and 1 addition are required to calculate one 
point of P '(w, t), giving a total of 12 multiplications and 7 additions. 
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Fig. 1. Spectrograms of geomagnetic Pi pulsations recorded at Macquarie Island over the 
period 1100-1500 hUT on 15 March 1968: (a) digital spectrogram produced by simulating 
an array of band-pasS filters; (b) analogue spectrogram recorded by the conventional method. 
The contour map representation for (a) was produced by selective overprinting of line-printer 
characters; the spacing between contour levels was 3 dB. The feature on (b) at 1200 UT is a 
time mark. The analogue spectrogram was kiildly provided by R. R. Heacock. 

McPherron's (1968) band-pass filter is implemented by digital convolution over 
a time interval To = 2n/Aw, where Aw is the filter bandwidth. The number of 
multiplications, and the number of additions, required to produce one point in the 
instantaneous power function is approximately 2n/T Aw, where T is the sampling 
interval; this is approximately lOO for the value of TAw used in producing the digital 
spectrogram of Fig. la. Assuming addition to be much faster than multiplication, 
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as is usual, the recursive filter is faster than McPherron's filter when the product 

T flw is less than in. 
The instantaneous power function, derived by squaring the band-pass filter 

outputs, was smoothed to give the time-varying power spectrum by using a moving 

average of the form 
m 

P(w,nT) = (2m+l)-1 L P'(w,nT-jT). 
j=-m 

The value of P(w,nT) was calculated at every mth datum point. 
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Fig. 2. Frequency response for 

the low pass filter used in 
complex demodulation. This is 

the frequency response of any 

band-pass filter channel, i.e. the 

spectral window. 

(7) 

The use of a computer for spectral analysis gives the advantage that data can be 

analysed repeatedly with ease, varying the frequency and time resolution. However, 

when analysing any particular type of data, adoption of standardized analysis pro­

cedures facilitates the comparison of spectrograms. In order to study Pi pulsations, 

a frequency resolution of 0·02 Hz was considered to be adequate for routine spectral 

analysis over the frequency range O· 1-0·5 Hz, as these pulsations resemble band­

limited noise (see McPherron et al. 1968). After some experimentation, a value of 

m = 200 was chosen for routine analysis, as it provided sufficient time resolution. 

This gave an integration time of 200 s, which was a factor of eight larger than the 

optimum time calculated using the sampling theorem (see Section 2). The resulting 

spectrograms showed similar details of time structuring of Pi pulsation events to 

those discernible on spectrograms produced at the University of Alaska using 

analogue methods. 
The spectrograms in Fig. I show the wideband nature of Pi pulsations. This 

distinguishes them from the Pc type pulsations, which are characterized by concentra­

tion of power in a narrow frequency band (see e.g. Heacock 1970). It is also evident 

from Fig. 1 that power is concentrated at low frequencies and decreases as the 

frequency increases. This is more readily seen in the time-averaged power spectra 

illustrated in Fig. 3. These were obtained from consecutive I h time intervals of the 

digital spectrograms of Fig. lao (This spectral type is found to be characteristic of Pi 

pulsations associated with auroral activity at Macquarie Island.) 
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The digital spectrogram of Fig. la was computed from data obtained by smoothing and resampling the original data. The latter were obtained by sampling the signal at a rate of 10 s - 1, each sample being the mean of the signal over an interval of 0·1 s. 
The smoothing effect of this sampling process may be described by a power transfer function R(w) given by 

R(w) = P'(w)IPu(w) , (8) 

where Ps(w) is the time-averaged power spectrum of the smoothed data and Pu(w) that of the unsmoothed signal. . In the present case 

R(w) = {(sintwT)/twTY, (9) 

where T is the interval over which the signal mean was taken. In the range O· 1-0·5 Hz, 
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Fig. 3. Time-averaged power spectra for geomagnetic Pi pulsations recorded at Macquarie Island on 15 March 1968. 

R(w) varied by less than 0·1 dB. Smoothing was then effected by taking an 11-point moving average defined by 

m 
f'(nT) = (2m+l)-1 L l(nT-jT) , m = 5. (10) 

j=-m 

The functions f'(nT) and f(nT) respectively represent the values of the smoothed 
and unsmoothed time series at time t = nT, where T is the sampling interval. The smoothed data were then resampled at intervals of 0·5 s. The power transfer function for the moving average is given by 

R'(w) = [sin{t(2m + l)wT}/(2m +l)sin !WT]2 (11) 

(Blackman and Tukey 1958). From 0·1 to 0·5 Hz, R'(w) decreased by less than 5 dB. 
Over this range (and indeed over a much greater range) the response of the pulsations detection syste$ used at Macquarie Island was approximately proportional to 
frequency. It is thus apparent that the observed decrease in power over the above frequency range in the spectrograms of Pi geomagnetic pulsations is a real effect. 
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