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Abstract 

If a supersonic heat wave is overtaken by a shock, either generated externally or'induced by the 
sudden cooling of the wave front, an overdriven heat wave is formed which is similar to an over­
driven detonation. The Mach number of the overdrlven heat wave is proportional to the product 
of the Mach numbers of the pursuing shock and the heat wave. 

Introduction 

Decaying heat waves are common phenomena (e.g. T tubes, laser sparks, HII 
regions). An interesting feature of these flows is the transition from the supersonic to 
subsonic mode which occurs as the input power decays. This transition involves the 
ejection of a preceding adiabatic shock from the heat wave, and it presents the one· 
occasion on which all parameters of the heat wave may be determined from a single 
measurement of the front velocity. In the present paper we describe the consequences 
of a rapidly decaying supersonic heat wave in which a forward-going shock is expected 
to be created in the hot gas behind the heat wave. If this shock catches up with the 
heat wave, it can induce a transition to a flow which is similar to an overcompressed 
detonation. 

Overdriven supersonic heat waves are formed whenever a shock overtakes a 
supersonic heat wave. Such' shocks may arise as a consequence of a sudden drop 
in the absorbed power leading to a quick and drastic drop in the temperature of the 
heat wave. Due to the continued supersonic propagation of the heat wave, the 
associated drop in pressure in the front leaves a pressure step behind in the hot 
gas. This pressure step is like that in a shock tube immediately after the diaphragm 
is broken, and it necessarily generates a rearward-facing rarefaction wave and a 
forward-facing shock, which can catch up with the heat wave. In addition one may 
create a shock behind a supersonic heat wave by external means, e.g. forward-facing 
shocks can be generated in T tubes by the secondary current maxima of a ringing 
capacitor bank or by badly tailored laser pulses in supeicompression experiments. 

Heat Waves 

The properties of heat waves have been described in detail by Ahlborn and 
Strachan (1973), and we review here only those properties relevant to the effect under 
consideration. The term heat wave is used to describe a zone of strong change in 
enthalpy h, which is produced whenever an energy flux of intensity W (Wm- 2) is 
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locally deposited into a gas of density p. This heat wave travels with some character­
istic velocity V ex W / ph through the medium and generates a pressure wave, or 
zone of strong momentum change, travelling with a velocity U. Depending on the 
thermodynamic response of the medium and on the absorbed power W / P, one of 
three distinct propagation modes is attained: the subsonic mode, if V < U; the 
Chapman-Jouguet detonation mode, if V = U; or the supersonic mode, if V> U. 
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Fig. 1. Paths of three different decaying heat waves A, Band C shown in the response plane, or 
plot of the enthalpy he behind the heat wave as a function of the absorbed power W / Po. The 
pressure-time histories of the three paths, from to through the Chapman-Jouguet condition at Ie. to 
time I, are shown in the inserts at the right of the diagram. The other curves denote paths for the 
indicated values of the following ratios: pr/po (atmcm3 g-l), horizontal curves; PI/PO (atmcm3 g-l), 
vertical curves; pr/po, diagonal curves. Note the division of the response plane by the Chapman­
Jouguet line into regions corresponding to the three modes of propagation of heat waves. 

It is convenient to approximate the detailed structure of heat waves by a plane 
step model, in which only the equilibrium conditions ahead of and behind the heating 
zone are considered and details of the transition zones are disregarded. In this case 
the flow can be described by the integral conservation equations for mass, momentum 
and energy. This assumption is adequate only if the widths of both the enthalpy 
and the momentum transition regions are narrow compared with the dimensions of 
the entire experiment (which is often the case). The one-dimensional analysis usually 
contains all the relevant physical effects, so that the gas flow with a locally defined 
energy source can be described by the following one-dimensional jump equations 
in the frame of the step heat wave: 

Pi Vi = Prvr, Pi +Pi vf = Pr+Prvl, !vf+hi+ W/PiVi = l vl+ hr. (1) 

Here V is the flow velocity; p, P and h are the pressure, density and enthalpy; W 
is the absorbed intensity; and the indices i and f refer to the initial and final state 
respectively. 

The solution of the equations (1) is best understood in terms of two parameters: 
the Mach number M = Vi/Ci of the step heat wave, and the absorbed power W/Pi> 
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often conveniently rewritten in terms of the energy parameter p, where 

p = 1± {1-2(g;-1)W/Pic~M3}t. (2) 

In this equaton, g is the adiabatic constant (Ahlborn and Sa1vat 1967) and c is the 
speed of sound. It is found that p = 2 for a shock, p = 1 for a Chapman-Jouguet 
detonation, 1 < p < 2 holds for an overcompressed detonation, and 0 < p < 1 
holds for a supersonic heat wave. 

Solutions to the equations (1) can be presented on a response plane (see Fig. 1) 
where it can be seen that the wave type is uniquely determined once the absorbed 
power W / Pi and the enthalpy he behind the heat wave are known. If a high power 
input leads to relatively low final enthalpy, the wave attains the supersonic mode 
so that, although the front velocity may be quite high, the density ratio pr/ Pi is close 
to unity and the final pressure Pe is a function of he only. The momentum wave 
in this case is a rarefaction wave trailing behind the heat wave, and both the input 
and exhaust velocities are supersonic. 
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Fig. 1. Distance-time plot (with time increasing downwards) of the rapid decay of 
a supersonic heat wave <1,2) leading to a sudden drop in pressure (see super­
imposed pressure-distance plots) and the formation of a shock <2,3) on the rear. 
Other conditions are: contact surface <4,5), overcompressed detonation <1,5), 
and reflected rarefaction wave <3,4). 

A heat wave driven by a constant flux of energy can be represented by a point 
in the response plane. If the power input is reduced the front will be described by 
a different point and, for a gradual change of power input, the evolution of the 
heat wave is determined by the time history of the solution on the response plane. 
Schematic examples of the time evolution of heat waves are given (a) in Fig. 1, in 
which the time evolution of the pressure behind the heat waves is shown in the 
inserts, and (b) in a distance-time diagram in Fig. 2. The change in the mode of 
propagation occurs at the instant that the evolution of the heat wave intersects the 
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CJ (Chapman-Jouguet) line. Physical examples of such decaying heat waves include 
the radial expansion of HII regions around hot young stars, as discussed in the 
astrophysical literature (Axford 1961); expanding laser sparks (Daiber and Thompson 
1967); the expanding fire ball of a nuclear explosion (Zeldovich and Raizer 1966); 
the plasma produced by exploding wires, and the plasma which escapes out the end of 
a pulsed capillary arc (Cross et al. 1971). These decaying heat waves exhibit the 
same general fluid behaviour (treating the flows by arguments similar to the one­
dimensional) although the scale lengths vary from a few millimetres and tens of 
nanoseconds for decaying laser sparks to light year distances and 106 yr time intervals 
for interstellar radiation fronts. 

Induced Shocks Behind Supersonic Heat Waves 

The situation under consideration here corresponds to case C of Fig. 1, in which 
the final enthalpy and pressure decrease as W decreases. If the pressure falls quickly 
behind the supersonic heat wave, a pressure step is created and a forward-going 
shock will be generated in the hot gas behind the front (see Fig. 2). The induced 
shock may catch up with the (still supersonic) heat wave if it has more than a given 
threshold strength. If the shock is too weak, the supersonic heat wave will go through 
the transition to the subsonic mode independently, and the shock will catch up and 
perturb the flow at some later time. The shock will catch up with the supersonic 
heat wave if its Mach number Ms exceeds the exhaust Mach number M1 of the 
supersonic heat wave, that is, 

Ms > M1 = {(gf+ I-f3)/grl3}~· (3) 

In order to illustrate the formation of a shock behind the decaying supersonic 
heat wave, we consider a fast supersonic heat wave, such that M2 ~ 1 and all the 
adiabatic constants are equal to y = const. Consequently we have 

Pr/Pi = Z ~ yf3M 2/(y+ 1) and vr/vi = pJpf ~ (y+l-f3)/(y+l). 

In the limit of the exhaust Mach number also being large, we have f3 ~ 1, and 
therefore 

f3 ~ (y2_l)W/Pi c~ M 3 , Pi ~ Pf' Z ~ y(y-l)W/Pi c~ M, 

Cf ~ {y(y-l)W/PiciM}~ and Uf ~ (y-l)W/Pic?M2, 

where U is the flow velocity in the laboratory frame and v is the flow velocity in the 
frame moving with the heat wave. 

Since we are interested in case C, we have Z and W decreasing in time and for 
clarity of illustration we take M = const. during the decay. If W decays linearly 
by an order of magnitude in a time At = t2 - t1 then a sound speed differential of 
.J1O, a pressure differential of 10 and a flow velocity differential of 10 have been 
created in the hot gas left behind the supersonic heat wave. These gradients exist 
over a distance Llx ;:5 MAt. A forward-going shock is formed when the positive 
characteristics at the tail and head of this gradient intersect, i.e. in a time T, where 

T ;:5 M Llt/{9 W(t2;(y~1) + (y(y-l) W(t2))t(.J1O -I)}, 
PiCi M PiCiM 
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and the shock trails the heat wave by a distance Mr:. The time r: is the time required 
for the pressure gradient to steepen and form a shock, i.e. it is the time required 
for the forward-going pressure waves generated along the pressure gradient to all 
meet. This shock is driven by the gas dynamic expansion as, for instance, in a simple 
pressure-driven shock tube. The reason that such shocks can form at all is because 
the heat wave is supersonic with respect to ordinary gas dynamic phenomena and 
can thus leave behind the appropriate conditions (under the special circumstances 
considered here) for the formation of a positive going shock. 

Overdriven Supersonic Heat Waves 

If the shock is strong enough to catch up to the supersonic heat wave then the 
energy release zone receives additional push and forms an overcompressed detonation. 
This overcompressed detonation will, with further decay in W, convert into a subsonic 
heat wave, ejecting a shock, or it may remain an overcompressed detonation if the 
power stays high enough. In this section we calculate how much the supersonic 
heat wave is overdriven when it is reached by the shock from the rear. The parameter 
/31S spans the range from 1 for a plane and steady detonation to 2 for a strong shock 
and thus characterizes the resulting wave. In this calculation we make use of the 
interaction scheme illustrated in Fig. 2 which holds whether the succeeding shock 
is induced by the decaying heat wave or by some other external perturbation (e.g. a 
capacitor discharge in the hot gas). 

The solution for the final state 5 is obtained by using the appropriate step equations 
across the various waves and closing the set at the contact surface in the usual manner 
so that we obtain one equation for /31S and MiS in terms of known parameters as 
follows 

/31sM1S/M12 = /312+ g/312(g+ 1-/312)t2(g+ 1)-1 (M23 -1/M23) 

+ 2(g2+1)-1 g/3uCg+l-/312)(g-I+2/M~3)(2gM~3-g+ l)t 

{ ( /312 M 12 (g + 1) )(g-1)/2g} 

x 1- /31sM1S(2gM~3-g+1) . 
(4) 

Equation (4) is solved numerically using adiabatic coefficients g for the hot regions 
and y for the cold regions. If we know the properties of the initial supersonic heat 
wave, represented by /312> and the strength of the catching-up shock, represented by 
M 23 , then the properties of the resultant overcompressed detonation /31S can be 
calculated provided we know something about the energy absorption mechanism. 
In general, we do not have enough information about the detailed microscopic 
nature and macroscopic consequences of the energy absorption, and typically this 
lack of information causes all the difficulties in the fluid description of these flow 
fields. Therefore, in order to have these calculations cover actual experiments, 
we do not wish to make mathematical assumptions about how the energy is absorbed 
but rather we make three assumptions which are of most benefit to the experimenter: 

(1) We take the energy absorbed in the initial front to be a known quantity, that is, 
/312 is a known parameter. This requires the measurement of at least one other fluid 
parameter (p, p or v) besides the phase velocity of the front. 
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(2) The time variation of the energy absorption will determine the size of the 
induced shock and thus our expected lack of information about the absorption 
mechanism means that we cannot calculate this quantity. Hopefully, we can measure 
the velocity ofthis shock relatively easily and thus we can take M 23 as the independent 
parameter. 

(3) We must know something about how the absorbed energy changes as a result 
of the collision with the catching-up shock which changes the thermodynamic state 
of the gas. We consider two cases based upon the supposed behaviour of some 
absorption mechanisms. In the first case, we assume absorption of a constant power 
W12 = WIS' so that the absorbed power is continuous across the collision and 

MIS = M12{P12(2-P12)/PIS(2-PISW/3, (5a) 

which completes the set of equations. Solutions to these equations are shown in 
Figs 3a and 3c, and should apply to externally powered heat waves. In the second 
case, we assume that the energy per particle remains constant, which would be 
typical of a heat wave powered by a chemical reaction or. of an ionizing radiation 
front. Constant power per particle implies that 

W12/CiPi M12 = WIS/CiPiMIS, 
so that 

MIS = M12{P12(2-P12)/PIS(2-PIS)}t. (5b) 

Solutions of this type are shown in Figs 3b and 3d. 

It may be seen from Figs 3a and 3b that rather weak shocks (M23 ~ 4) which 
catch up with supersonic heat waves overdrive the heat wave practically to the . 
saturation value P = 2 where the front takes on all the features of a strong shock. 
This observation suggests the possibility of creating really strong shocks by first 
launching a fast supersonic heat wave and then setting a shock of moderate .strength 
in pursuit. When this weak shock catches up to the supersonic heat wave a strong 
shock of high velocity will result. The Mach number of this new wave can be obtained 
from the interaction scheme given in Fig. 2. In the approximation of PIS ~ 2 
and for large Mach numbers (MIS, M 23 and M12), we can solve for MIS using the 
interaction scheme shown in Fig. 2 to obtain 

MIS = !P12M12 + {gP12(g + 1-P12)}t{M12 M 23/(g+ 1)} 

{ ( 2g)t (2g )t( (g + l)Mts )(g-I)/2g} x 1+ - - - (6) 
g-l g-l gP12Mt2M~3 ' 

or 

Mrs ~ {gPuCg+ 1-P12)}tM12 M 23/(g+1). 

Equations (4) and (6) hold if the reflected wave (3,4) is a rarefaction wave, while a 
sitnilar equation holds if (3,4) is a shock. The solution to equation (6) is shown in 
Figs 3c and 3d. Equation (6) gives the surprising result that the new Mach number 
MIS is proportional to the product of the initial heat-:wave Mach number M12 and 
the shock Mach number M 23. For instance, if a Mach-4 shock catches up from the 
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Fig. 3. Variation as a function of the Mach number M 23 of the pursuing shock (for the indicated 
values of the power absorption coefficient P12 of the initial supersonic heat wave) of the following 
properties of the overdriven supersonic heat wave: 

(a) PH for constant power absorption W12 = Wu , g = 1·2 and y = 1'67; 
(b) P1S for constant energy per particle, g = 1· 2 and y = 1· 67; 
(c) M 1s (for strongly overdriven heat waves) for constant power absorption W12 = WH , 

M12 = 10, g = 1·2 and y = 1· 67; 
(d) M 1s (for strongly overdriven heat waves) for constant energy per particle, M12 = 10, g = 1· 2 

and y = 1·67. 

rear with a Mach-lO supersonic heat wave with P = 0·5, a shock-wave-like dis­
continuity will result with a Mach number of 20 in the first case (constant power 
absorption) and a Mach number of 16 in the second case (constant energy release 
per particle). On first sight this Mach number amplification effect appears attractive 
although we note that a detailed energy balance may reveal that it is easier to produce 
a Mach 20 shock directly. 
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Conclusions 

This work has described the manner in which heat waves decay in time when 
the absorbed power is decreased rapidly. Supersonic heat waves generally undergo 
a gradual decrease in front velocity and approach the Chapman-Jouguet conditions 
at which time a shock wave separates from the heat wave. If the energy absorption 
behaves such that the enthalpy immediately behind the supersonic heat wave decreases 
severely as the absorbed power decays then a forward-going shock can be formed 
and can catch up with the supersonic heat wave. In this case; a transition to an over­
compressed detonation-type wave will occur and, depending upon details of the energy 
absorption, this type of wave may either be maintained or may quickly decay into the 
subsonic mode. 

In actual physical examples, it is believed that expanding HII regions decay 
with hf constant so that interstellar radiation fronts will pass through the Chapman­
Jouguet condition. However, some experiments have revealed transitions which 
appear to be induced by shocks formed in the heated gas behind the front, and one 
result of this work is to encourage more detailed measurements of the fluid parameters 
in these experiments. Offenberger and Burnett (1972) produced laser sparks from 
CO2 lasers that were 'adequately described by assuming a breakdown wave [i.e. a 
supersonic heat wave] during the fast-rising portion of the laser pulse followed by 
radiation-driven detonation'. As the input power decayed, the expansion of the 
already heated plasma in their experiment affected the propagation of the laser 
spark front. 

The general features of decaying heat waves are also observed on Brinkschulte's 
(1967) interferograms for the flow field produced by a T tube. The luminous front 
(which can be interpreted as a heat wave; Strachan et al. 1972) is the leading front 
up to tl = 4 JlS. A shock wave develops at t1, when a perturbation has caught 
up with the heat wave. The change of modes is due to the steady decay in the ab­
sorbed power W / Pl' This decay occurs since the intensity drops with distance from 
the source for any transfer mechanism and since, in addition, the current pulse decays. 
Although the theory presented here can account for the formation of a shock wave 
in the heated gas behind the luminous front, we point out that extra heating at or 
near the electrodes can also produce shocks. Whatever the source of the secondary 
shocks may be, the transition is that described by the interaction scheme shown in 
Fig. 2. 
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