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Abstract 

Three-wave interactions in which one of the waves is a whistler and the other two are higher frequency 
waves are examined. The suggestion by Chiu (1970) and Chin (1972) that radio emission near the 
fundamental plasma frequency might arise in the solar corona from the coalescence of a whistler 
wave with a Langmuir wave is shown to be unacceptable because the resonance condition for the 
three-wave interaction cannot be satisfied. Modifications aimed at overcoming this objection are 
explored. In particular it is pointed out that a spectrum of Langmuir waves evolves into a spectrum 
of Z-mode waves because of nonlinear interactions in a magnetoactive plasma, but that the coales­
cence of aZ-mode wave with a whistler can occur only under implausibly restrictive conditions. 
Explicit expressions which describe the three-wave interactions are derived, and these are used to 
treat the scattering of transverse waves (and also of Langmuir waves) by whistlers. It is suggested 
that such scattering may be important in regions of the solar corona where energetic electrons are 
trapped. 

1. Introduction 

Three~wave interactions involve either the coalescence of two waves into the third 
or the decay of one wave into the other two. Such interactions involving whistlers 
(also known as helicons) have been discussed in connection with the ionosphere 
and magnetosphere (Harker and Crawford 1969), the solar corona (Chiu 1970; 
Chin 1972), solid state plasmas (Sudan et al. 1967; Bulgakov et al. 1970) and 
computer-simulated plasmas (Wright 1971). 

The purposes of this paper are twofold: firstly, to derive specific expressions 
describing three-wave interactions in which one of the waves is a whistler and the 
other two are higher frequency waves, the derivation being based on the theory 
developed by Melrose and Sy (1972; hereinafter referred to as MS); secondly, to 
discuss the possible importance of such interactions to plasma radiation (i.e. radiation 
at or near the local plasma frequency) from the solar corona. Plasma radiation is 
usually attributed to the scattering of stream-excited Langmuir waves by thermal 
ions in the coronal plasma. In particular, it is shown that a specific three-wave 
interaction proposed by Chiu (1970) cannot lead to plasma radiation from the solar 

- corona as he suggested, since, in the form proposed by him, the resonance conditions 
for the three-wave interaction are not satisfied. Because this criticism can be made, 
and its implications explored, without knowledge of the probabilities which govern 
three-wave interactions, this particular application precedes the general theory. 

Thus in Section 2 the following process is investigated. It was suggested by Chiu 
(1970), with a further discussion by Chin (1972), that a form of plasma emission in 
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which whistlers coalesce with Langmuir waves (longitudinal electron plasma waves) 
to produce escaping radiation might operate in the solar corona. The suggestion 
is attractive, both because whistlers are readily generated by energetic electrons and 
because there are several types of observed emission (e.g. storm continuum, type I 
bursts and stationary type IV bursts) for which either there is no well-established 
theory or the existing theories are unsatisfactory. (Chiu and Chin both applied the 
suggested mechanism to the specific case of type III bursts.) However, apart from the 
physical impossibility of the process as originally proposed, the conditions under 
which this process can occur are found here to be so restrictive that plasma emission 
involving whistlers is unlikely to be important in the solar corona. 

In Section 3 the explicit expressions describing the relevant three-wave processes 
are derived using the theory of MS. The underlying theory of nonlinear processes 
in a magnetoactive plasma has been developed in a variety of ways, by the authors 
cited in the first paragraph of this section and by Yip (1970), Stenflo (1973) and Giles 
(1974), amongst others. The equivalence of the relevant theory as developed by 
Bulgakov et al. (1970) and by Giles (1974) with that developed by MS is discussed 
in Appendix 1. 

In Section 4 the theory is extended to treat scattering by whistlers of Langmuir 
waves into Langmuir waves and scattering by whistlers of transverse waves into 
transverse waves at frequencies higher than the plasma frequency. The possibility 
is explored briefly that a region of the solar corona where whistlers are excited could 
become opaque because of this scattering. 

2. Plasma Emission involving Whistlers 

Plasma Emission 

For plasma emission to occur it is usually understood that Langmuir or other 
waves, such as the Bernstein modes, with frequencies comparable with or greater 
than the plasma frequency must be excited in the source. Suggestions to the con­
trary have been made by Zaitsev (1966) and Chiu (1970). These authors suggested 
that if low frequency waves (ion sound waves in Zaitsev's case and whistlers in Chiu's 
case) were excited then these could coalesce with thermal plasma waves to produce 
escaping radiation. Melrose (1970) showed that in such a process the effective tem­
perature T a of the resulting radiation is restricted by 

T a ::::; (wa' +wa',)Ta'Ta"/(wa"Ta' +wa'Ta',) , (1) 

where the coalescing waves are labelled u' and u" and the resulting waves are 
labelled u, and w is the angular wave frequency. By hypothesis Zaitsev and 
Chiu have (see the conditions, equations (2), below) wa" ~ wa' ~ wa, T a" ~ Te and 
T a' = Te, where Te is the temperature of the thermal electrons. In this case equation 
(1) reduces to T a ::::; Te, that is, the mechanism cannot produce nonthermal radia­
tion. Both the low frequency waves and the Langmuir waves need to be excited well 
above their respective thermal levels for this coalescence process to produce nonther­
mal radiation. 

The preceding conditions, however, do not rule out the possibility that plasma 
emission involving whistlers is an important process in the solar corona. Consider 
a region where energetic electrons are trapped. As argued both by Chiu (1970) and 
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Chin (1972), relatively mild anisotropies of the distribution of energetic electrons 
can cause amplification of whistlers, and so a nonthermal level of whistler tur­
bulence is likely to be present. A nonthermal distribution of Langmuir waves 
should also be present under these conditions because the energetic electrons emit 
and absorb Langmuir waves. Provided that the emission and absorption of the 
Langmuir waves are dominated by the energetic electrons, an equilibrium spectrum 
of these waves will be formed. The effective temperature is then not the thermal 
temperature but corresponds to the temperature of electrons with random speeds 
near v"" the phase speed of the Langmuir waves (v", = wp/k, where wp is the plasma 
frequency and k the wave number); this may be shown by, say, inserting a power­
law momentum distribution for.fe(p) in equation (26) of Melrose (1970). Thus excited 
whistlers and excited Langmuir waves should coexist in regions where energetic 
electrons are trapped. 

Resonance Conditions 

The resonance conditions 

k = k' ±k", w" w", ± w"" (2a, b) 

prove to be very restrictive when plasma emission involving whistlers is considered. 
Whistlers with frequencies w" ~ Q I cos (jul, where Q is the electron gyrofrequency 
and (j" the angle between k" and the background magnetic field, have wave numbers 

k" _ wp w wp ( " )t 
- C Q I cos (j" I ~ c· (3) 

(Here, and in the remainder of this section, the labels (}' are omitted.) The escaping 
radiation has wave numbers 

k = (w2 - w~}"/c ~ wp/c, (4) 

while Langmuir waves generated directly by particles with speed v have 

k' = wp/v > wp/c. (5) 

There is simply no way in which equations (3), (4) and (5) can be made compatible 
with (2). 

Electron Cyclotron Waves 

One way in which it could be hoped to satisfy the resonance conditions (2) would 
be by relaxing the very restrictive condition w" ~ Q I cos (j" I in equation (3). For 
w" sufficiently close to Q, when the waves are called electron cyclotron waves, it 
may be possible to have k" > wp/c. The maximum possible value of k" is given by 
(Stix 1962, p. 196) 

k" < (wp/c)(Q/wPP.)t, (6) 

where P. is the ratio of the thermal speed of electrons to the speed of light. Under 
conditions appropriate for the solar corona, e.g. P. = 10- 2 and Q/wp = 10-1, this 
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maximum is greater than wp/c. However, for k" close to its maximum value, not 
only does it require a substantial anisotropy in the distribution of energetic electrons 
(of speed -(Q/wp)c) to excite nonthermal electron cyclotron waves (Kennel and 
Petschek 1966), but the waves so excited are in addition strongly damped by thermal 
electrons. That such waves should exist over a sufficiently large volume to give 
detectable plasma emission seems implausible. (Note that k" >:::i k' ~ k is not 
possible for electron cyclotron waves coalescing with longitudinal waves in view of 
the inequality (6) and the condition (7) below.) 

Supraluminous Waves 

Alternatively one could satisfy the resonance conditions (2) if the Langmuir 
waves had phase speeds greater than the speed of light, i.e. for supraluminous waves, 
in the terminology of Lerche (1968). Furthermore, it would seem that supraluminous 
waves should be present. This is because coalescence and decay processes involving 
two Langmuir waves and a whistler should cause Langmuir waves to be pumped 
continuously from the region v", < c into the region v", > c. There is, however, a 
weakness in this argument: the assumption that the waves are longitudinal must 
break down at small k values. Langmuir waves in a magnetized plasma are in fact 
resonant or near-resonant waves in the lower frequency branch of the extraordinary 
mode. Here this branch will be called the Z-mode. (Its existence is fundamental in 
the accepted explanation of the Z-trace, or third trace, found in ionosphere sounding 
experiments. The mode has no widely accepted name.) The properties of the 
Z-mode are discussed in Appendix 2. 

It follows from equation (AI5) of Appendix 2 that the above waves cannot be 
regarded as longitudinal waves, as a first approximation, for 

k' < (wp/c)(Q sin (}/.J3 wpPe}1r . (7) 

Using again Pe >:::i 10- 2 and Q/wp = 10- 1 as appropriate values for the solar corona, 
one finds from inequality (7) that supraluminous Langmuir waves in the solar corona 
cannot be treated as even approximately longitudinal. Such waves must be treated 
as Z-mode waves whose polarization is more nearly transverse than longitudinal. 

Cdalescence of Z-mode Waves with Whistlers 

The only possible plasma emission process involving whistlers is therefore the 
coalescence of a whistler with a Z-mode wave. Because the frequency of the Z-mode 
wave is in the range wp-tQ ::s; w' < wp (w' > wp corresponds to k' > wp/c), while 
the frequency of the whistler satisfies w" ~ Q, it follows that the sum frequency 
w = w' + w" is less than the cutoff frequency wp + tQ for the x-mode. Consequently, 
plasma emission arising from the coalescence of a Z-mode wave and a whistler is 
100% polarized in the sense of the o-mode. 

Consider the resonance conditions (2). The frequency of the Z-mode wave satisfies 
wp - w' < Q and the frequency of the o-mode wave satisfies w - wp ~ wp. The 
condition w = w' + w" could be satisfied in three ways: 

w" >:::i wp - w' ~ w - wp , (8a) 
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w" :::::: w - wp ~ wp - w' , (8b) 

wp - w' :::::: w - wp ~ w" . (8c) 

The condition k' + k" = k could also be satisfied in three ways: 

k"::::::k'~k, k" :::::: k ~ k', k'::::::k~k". (9a, b,c) 

The dispersion relations (equation (3) for the whistlers, equation (A19) for the Z-mode 
waves and w2 :::::: W~+k2C2 for the o-mode waves) can be approximated by 

k" :::::: wp (W")t 
c Q ' 

k' ~ wp Q ( wp )t 
~ 7 Wp 2( Wp - w') , 

wp (2(W-Wp»)t. (lOa, b,c) k~- ---
c wp 

When these dispersion relations are substituted in equations (9) one finds that the 
resonance conditions can be satisfied only with equations (8a) and (9a), i.e. for 

w" :::::: wp - w' ~ w - wp , k" :::::: k' ~ k. 

Furthermore, the resonance conditions can be satisfied only for 

w" :::::: Q(Q/2wp)t. (11) 

Anisotropic electrons with speed v :::::: (Q/wp)"'c would generate such whistlers. 
The conclusion that the coalescence is possible only for whistlers with a specific 

frequency suggests that the process is unlikely to be of physical significance. Of 
course, the coalescence would occur over a small range of frequencies once allowance 
is made for the angular dependences which have been,ignored in deriving equation 
(11), but nevertheless the resonance conditions remain very restrictive. 

3. Coalescence and Decay Probabilities 

The probability of coalescence of two waves u' and u" into a third wave u was 
given by MS; apart from minor changes in notation (WE/WT is written RE here) 
the result is (MS, equation (14» 

,uU<1'''''(k k' k") = 8(2n)7hc4 R" R'" R"" 
" w" w", w"" E E E 

x 1 (XU<1'''''(k, k', k") 12 b\k-k' - k") b(w" - w", - w",,), . (12) 

with (MS, equation (15» 

""'''''(k k' k") "* ,,' ,," (k ". k' ,,'. k" ",,) (X " ei ej el (Xijl ,w, ,w , ,w , (13) 

where (Xijl is a tensor which characterizes the nonlinear response of the medium and 
the asterisk denotes complex conjugation. In the applications discussed here the 
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plasma may be regarded as a cold electronic plasma for the purpose of calculating 
!Xijl. The relevant expression for !Xijl is (MS, equation (A2l» 

!Xijlk, w; k', w'; k", w") 

ew; (kr (') (") kr (") (') k; () (") = - 8---2 ,'"Crj W '"Cil W + --;;'"Crl W '"Cij W + -'"Cir W '"Cj1 W nmec W W W 

k" k' . k" ) + -.!'"Ci.(W)'"Clj(W') - ....!:..'"CrtCw")'"Cij(W) - .....!:.'"Cr/W')'"CuCw) , W w" w' 
(14) 

with"(from MS, equation (19» 

'"Ci/W) = (w 2bij -Q2bibj -iWQBij1 b1)/(W2-Q2) , (15) 

where bij is the unit tensor, Bij1 is the permutation symbol and b is a unit vector along 
the ambient magnetic field. 

To apply equation (12) to three-wave interactions involving a whistler, one needs 
to insert the relevant properties of whistlers for one of the modes, a" say, and make 
appropriate approximations to !Xijl. The whistler mode is the lower frequency branch 
of the ordinary mode of magnetoionic theory. For w" = wa" ~ Q I cos 8" I ~ wP' the general results written down in Appendix I of MS give 

and 

with 

a" _ (k"C)2 Q I e" I W - - cos , 
wp 

Rtf' = ~ 1 +cos e" ( a")2 2 
k" c 2cos2e" 

a" K" sin e" +A" cos e" +ia" I cos e" I e - --------~--__ ~._~--~ 

K" k" 
k'" 

- (1 + cos2e")t ' 

A" = K" X (K" X b) 
IK"xbl ' 

a" = A"xK". 

(16) 

(17) 

For later purposes we note that the electric vector for the whistler mode is orthogonal 
to the background magnetic field: 

ea".b=O. (18) 

In view of the requirement w" ~ Q for whistlers, one may use the approximation 

'"Cij(W") >::: bibj + (iW"/Q)Bij1b1 (19) 

in equation (14). If the other two waves have W >::: w' ~ Q, one may also use the 
approximation 

'"Cij(W) >::: '"Cij(w') >::: bij. (20) 
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Combining the two approximations (19) and (20), equation (14) reduces to 

lXij/(k, W; k', w'; kIf, wIt) 

'" ew; {(bik j k7 bj k".h ~ )b 
'" - -- --+--+--Ujj I 

8nme c2 w w wIt 

+i k" k"o k"~} Q r Grim bm Oij + i jl - j Uil wIt . 
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(21) 

However, when equation (21) is substituted into (13) the leading terms, being propor­
tional to bl , vanish because of equation (18). Thus one finds 

1X(1(T'''''(k k' kIf) '" ew; kIf sin 0" 1 cos 0" 1 
" /"'to.) - e(J* a' 

8nme c2Q(1 + cos20")t . e , 
(22) 

where 

K"xe"".h = -isinO" 1 cosO" 1 (1 +cos20")-t (23) 

has been used. The next-order terms in equation (21) would provide corrections of 
order w" /Q in equation (22); these corrections would be significant only for 
sinO" ;5 w"/Q. (It may be noted that the coupling (22) between three waves, one of 
which is a whistler, vanishes when the whistler propagates along the field lines, i.e. 
for sin 0" = 0, as already pointed out by Harker and Crawford (1969), who gave a 
physical explanation for it.) 

. It is possible for the whistler to be involved in either a coalescence process 
a' + a" --+ a or in a decay process a' -+ a + a". The probabilities for these two pro­
cesses, and their inverses, are almost identical. They are 

(2n)5he2w4 w"" R" R'" 
. --~--=p --,. E E u""'''''(k,k',k'') = 4m; c2Q2 w" W" 

xl e"* .e'" 12 sin20" o3(k-k' ±k")o(w"-w'" ±w"'), (24) 

where the plus signs refer to the decay process. 

4. Scattering of High Frequency Waves 

The three-wave interaction involving whistlers can be effective in scattering 
Langmuir waves into Langmuir waves and in scattering transverse waves into trans­
verse waves at relatively high frequencies. The equations describing such scattering 
are formally equivalent to the quasi-linear equations, provided that the wave numbers 
of the higher frequency waves are much greater than the wave number of the 
whistlers. These equations are (Tsytovich 1966, Section 3) 

dN"(k) _ ~(A~"'(.k )N"(k) + Dr; (k)~ , , ON"(k)) 
~-Oki ' J 

(25) 

dN"'(k') = f d3k ""'(k k') (N"(k) N"'(k')k' ON"(k)) 
dt (2n)3 W, + . ok ' (26) 
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with 

A'!"'(k) = f d3k' w""'(k k') k~ 
• (2n)3'" 

(27) 

D'!~'(k) = f d3k' w""'(k k') k~ k~ N"'(k'). 
'J (2n) 3 ' • J 

(28) 

Here the higher frequency waves are denoted by u and the lower frequency waves 
by u'. The quantity w""'(k,k') is the probability per unit time that a photon in the 
mode u in the range d3k/(2n)3 at k should emit a photon in the mode u' in the range 
d3k'/(2n)3 at k'. 

The probability w"a" (k, k") for emission and absorption of whistlers may be derived 
from equation (12) by expanding in k"/k and taking the limit k"/k -+ 0 in 

One finds 

where 

w"""(k, kIf) = f d3k: u"aa"(k, k', k"). 
(2n) 

. 2 2 4 a" 
aa"(k kIf) = (2n) he cop co (R")2 . 2()" ~( ti" _kIf va) w, 2222 ESln uCO 'II' 

4me c 0 (CO") 

v: = oco"/ok 

is the group velocity of the higher frequency waves. 

(29) 

(30) 

(31) 

For scattering of, say, o-mode waves at co > cop, one might think that some x-mode 
waves would be produced. This is not so because the polarization vectors are orthog­
onal, to a first approximation, and hence the factor j e"* ,e"'j2 in equation (13) is 
zero to this approximation. However, if the mean free path for scattering were less 
than the distance over which Faraday rotation would cause a rotation of the plane 
of polarization through ...... 90°, it would be inappropriate to separate into magneto­
ionic components. If such were the case then it would be necessary to treat the 
waves as transverse waves with arbitrary transverse polarization; an extension of 
the formalism, e.g. by introducing polarization tensors, would be required to treat 
this case. 

For transverse waves, or o-mode or x-mode waves, the condition k" ~ k must 
break down at frequencies very close to the plasma frequency because k -+ 0 for 
co -+ cop. For equations (25)-(28) to apply requires 

co"/O ~ C02/CO~ -1. (32) 

Scattering in Solar Corona 

The scattering of high frequency waves by whistlers will not be discussed in detail 
here. However, it is appropriate to make a rough estimate of the conditions required 
for effective scattering. According to equation (25) the high frequency waves diffuse 
in k-space with a diffusion rate v ...... k2 D ii • The propagation time for escaping radia­
tion passing through a region where whistlers are excited in the solar corona is 
probably of the order of a second or slightly less. Consequently, the scattering would 
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be important for v ~ 1 S -1 • A very rough ~stimate of the scattering rate gives 

,.., k2 D ,.., WIt 4; 2 n3 V,.., ii COp nem.c ~Ii , (33) 

where W" is the energy density in whistlers. The maximum value of W" for 
whistlers generated by energetic electrons with number density n1 and speed v ,.., c 
is W" ~ n1 me c2(Q/rop)4. Hence the maximum value of the scattering rate is 
v1,max ~ Q(ndne)' This rate could well be much greater than 1 S-1 in regions where 
energetic electrons are trapped in the corona. 

The possibility of enhanced scattering of radiation by whistlers in the solar corona 
should be explored in more detail. It appears possible that this scattering could 
produce broad-band absorption features in radio spectra. 

5. Discussion and Conclusions 

The conclusions reached in this paper concerning the possibility of plasma radiation 
resulting from whistlers are essentially negative. The conclusions can be summarized 
by contrasting them with suggestions made by Chiu (1970). He suggested that 
whistlers excited by anisotropic electrons could lead to plasma radiation through 
coalescence of the excited whistlers with thermal Langmuir waves, and that the 
resulting radiation should be polarized with the same handedness as the incident 
whistlers. The relevant conclusions reached here are: 

(1) The coalescence process involving thermal·Langmuir waves cannot produce 
nonthermal radiation (this has already been pointed out by Chin 1972). 

(2) The wave numbers for whistlers are such that they can coalesce only with 
Langmuir waves with phase speeds greater than the speed of light. (Neither Chiu 
(1970) nor Chin (1972) noted this.) Such waves cannot be regarded as longitudinal 
waves. They should be treated using magnetoionic theory, in which case they 
correspond to the Z-mode (the lower frequency branch of the extraordinary mode). 

(3) The resulting radiation should be 100% polarized in the sense of the o-mode. 
This is the opposite sense to that suggested by Chiu (1970) (see comment below on 
the polarization). 

(4) The resonance conditions for the coalescence of whistlers and Z-mode waves 
can be satisfied only for whistlers within a very narrow range around the frequency 
ro" ~ Q(Q/2rop)t. This is so restrictive that the mechanism is regarded as of no physical 
significance. 

The discussion of plasma emission involving whistlers can be repeated for plasma 
emission involving hydromagnetic waves. Hydromagnetic waves have kIf less than 
(rop/c)(ro" /43 Q), and consequently they too cannot be involved in plasma emission. 

A notable feature of the probability (equation (24» describing three-wave inter­
actions involving one whistler is that the polarization of the scattered wave is indepen­
dent of the polarization of the whistler. Indeed the factor 1 ea*. eO" 12 in equation 
(24) is the same factor that appears in any probability for the scattering of one wave 
into another by a particle. It might be commented that Chiu's (1970) suggestion that 
the radiation produced when whistlers coalesce with Langmuir waves should be 
polarized in the sense of the whistlers is unfounded. 
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The conclusion reached concerning enhanced scattering of radiation by whistlers 
is that such scattering may well be important in the solar corona. If this were the 
case, it would lead to broad-band absorption features in radio spectra. This requires 
further investigation. 

One other point is worthy of comment. An answer has been given in this paper 
to the question of how a distribution of Langmuir waves in a magnetoactive plasma 
can evolve through nonlinear processes: it is that the waves evolve into Z-mode 
waves. This raises the question of what happens to the Z-mode waves, and this 
problem is of particular interest because a source for the Z-mode waves has been 
identified but there is no obvious effective sink for them. Collisional damping cannot 
be the answer, or at least not the direct answer, because the nonlinear processes 
cause the Z-mode waves to grow exponentially if, and only if, the growth rate exceeds 
the collision frequency. Two possibilities remain: either the Z-mode waves are con­
verted into escaping radiation (which is the interesting possibility of course), or 
their growth is balanced by propagation of the Z-mode waves out of the region where 
growth occurs. This problem also requires further investigation. 
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Appendix 1 

Bulgakov et al. (1970, equation (10» derived a coupling coefficient which should 
be proportional to the one from equation (13) here, while Giles (1974, equation (6.7» 
derived a coupling coefficient which differs from that obtained by Bulgakov et a/. 
only by the inclusion of an additional term associated with a finite sound speed. 
These coupling coefficients, when Giles's additional term is omitted, are propor­
tional to (Q > 0 by definition here) 

* , ,,(ki~ kj ~ k'( ~ iQ(w"k'-w'k").b ) _ C(k k' k") 
Vi VjV, -Uj,+---;Ui/+----;;uij- ,,, 8ijl - " • 

w w w ww w 
CAl) 
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The quantity v (which is Giles's e) is proportional to the perturbed fluid velocity 
of the electrons due to the wave motion; apart from normalization, v and the 
polarization vectors in equation (13) are related by 

Vi = Tij(ro) ej' V~ = Tij(ro')ej, vi = Tij(ro")e'j. (A2) 

To establish the equivalence of the results of Bulgakov et al. and Giles with the result 
of MS, it must be shown that C(k,k',k") is proportional to rx(k,k',k") as given by 
equation (13) (the superscripts 0', 0" and 0'" are omitted for simplicity). 

Starting from equations (2), one has 

(k k ' k") *," -1( ) -1( ') -1(") (k 'k' "k" ") rx " = Va VbVeTai ro Tjb ro Tic ro rxijl ,ro, ,ro, ,ro , (A3) 

with T if defined by 
-1 J: Tij Tjl = Uil (A4) 

and given explicitly by 

Ti/(ro) = {}ij +i(0/ro)8ij, b, . (AS) 

Explicit evaluation of equation (A3), using equations (14) and (AS), gives 

(k k' k") *'" {ka J: k~ J: k~ J: rx " = Va Vb Ve -Ube + -Uae + -Uab 
ro ro' ro" 

- ro!~ro"( Aa 8bel +Ab 8eal +Ae8abl)bl} ' (A6) 

where ro = ro' + oJ" and k = k' + k" have been used to obtain the equalities 

A = ro"k'-ro'k" = ro"k-rok" = rok'-ro'k. (A7) 

The equality 

rx(k, k', k") = C(k, k', k") (A8) 

then follows from the identity 

{}ir8stj + {}IS 8trj + {}jt8r• j == {}ij8..,. (A9) 

Appendix 2 

For 0 ~ rop the Z-mode exists in the range 

rop-!O ~ ro ~ (ro; +02 sin20}i-; (AI0) 

it has a cutoff (p, = 0) at the lower frequency limit, a resonance (p, = (0) at the 
upper limit, and a refractive index p, = 1 at ro = rop (the case ro = rop' sin 0 = 0 
is excluded). Near the resonance, thermal corrections are important and the waves 
may be identified as longitudinal electron plasma waves (see Appendix Ie of MS). 
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Range cop ;5 co :::;;; (co~ +,Q2 sin20)t 

For co ~ cop the properties of theZ-mode may be approximated by 

2"" y2(I-Xcos20) T "" (I-X)cosO K"" _ YsinO 
It '" ,1"'0..1 ,I"'t.,I-

X -(1 - y2 sin20) Y sin20 X -(1 - y2 sin20) 
(All) 

The resonance occurs at X = I - y2 sin20. One can decide whether the waves are 
to be regarded as Z-mode or longitudinal, as a first approximation, as follows. 
Suppose the waves are Z-mode and then include finite thermal motions and calculate 
the correction l:!.p,2 to p,2. If this correction is small (l:!.p,2 ~ p,2), the waves can be 
regarded as Z-mode, but, if the corrections are large (l:!.p,2 ~ p,2), the waves 'should 
be regarded as longitudinal. 

The correction l:!.p,2 may be calculated as follows. Ignore thermal motions to find 
p,2 and e, include thermal motions in a correction l:!.sij(k, co) to the dielectric tensor, 
and then solve the equation (cf. MS, equation (AI)) 

eTejAij(k,co) = l:!.p,2(JK.eJ2_l) +eTejl:!.sij(k,co) = 0 (AI 2) 

for l:!.p,2. Because, according to equations (All), the waves are nearly longitudinal, 
one has 

eT ej l:!.sij(k, co) ~ sl(k, co) = - p,2 XP: f( y2, 0), (Al3) 

with Pe = V./e, and where equation (AI5) of MS has been used. (There is an error 
in the expression of MS (equation (AI6)) for f( y2, 0): the denominator in the penul­
timate term should be Y 2(1 - Y 2)3.) Here one has X ~ I and f( Y 2, 0) ~ 3. Hence, 
using the equation for p,2 in (All), one finds 

l:!.p,2/p,2 ~ -3p,4p:/y2sin20. 

For co = cop one has p, = I and equation (AI4) implies that for 

3P: CO~/,Q2 sin20 ~ I 

the waves should be treated as Z-mode waves. 

Range cop - -l,Q :::;;; co ;5 cop 

(AI4) 

(AI5) 

To find approximate analytic expressions for p,2 and K for co ;5 cop the formulae 
(MS, equations (AI2) and (Al3)) 

XT 
p,2 = 1- T _ Y cos 0' 

K = XYsinO T 
I-X T -YcosO 

(AI6) 

may be used together with some approximate expression for T. For the Z-mode, 
one has T = - cos 0 at the cutoff at X = I + Y, that is, at co ~ cop - -l,Q, and T = 0 
at X = I (co = cop). The function 

T = {(I- X)cosO}/Y (At?) 
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is equal to T at these two points. A reasonable approximation for P.z and K is obtained 
by equating Tto Tin equations (AI6); 

Z (l-X)Z yZ P. ~ -
(l-X)- yZ ' 

K ~ XYsinO 
I-X-Yz· 

(AI8) 

In the text the range of interest is (1- X)Z ~ yZ ~ X-I, where equations (AI8) 
reduce to 

p.Z ~ YZ/(X -1), K~ (-YsinO)/(X-l). (A 19) 

Manuscript received 28 August 1974 






