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Abstract 

For waves in plasmas and similar media, space-time rays with a 4-vector formulation are used to 
obtain an approximate expression for the rapidly varying part of the wave, on the assumption that 
the plasma properties vary slowly in space and time. It is shown that the phase function associated 
with the rapid variations is invariant with respect to Lorentz transformation and that the ray 
equations may be written in vector form. These results are used to obtain expressions for the 
Doppler shift that are consistent with special relativity. The possibility that the medium is moving 
and time-varying is allowed for, and a variety of possible sources are considered. 

1. Introduction 

Many radio-astronomical observations and space physics experiments involve 
radio waves propagating over long paths through plasmas. The plasma medium is 
in general anisotropic and dispersive, and it may change with time as the wave 
propagates. The transmitter, receiver and plasma may be in relative motion with 
velocities not negligible in comparison with the free space velocity of light. Supposing 
that there exists a frame in which the plasma properties vary slowly in space and time, 
we wish to obtain rays which describe the rapidly varying part of the wave correctly 
within the framework of special relativity. 

For waves propagating in a medium varying slowly in space and time, an approxi­
mate solution with a rapidly varying factor exp(iS) (where S is a function of position 
both in physical space and time) may be constructed using space-time rays. The 
approximate solution behaves locally like a plane wave, and the local wave number 
and frequency are appropriate local derivatives of the phase function S (Synge 1954; 
Whitham 1961; Poeverlein 1962; Lewis 1965; Rawer and Suchy 1967). Now it is 
well known that in a homogeneous medium (one in which the medium's properties 
do not depend upon position or time) there exist plane wave solutions with a phase 
function that is invariant with respect to Lorentz transformation. In consequence, 
the 4-gradient of this phase function (which is constructed from the wave number 
and frequency, see Section 3) transforms like a Minkowski 4-vector (Papas 1965). 
Furthermore, for the special case of time harmonic plane waves in a homogeneous 
medium, the space-time ray construction is exact and leads to a function S which 
is precisely the invariant phase just described. 

These remarks taken together suggest that in the general case S may be invariant 
with respect to Lorentz transformation, and this is shown in Section 4b to be the 
case using a 4-vector approach. The transformation laws for the ray equations are 
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derived in Section 4c. From these results, expressions (51) and (52) below are 
obtained for the Doppler frequency shift experienced when a transmitter'and receiver 
are moving in a medium, which varies slowly in space and time, and which may also 
be dispersive and anisotropic. These expressions are consistent with the special 
theory of relativity and generalize results obtained previously for the nonrelativistic 
case by different treatments (Bennett 1975; Brandstatter and Censor 1974). In 
Sections 2 and 3, an outline of the necessary background theory is given in 4-vector 
notation. 

2. Equation of Eikonal and its Solution by Rays 

In the usual way (Lawden 1962) we may introduce the 4-vector X = (x, ict) and 
the operator 0 = (Y', -ic- 1 a/at) which is sometimes written as a/ax. To avoid 
further complications, the propagation is assumed to be lossless. Substitution of 
the proposed approximate solution in the equations governing the propagation 
leads to the 'equation of the eikonal', a partial differential equation for S, that may 
be written in the form 

F(OS,X) = O. (1) 

Generally this equation will have multiple sheets so that there is more than one 
solution for S, but in most of the following we concentrate on one of these solutions. 
Equation (1) may be solved by the method of characteristics, the characteristics 
being space-time rays. The ray or Hamilton equations then take the compact form 
(Synge 1954; Poeverlein 1962; Rawer and Suchy 1967) 

-K' = OaF/aX and X' = OaF/oK, (2) 

where F(K, X) is obtained by replacing OS by K in the expression on the left-hand 
side of equation (1). The operator a/oK is defined in an analogous way to a/ax, 
and a prime is used to denote differentiation with respect to u, where u is a convenient 
(real) parameter increasing along the ray. The system (2) is solved subject to 

F(K,X) = O. (3) 

As is discussed in greater detail in the next section, equation (3) is the local dispersion 
relation for the existence of plane wave solutions. The multiplying function 0 
depends upon the choice of u and the particular form in which F(K, X) is written. 
For reasons that will become clearer in the next section we write K = (k, icoc- 1). 

The function S can be determined by integrating along the rays to give 

JUB 

SB-SA = K.X'du, 
UA 

(4) 

where SB and SA indicate the values of S at space-time points lying on the same 
ray. The value of S throughout the region of interest is found by integrating along 
a family of rays emanating from an initial manifold on which data for S are given. 
The initial values of K needed to integrate the Hamilton equations are determined 
by the data for S and a consistency requirement. It is usually necessary to resolve 
a source or initial disturbance into modes associated with the various sheets of the 
eikonal equation, but we do not need to dwell on this aspect of the problem. 
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Typically S = So is a known function on a given (hyper)surface. The surface 
may be described parametrically by X = Xo(',,) for oc = 1,2,3. Thus S = SoC,,,) 
is known on Xo(',,). Then for a general point X, we have 

fU(X) 

SeX) = So(Xo) + K.X'du, 
u(Xo) 

(5) 

where the integral is taken along the ray from Xo(',,) that passes through X. Here, 
in order to simplify the notation, the point of intersection with the initial surface 
is simply denoted Xo (see Fig. 1). As X is varied the point of intersection ranges 
over the'initial surface. The corresponding value of K = Ko is chosen so that 

dSo/d,,, = Ko. dXofd'" . (6) 

This ensures that the eikonal equation is satisfied in Xo(',,) (Lewis 1965; Bennett 
1974). (In order that, with the given data, the eikonal equation be properly posed 
it is necessary that the rays leave Xo(',,); otherwise the solution cannot be carried 
outside the initial hypersurface, there being no unique solution.) 

x 

~ 
Fig. 1. Parametric description of the 
ray and the initial surface. 

As the data playa vital role in determining the rays appropriate to a given problem, 
we consider equation (6) in more detail. If the initial surface is space like, equation 
(6) becomes 

dSo/d,,, = k o• dxo/d'" . (7) 

For example, for the simple case of plane waves with SoC,,,) = K.Xo(',,), where 
K is a constant 3-vector, equation (7) is imm.ediately satisfied by choosing ko = K for 
the space vector corresponding to the first three components of Ko. Then substitution 
in equation (3) determines the fourth component iwo c -1. 

The initial manifold may be of lower dimension, e.g. a stationary point source 
of sinusoidal waves (see Fig. 4a below). In this case only one parameter, is needed. 
The manifold is a time-like line with SoW = - Wo tW. Substitution in equation (3) 
leads in general to a two-parameter family of k o. These ko may depend upon , if 
F(K, X) is an explicit function of time in the initial manifold. Similarly slow variations 
of Wo with time may be dealt with, as may also the case of moving sources with 
nearly sinusoidal time dependence (Fig. 4b below), but we defer consideration of 
this case until Section 5c. Another interesting and important case is that in which 
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the initial manifold shrinks to a space-time point (Fig. 4c below). This represents 
an impulsive disturbance which contains essentially all frequencies. The initial Ko 
vectors then form a three-parameter family, comprising all the solutions of equation 
(3) with X = Xo that correspond to rays in the forward light cone. 

3. Local Plane Wave Behaviour of Approximate Solution 

The equation 
F(K,XB) = 0 (8) 

for fixed XB is the dispersion relation for the existence of plane waves proportional to 

exp(iK.X) (9) 

in a medium having everywhere the properties of the actual medium at X B (Synge 
1954; Whitham 1961; Poeverlein 1962; Lewis 1965; Rawer and Suchy 1967). 
This leads to the familiar interpretation K = (k, iroc -1) where k is the 3-space wave 
number and ro the angular frequency. The approximate solution behaves like a 
plane wave near XB because KB, as determined from the Hamilton equations, 
satisfies equation (8). Furthermore, if the wave amplitude is calculated it is found 
to have a polarization corresponding to the appropriate sheet of equation (8), 
although this is not in general true if higher order terms are included (e.g. Bennett 
1974b). It is also true that . 

KB = DBS, (10) 

in clear analogy with the result of differentiating the phase K. X of the expression (9) . 
. We may refer to KB as the local 4-vector wave number and, correspondingly, to kB 
and roB as the local wave number and local frequency respectively. 

The preceding remarks are obvious from the standpoint of an approach via the 
equation of the eikonal and the method of characteristics. If, instead, S is taken as 
being defined merely by the rays, i.e. by equations (2)-(6), then from equation (3) 
it is clear that (8) is satisfied. However, it is not obvious that KB = DB S. The 
differential properties of the phase function in three dimensions have been discussed 
at great length (Bennett 1973) .. Precisely analogous results apply in four dimensions, 
and these may be used to establish directly the equality of KB and DB S. Con­
centrating on a ray through the point XB and leaving the initial surface at XA, we find 
on taking differentials in equation (5) 

dS = dSo+ f: (dK.X' +K.dX') du. (11) 

Integrating by parts in the second term, this equation becomes 

dS = dSo+ f: (dK.X' -K' .dX) du +KB.dXB -KA.dXA. (12) 

The increments in equation (12) all depend upon dXB which is regarded as the 
increment of the independent variable. However, from equation (3) it follows that 

of of 
oK· dK + oX'dX = O. (13) 



Relativistic Treatment of Rays and Doppler Effect 427 

Multiplying through by () in equation (13) and making use of Hamilton's equations (2) 
we find that the integrand in (12) is zero. From the condition (6) on the value of K 
at the initial surface we have 

dSo -KA.dXA = 0, (14) 

and only the end point term KB • dXB remains. Equation (10) then follows. This 
argument may be looked upon as providing the reason why the method of character­
istics works. The characteristics are trajectories along which the gradient of the 
eikonal S may be determined by the solution of a system of ordinary differential 
equations, the Hamilton or ray equations. 

4. Transformation Laws 

We consider a Lorentz transformation from the initial frame to a frame moving 
with a relative velocity v. The origins are assumed to coincide at t = 0, and quantities 
in the new frame are distinguished by overhead bars. Thus, for example, X --+ X 
or, in terms of components (using the summation convention), 

Xi = AijXj for i,j = 1, ... 4, (15) 

where Aij is orthogonal so that 
Aij Aik = ~jk' (16) 

For the special case when v is in the direction of the Xl axis, Aij takes the form (see 
e.g. Lawden 1962) 

cosa 0 0 sina 

0 1 0 0 
(17) 

0 0 0 

-SIna 0 0 cosa 
with 

v = -ictana. (18) 

(a) Transformation of Dispersion Relation 

We consider a homogeneous medium and therefore write the dispersion relation as 

F(K) = 0, (19) 

on suppressing the dependence upon X. It is well known, and easily proved using 
covariance principles, that K transforms as a vector for every possible plane wave. 
There therefore exists a transformed dispersion relation 

F(X) = 0 (20) 

which is satisfied if X is the result of transforming a solution K of the original dis­
persion relation (19). 

It is possible to write the dispersion relation so that we have 

F(K) = F(X) (21) 
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for every K, that is, if every K transforms as a vector then F(K) determines an 
invariant field (Lawden 1962, p. 29) over the K space. The truth of this statement 
may be demonstrated by example. We may write 

F(K) = K.K _[w2c- 2{n2(k,w) -I}], (22) 

where n(k, w) is the refractive index for wave normal direction k (that is, k isa unit 
3-vector) and frequency w. The refractive index represents the properties of the 
medium. More generally F(K) is a product of terms like the right-hand side of 
equation (22). Now the scalar product 

K.K = k.k _W2C- 2 

is invariant. By definition of the refractive index, we have 

k.k = w2n2(k,w)c- 2 

(23) 

(24) 

for any plane wave solution of F(K) = o. Therefore from equation (23) it follows that 

w2c- 2{n2(k,w) -I} 

is invariant if wand k are transformed in accordance with the transformation law 
for K. (This invariance was used by Unz 1968.) Thus we have 

w2c- 2{n2(k,w) -I} = W2C- 2{ij2(k,w) -I}, 

the left-hand side of which may be written 

y2(W -k. v)2{n2(k(w, "K), yew -k. v)) -1}c- 2 , 

(25) 

(26) 

where we have substituted for w, k in terms of W, Ii. In this equation we have (Papas 
1965) 

y = (1-v2c- 2)-t and k(w,"K) = k+ywc- 2v+(y-l)(k.v/v2)v . (27,28) 
. [{k +ywc 2V +(y-l)(k.v/v2)v}2]t 

Equation (28) represents the aberration, which is zero when k is parallel to v. From 
equations (22), (25) and (26) we may write 

pel() = X.X - y2(W -k. v)2{n2(k(w, "K), yew -k. v)) -1}c- 2 , (29) 

which makes F(K) invariant in the sense of equation (21) for all K, and not only 
those values which satisfy the dispersion relation. 

The dispersion relation is a hypersurface, or a number of hypersurfaces, in 
(k, wc- 1) space. Topology is maintained by the transformation from equation (19) 
to (20), e.g. distinct sheets remain distinct, lines of intersection transform into lines, 
etc. However, the transformation is nonlinear and nonorthogonal with respect to a 
Euclidean metric, so that the shape of the surface is changed. Fig. 2 represents 
in the initial frame (Fig. 2a) and the transformed frame (Fig. 2b) the three-dimensional 
projection of the simple case of a medium which is isotropic and nondispersive in 
the initial frame. A section of constant w is seen to be an ellipse, a simple conic 
section, in the initial frame since, for constant w surfaces, we -1 + k • VC -1 is a constant. 
This maps into a horizontal plane in the new frame. On interpreting equation (25), 
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upon writing n2 - 1 as (n + 1 )(n - 1), it can be seen that each point maps so that the 
product of its maximum and minimum distances from the unit cone (measured 
radially) is invariant. In other words the geometric mean of the distances is invariant. 

(2 a) 

(3 a) 

-11 ~ 
we IV 

-1 we 

(2 b) 
_ -1 
we 

(3 b) 
wc-1 

Fig. 2. Representation of a section (k3 = 0) of the dispersion surface for a nondispersive isotropic 
medium showing the intersection (fine dashed curve) with a typical surface of constant 155, as it 
appears (a) in the initial frame and (b) for a frame moving at velocity v with respect to the medium. 
Also shown is the unit cone, the dispersion surface for free space. 

Fig. 3. Representation of a section of the dispersion surface for very slow plasma waves illustrating 
the possibility of multiple intersections (fine dashed curves) with a surface of constant 155, as it 
appears (a) in the initial frame and (b) for a frame moving at velocity v with respect to the medium. 

In Fig. 3 a more interesting situation is illustrated. The dispersion relation 
is assumed to flare out as it does when a plasma wave of very slow phase velocity 
and group velocity is generated. While topologically equivalent, the shape of the 
transformed surface is quite different. While in the rest frame the intersection with a 
surface of constant frequency is a single closed curve, in the transformed frame 
there may be multiple curves. This multiplicity is associated with the occurrence 
of the complex Doppler effect. The part of the sheet lying above the crosshatched 
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region at the right-hand side of Fig. 3b is associated with the occurrence of faster 
than light radiation, and the boundary of the crosshatched region is associated with 
the Cerenkov effect (Frank 1960; Barsukov 1962; Bennett 1975). For a numerical 
example of a dispersion relation of this type, see Bitoun et al. (1970). 

(b) Invariance of S 

We now consider the inhomogeneous medium and apply the theory of the previous 
subsection to each point X. Thus equation (21) becomes 

F(K,X) = F(K,X) , (30) 

and F(K, X) determines an invariant field over both K and X spaces (while in equations 
(22) and (24) n2(k,OJ) is replaced by n2(k,OJ,X». Now, if SeX) is a solution of 
F(OS, X) = 0 with particular data for S then, provided the data are invariant, 
S (X) is the corresponding solution of 

F(OS,X) = O. (31) 

This follows by noting first that, from equation (30), the transformation of OS as a 
4-vector leads to a solution of the transformed eikonal equation. Assuming that 
the solution is uniquely determined by the data, the restriction on the data leads to 
the conclusion that OS is the 4-vector gradient of the transformed solution S. (It 
is quite possible, but not physically reasonable, to specify data for S that are not 
invariant.) Though unique in the small, the solution for S is multiple valued, as noted 
previously. The order of multiplicity is also invariant. 

(c) Transformation Lawsfor Rays 

If K is a vector and F(K, X) is written in an invariant form, i.e. one satisfying 
equation (30), then it follows immediately that of 10K is a vector. (Henceforth we 
assume F is so written without further comment.) Also, it is immediately seen that 
of loX is a vector. Thus, if in Hamilton's equations (2) (J is an invariant, the right­
hand sides are vectors. Hence the left-hand sides are vectors and u is an invariant. 
The ray equations in this form are vector equations. 

In par:ticular, by taking u = T, the time in a frame following the motion of a 
point along a ray, we can make dX IdT a 4-vector velocity. Let us put 

(J = e == ic {(oFloK). (oFloK)}-t, (32) 

with the square root chosen so that e is positive. This expression is clearly an 
invariant. Consequently we have 

dX ic(oFjok, -icoFjoOJ) 

dT {(oFjok).:(oFjok):-c2(oFjoOJ)2}t 
(33) 

and, for those parts of the dispersion surface for which of joOJ is negative, we have 

where 
dXjdT = yg(vg,ic), 

oFjok 
Vg = - oFjoOJ 

(34) 

(35) 
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is the group velocity and 
Yg = (l_v2 c- 2)-t g • (36) 

The expression (34) is in typical form for a 4-vector velocity and is thus the 4-vector 
group velocity which we denote Vg. It should be noted that 

e = -yg(oFjoW)-l. (37) 

The former restriction on the sign of of jow ensures that the rays enter the forward 
light cone as T increases. If the other sign is chosen in equation (32) then we 
require of jow to be positive. 

Using (37) the ray equations (2) may be written 

dK of/oX 
dT = YgoFjow and 

dX oFjoK 
dT = -YgoF/ow· 

Choosing u such that ygdT = -du(oFjow), the ray equations become 

-dKjdu = oFjoX and dX jdu = of joK 

(38) 

(39) 

(cf. Synge 1954, equation 2.1.17; Rawer and Suchy 1967, equation 12.5) which are 
also vector forms. From the equations (38), making use of the fact that dt = ygdT, 
where t is time measured in the frame of X, we have 

dK _ of/oX 
dt - of/ow and 

dX of/oK 
dt = - of/ow· (40) 

This last form is of course not a vector system but may still be convenient for 
computations. 

Notice that, from the system (38) or (39) and the ray integral expression in equation 
(5) for S, it can be shown directly that S is invariant if the data for S are invariant, 
for then in addition the initial values of K for each ray transform as vectors. Hence 
K determined along each ray transforms as a vector, and both K.X' = eK.oFjoK 
and the integral in equation (5) are invariant. 

5. Doppler Shift of Instantaneous Frequency 

(a) Instantaneous Frequency 

We define the instantaneous frequency observed by a receiver at B as 

wR=idSjdTBi, (41) 

where TB is proper time in the frame of the receiver. This is a natural generalization 
to the special relativistic case of the idea of instantaneous frequency used by Ville 
(1948), Lewis and Pressman (1967) and others. However, since frequency is classi­
cally defined in terms of a spectral analysis involving an integral taken over all time, 
assuming certain characteristics of the signal are time stationary, a brief explanation 
may be useful. 

Making use of the invariance of our formulae we may transform to a frame 
moving with the receiver (at least near the time of interest if the receiver should be 
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accelerating). We see that the instantaneous frequency is a local frequency in the 
sense discussed in Section 3. If a wave corresponding to a single sheet of the 
equation of the eikonal is received, the instantaneous frequency is a measurable 
quantity, if not instantaneously, at any rate averaged over short time intervals. For 
example, the time between zero values of the wave field may be measured. 

A practical spectral analyser will analyse only the signal arriving during a finite 
time interval. If, for a simple wave of the type described, the amplitude and instan­
taneous frequency of the wave are both constant during this time, the resulting 
spectrum would have a centre frequency WR and a width corresponding to the time 
interval characterizing the analyser. It would naturally be interpreted as corresponding 
to a line spectrum of frequency WR. Variations of the amplitude or instantaneous 
frequency during the time interval would lead to spectral broadening. 

If a number of such simple waves are received, the individual instantaneous 
frequencies WRi' say, are no longer directly measurable unless the waves may be 
distinguished by their polarization properties or directions of arrival. However, 
the practical spectrum is still made up of bands of power at the WRi' If the instan­
taneous frequency is not nearly constant, either because the time scale of the changes 
is less than the analyser time interval or because several waves with near-constant 
WRi are combined to yield an 'effective instantaneous frequency', it must not be taken 
for granted that the time average of the instantaneous frequency is equal to the 
centre frequency of the spectrum (Ville 1948). 

(b) Doppler Shift of Instantaneous Frequency 

From the definition (41) it immediately follows that 

W R = 1 (DBS).dXBjd-rBI , (42) 

but dXBjd-rB is the 4-vector velocity VB = YB(VB, ic), say, of the receiver. Making use 
of equation (10) we thus have 

WR = IKB• VBI (43) 
or, in terms of 3-vectors, 

WR = YB 1 kB• VB - WB I· (44) 

It should be noticed that, if VB = 0 so that VB = (O,ic), equation (44) gives WR = WB' 
Clearly WR determined from equation (43) is invariant, as we would hope, since 
it is a proper frequency. 

(c) Source Effects 

In order to be able to evaluate WR from equation (43) the ray paths must be 
determined. Although the ray equations must be integrated as a whole, the nature 
of the problem becomes clearer if the equation for K is formally integrated. Thus, 
taking the form (40) for Hamilton's equations, we have 

ftB 8Fj8X dt 
KB = KA + 8Fj8w' 

tA 

(45) 

where the integral is taken along the ray from A (coordinates X~ to B. The fourth 
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component of equation (45) becomes 

rB of/at 
WB = WA - JtA of/ow dt (46) 

or, on evaluating the derivatives for F as in equation (22) with n a function of X, 

rB wan/at 
WB = WA - ),A o(wn)/ow dt. (47) 

Clearly equation (47) is independent of the particular form in which the dispersion 
relation is written since it involves only partial derivatives of the refractive index. 
The derivatives are to be evaluated holding the wave-normal direction fixed. The 
same result was obtained earlier for the nonrelativistic case (Fante 1972; Bennett 
1974a). The denominator o(wn)/ow is usually known as the group refractive index. 
It should be emphasized that the integrals in equations (46) and (47) can only be 
evaluated if the system (40) is integrated as a whole so that both the path of integration 
and K along the path are known. Here we are particularly interested in specifying 
WA- For a point source of time harmonic waves of frequency wo, clearly we have 
WA = Wo (see Fig. 4a and Section 2). If more generally Wo varies slowly with time 
so that 

so(o = - r wo(t(O) {dt«()/dO d( (48) 

then 
WA = WO(tA)' (49) 

We may also consider negative frequencies but no information is gained thereby. 

i .., 

x 

(b) 

T~ '.., 

x x 

Fig. 4. Schematic representation of the world lines XT and XR of the source and receiver 
respectively and the rays necessary to determine the Doppler frequency, for the following cases: 
(a) stationary sinusoidal source, (b) moving sinusoidal source, (c) impulsive disturbance. 

For a moving transmitter we suppose that a ray pattern of the same general 
character as that for the stationary source exists (see Fig. 4b). From the equivalent 
of equation (43) applied at the endpoint A it follows that the frequency in the frame 
of the transmitter is 

wT = IKA • VAl, (50) 

where VA is the 4-vector velocity of the transmitter at A. (The modulus signs may be 
avoided if the source is considered to transmit both positive and negative frequencies; 
for negative frequencies the other square root must be taken in the expression (32) 
for e.) 
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The total Doppler shift between transmitter and receiver may be written 

WR-WT = IKB• VBI-IKA' VAl (51) 

or more explicitly, making use of equations (44) and (47), 

I . ftB wan/at I I I WR(tB)-WT(t~ = I'B kB,VB -WA + JtA a(wn)/aw dt -'VA kA,VA -WA • (52) 

Equation (52) is a natural generalization of the corresponding nonrelativisti~ formula 
(Bennett 1975). Indeed the same result was obtained earlier using special relativistic 
formulae at both endpoints of the ray (Bennett 1971), although at that time it was 
not realized that the treatment of nonstationarity of the medium was also relativistically 
correct. 

The apparent simplicity of equation (51) should not be allowed to obscure the 
fact that data are given for WT and not WA' The relation between the two is nonlinear 
and may be multiple valued. Even if WT is zero, a charged body may give rise to a 
nonzero WA through the Cerenkov effect (Bennett 1975). One method of proceeding 
is to transform to a frame that is stationary with respect to the transmitter using the 
results of Section 4a. 

For an impulsive disturbance (Fig. 4c) WA is the frequency corresponding to the 
ray through B. It will generally vary with the time at which WR is evaluated. If the 
medium is time stationary and plane stratified then in the nonrelativistic limit the 
result reduces to that obtained by Fejer and Wu (1970). Assuming the dispersion 
relation does not depend explicitly on time and that the receiver is stationary, this 
case reduces to that studied by Whitham (1961). 

Conclusions 

We have obtained ray equations, correct within the framework of special relativity, 
which describe the rapidly varying features of waves propagating in media that 
vary slowly in time and space. The transmitter, receiver and medium may be in 
relative motion. In particular, relativistically correct formulae for the Doppler 
frequency shifts have been obtained. The results take a particularly concise form 
in a 4-vector notation. 
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