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Highly c.onducting .overburderi layers inhibit the surface detecti.on .of .ore b.odies by induced 
p.olarizati.on (lP) measurements. The excitati.on and resp.onse .of an IP s.ource .obtained by means 
.of undergr.ound (d.ownh.ole) electr.odes is investigated utilizing a simple m.odel: the .overburden is 
represented by a unif.orm surface layer and the .ore b.ody by a small sphere. The shielding .of the 
s.ource from the surface is shewn. Quantitative estimates .of the improvement .obtained by siting 
the electr.odes bel.ow the .overburden-h.ost-rock interface are .obtained. It is expected that similar 
impr.ovement will be .obtained with larger .ore b.odies. It is shewn that the impr.ovement applies t.o 
time-d.omain and frequency-d.omain measurements. A feature .of the results is the presence .of a 
'blind' z.one just beneath the interface. The .optimizati.on .of electrode p.ositi.ons in a particular 
ge.ometry is examined. 

1. Introduction 

The use of induced polarization (IP) measurements in Australia to determine the 
presence of subterranean ore bodies is inhibited by the presence of an overburden 
layer which is of higher conductivity than the underlying host material containing 
the ore body (Gleeson and Thio 1973). The usual measurement procedure used is 
to place a pair of current electrodes on the surface to inject current into the system, 
and to place a second pair of potential electrodes also on the surface to pick up 
signals originating in the polarized ore body (e.g. Parasinis 1966). 

By using a simple model we have shown (Gleeson and Thio 1973) that, under 
representative condi!ions (overburden '" 100 times as conductive as host material), 
the signal potential from a small IP source is reduced by a factor of '" 1000 when 
an overburden layer is present between the IP source and the surface. In this paper 
we again use a very simple model to examine quantitatively the advantages to be 
obtained by placing these electrode systems beneath the surface. In practical 
applications they would be placed down suitable bore holes. 

In the model (Fig. 1) the overburden is represented by a layer of conductivity 0"1 

with thickness h and the underlying material has conductivity 0"2. The ore body 
is represented by a small sphere of polarizable material situated at Ps, a depth b 
below the surface. The overburden is designated region 1 and the underlying part 
region 2. At position Ps the current density due to the excitation current is the 
vector J(Ps). Following Siegel (1959), the response of the ore body to this currrent 
density is represented by a current dipole at the centre of the sphere with the 
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dipole moment p proportional to the excitation current density at that point, i.e. 

p = -kJ(Ps)· 

The current dipole at Ps in turn produces signal voltages at the potential electrodes. 
The analytical procedure is outlined in Section 2 and some representative current 

flow patterns and potential distributions are given. In Section 3 the current densities 
produced at a target by downhole current electrodes are determined and compared 
with those produced by surface electrodes in the absence of overburden. In Section 4 
the downhole measurement of IP potentials is examined, and in Section 5 the 
maximization of excitation currents and signal potentials is studied and the concept 
of a 'blind' zone just below the interface emerges. Section 6 contains a discussion of 
two reciprocity relationships we have found useful and in Section 7 we show the 
relationship between time-domain and frequency-domain measurements. The 
principal results are discussed and our conclusions are noted in Section 8. As far 
as possible mathematical formulae and derivations have been put in appendices. 
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Fig. 1. Showing the planar geometry assumed, together with the current-electrode 
positions (C) in holes A and the potential-electrode positions (P) in holes B. 

2. Method of Analysis 

In this problem, Poisson's equation 

v . {a(x)V</l(x)} = -i(x) 

governs the potential </lex) at a position x in a region of conductivity a(x) and in 
which i(x) is the injected current per unit volume, The solution for a point current 
source of unit strength at position x' is the Green's function G (x; x'). It is well 
known that the reciprocity relationship 

G(x;x') = G(x';x) 

applies to these solutions (e.g. Morse and Feshbach 1953). 
All of the formulae we require can be derived from the Green's function for a 

current monopole in a two-layer geometry. The potential </l due to a pair of current 
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electrodes is then simply the sum of the potentials from monopoles delivering 
currents + I and - I respectively and the current density J is given by 

J = -O'''V<jJ. 

The potential due to a current dipole moment p is obtained by placing two 
monopoles of current ± Id at small separation a and having p = Id a. 

The potential functions are given by equations (AI) of Appendix 1. In cartesian 
coordinates with origin at 0 in Fig. 1, the current density J(x;x') at a point 
x = (x,y,z), due to a monopole of current strength I at a position x' = (x',y',z'), is 

J(x;x') = £( (x-x')ex+(y-y')e,+(z-z')e", 
4n {(x-xY+(y- y')2+(Z_Z')2}3/2 

_P (x-x')ex+(Y+ y' -2h)e,+(z-z')e,. 
12{ (X-X,)2+(y+ y'_2h)2+(Z_Z,)2}3/2 

+(1-PI2) f Pi2 (x-x')ex+(Y+ y' +2nh)e,+(z-z')e" ) 
n=O {(X-X,)2+(y+ y' +2nh)2+(z_z')2}3/2 ' (1) 

provided x and x' both lie below the interface. In equation (1) we have 
P12 = (0'1-0'2)/(0'1 +0'2) and (ex,e"ez) are unit vectors in the directions of the 
(x,y,z) axes. The corresponding expressions for other combinations of x and x' 
relative to the interface are given by equations (A3) of Appendix 1. 

Figs 2a and 2b illustrate the current flow according to equation (1) when 
S = 0'2/0'1 = 0·05 with a single monopole. This value of s is typical of Australian 
conditions. Fig. 2a is for the case y'/h = 0·5 and Fig. 2b for the case y'/h = 2. 
Fig. 2c shows the disposition with two electrodes separated horizontally by 2h. 
The features to note in these figures are: (i) the horizontal stretching of the current 
lines in the upper layer when the electrode is in this layer, indicating shunting of 
current by this more conductive layer; and (ii) the bending of the line~ toward the 
upper layer, suggesting a 'suction' effect of this layer on the current. 

The potential at x due to a current dipole of moment p placed at x' is 

<jJd(X;X') = _~. ( (x'-x)ex+(y'-y)e,+(z'-z)e" 
4nO'2 {(x' _X)2+(y' - y)2+(Z' _Z)2}3/t 

(x' -x)ex+(Y' + y-2h)e,+(z' -z)e", 
- P12 {(x' _X)2+(y' + y-2h)2+(Z' _Z)2P/2 

2 00 n (x'-,x)ex+(y'+Y+2nh)e,+(Z'-z)e",) 
+(1-P12) n~o P12 {(x' _X)2+(y' + y+2nh)2+(z' _Z)2}3/2 ' 

(2) 

when x and x' are both in region 2; the other expressions are given by equation (A4) 
with equations (A3) of Appendix 1 . 

. The potential distribution due to a dipole at depth b = 2h and with p parallel 
to the surface is illustrated in Fig. 3a for s = 0·01. This figure gives the potential 
pattern in a vertical plane including the vector p and the axis 00' passes through 
the dipole. The pattern in a plane through 00' making an angle '" with the above 
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_ 0·006 

(a) 

-0·01 
-0'015 

-0·02 

Fig. 3. Equipotential lines for the potentill-l ,pd due to (a) a horizontal current dipole and 
(b) a vertical current dipole (bold arrows), each at depth b = 2h (for s = 0'01), shown 
in a vertical plane containing the dipole. The designation on each line is the value of 
,pd/(P/41C0'2 h2). Equipotentials in other vertical planes for (a} may be obtained by 
multiplying the indicated values by cos'" (see text). 
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plane is again that of Fig. 3a save that the potentials must be mUltiplied by cos t/J. 
This result is obtained by resolving p into components p cos t/J and p sin t/J parallel and 
perpendicular to the plane and noting that the potential contribution from the latter 
is zero in the plane. 

The potential map for a vertical dipole placed as above is given in Fig. 3b; 
this map is the same in all vertical planes through 00'. With Figs 3a and 3b we can 
obtain the potential at any point in the region due to any dipole at depth 2h by 
resolving its moment p into horizontal and vertical components. 

The features of Figs 3a and 3b are the way in which the equipotentials spread in 
the upper layer, indicating a reduction in potential at a point on the surface. 
Corresponding to this spread is a concentration of equipotential lines just below the 
interface. This concentration indicates that there is a sharp reduction in potential 
as the interface is approached from below. Both of these aspects are examined 
more quantitatively in Section 4. 
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Fig. 4. Comparisons of the fraction 01 of total current crossing the plane z = 0 below the interface 
(y ;;. h) when the current electrodes are placed (a) on the surface and (b) downhole. In (a), 01 is 
shown as a function of the conductivity contrast s for typical values of z'jh. In (b), 01 is shown as 
a function of the depth y' of the electrodes for a range of s values when the electrode separation 
2z' = 2h. 

3. Symmetrical Case: Current Electrode Variation 

Since the possible combination of positions for current and potential electrodes 
is infinite, for definiteness we take the configuration displayed in Fig. 1. The current 
electrodes are assumed to be in holes A separated by 2z' and at the same depth y', 
while the target orebody is at a depth b midway between the current electrodes. 
The potential electrodes are placed in holes B and these too are symmetrically 
positioned with separation 2z. Extensive calculations of current distributions, 
potentials and attenuation due to overburden layers for the case of surface electrodes 
have been given by Gleeson and Thio (1973). 

The advantage to be gained by downhole placement of current electrodes is 
demonstrated in a broad way by Fig. 4. Fig. 4a is for current electrodes placed 
on the surface and it shows, as a function of s (= (12/(11)' ·the fraction o[ of total 
current which crosses the plane z = 0 below the interface. This plane is midway 
between the current electrodes and perpendicular to the line joining them. Curves 
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are plotted for several typical values of z'/h. We note that, for s = 0·01 and for 
z' in the range o· 25 ~ z' /h ~ 4, reductions by a factor of '" 10 relative to the 
homogeneous case (s = 1) are obtained. 

Fig. 4b is for downhole current electrodes and shows the fraction o[ of total 
current below the interface (i.e. in the lower layer) as a function of y'/h (electrode 
depth relative to overburden depth). The figure is drawn for the particular case 
z'/h = 1 and a range of s values. The percentage current below the interface should 
be compared in each case with that obtained with s = 1 and surface electrodes. 
We note that for s ~ 1, there is little if any gain until the electrodes are placed below 
the interface. 

10-1 

~ 

~ 
~ 

~ _ 10-2 

~ 
<I 

] 
~ ;;;;-
~ 10-3 

...; 
1 

y1h = 0 

~ 1'0 

-- s = 0·01. yih> 1·0 

------- s = 0'01. y'lh < 1·0 

_._.- S = 1,0, Y'lh = 0 

!l/h = 3·0 

................. 
J\t~ ............... 

Oll"eI'6q;;; ............... .... 

el] ............. 

........ , ... 

: ........... 
" " .... ~, ... 

.......... ~ ............. 
" ...... ........... ~..p.:.5 

Fig. 5. Current density Jz as a 
function of depth on the y axis 
due to a pair of current electrodes 
at depth y' and separated by 2z' 
(see Fig. 1), in the case when 
z'/h = 1. The dot-dash curve 
shows the current density for 
surface electrodes and no over
burden while the continuous 
and dashed curves are for 
electrodes below and above the 
interface respectively. The 
curves also give the potential 
Ar/Jd divided by 2p/h2a(y) for 
downhole potential electrodes; 

"'o':::.~ .... 
10-41 '':.~ o J ~. 

in this case the parameters 
y'/h become b/h (see text). 

2 3 

y/h 

We now turn to the detailed distribution of current, particularly that below the 
interface, produced with downhole current electrodes. The current density at a 
depth y on the y axis is given by Jx = 0, Jy = 0 and 

IZ'( 1 P12 
Jz(Y;y') = - 2n {(y_y')2+Z'2}3/2 - {(y+y'_2h)2+z,2}372 

2 <Xl P~2 ) 
+(l-P12) n~o {(y+y'+2nh)2+z'2}3/2 ' 

(3) 

if both y ~ hand y' ~ h. Expressions for other combinations of y and y' may be 
obtained from equations (A3) in Appendix 1. 

Fig. 5 shows the current density at points on the y axis for the case z' /h = 1 and 
s = 0·01. Curves are given for current electrode positions y'/h = 0-3'0. The 
dot-dash curve represents the distribution for the case of electrodes placed on the 
surface of a homogeneous ground (s = 1). The increase in current density obtained 
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by the downhole placement of the current electrodes is obvious, and at target depths 
well below' the overburden it is possible to produce a current density greater than 
that with surface electrodes on a homogeneous ground. Note again that there is no 
improvement until the current sources are located below the interface. Note also the 
region just under the interface where the current density is low; we discussthis in 
detail in Section 5. 

4. Downhole Potential Electrodes 

Increased signals can also be obtained by placing the potential (i.e. pickup) elec
trodes in downhole positions. The potential map of Fig. 3a (or its equivalent in any 
particular case) can be used to evaluate the signal that may be obtained from 
electrodes placed in any position in the neighbourhood of the IP source. Thus, for 
example, it is clear by inspection of this figure that the potential difference obtained 
by siting the potential electrodes below the surface in the holes B of Fig. 1 first increases 
as the depth y increases, reaches a maximum, and then decreases. The variation of 
potential difference with other geometry for the probe positioning (e.g. oblique 
holes) can also be evaluated in this way. ' 

Once again for definiteness, we evaluate the symmetrical case. The potential 
difference flcPd between electrodes in the geometry of Fig. 1, with separation 2z and 
at depth y, due to an induced dipole of moment p at depth b is given by 

pz (1 P12 . 
flc/Jd = 21tCT2 {(b_y)2+Z2}3/2 - {(b+y_2h)2+Z2}3/2 

. 00 ~ ) 

+(1-P~2) ,,~o {(b+y+2nl~)2+z2}3/2 ' (4) 

if both y > hand b > h. Expressions for flcPd in the other cases may be obtained 
from equation (A4) in Appendix 1. The relation (4) is the same in form as that for 
the current density on the y axis given by equation (3) except that z replaces z', - p/CT 2 

replaces the current I from the current source, and the depth b of the dipole replaces 
the depth y' of the current electrodes. 

Because th~ form of equation (4) is identical with that of (3), flcPd has the same 
dependence. on the depth y of the potential electrodes as Jz has dependence on the 
position along the y axis. Thus Fig. 5 also represents flcPd versus electrode depth 
if the vertical ordinate is taken to be flcPd/{2p/h2CT(y)}. The separate curves are for 
different dipole depths b/h so that y'/h --+ b/h. Note that flcPd is actually continuous 
across the interface; the discontinuity of the curves is introduced through the 
discontinuity of CT(y) in h2CT(y), the scale factor of flcPd in Fig. 5. lf given in terms of 
a constant scale factor p/h2 CT2 , say, the curves of flcPd would have the sections in the 
overburden region (0 :::::; y/h :::::; 1) dropped to join at the interface with those in the 
region y/h > 1. Thus with overburden, the conditions of Fig. 5 and a source below 
the interface (b/h > 1), the potential difference flcPd decreases sharply as the 
interface is approached from below and remains at roughly the interface value 
as the potential electrodes move to the surface. We note particularly: (i) that the 
overburden reduCes flcPd at the surface very considerably, (ii) that potential electrodes 
must be placed below the interface in order to improve this value of flcPd and (iii) 
that a major decrease in flcPd occurs in a zone just below the interface. 
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5. Maximization and Envelope Curves 

We turn now to the question of optimization of the current density at a given 
depth y on the y axis (where the target is assumed to be located) by means of 
variation of the depth of the current electrodes, i.e. by variation of y' in Fig. 5 and 
equation (3). The current density curves drawn in Fig. 5 represent the function 
lz(Y;y') given explicitly by equation (3). We note particularly that 

lz(Y;y') = lz(Y';y) , 

that is, y' and y may be interchanged in this function. 

~ 
-:: 
;;;;, 
N 
':::: ...; 
I 

10-1 r (a) 

10-2 

10-3 

Envelope 

10-4~1 ()~L-______ ~L-______ ~~~~ ____ L-______ ~ 

~ -or) , 
'~+0.5 V 3 4 5 '--' 2 

y/h 

Fig. 6. Showing: (a) the current density curves of Fig. 5 for y ;;;. h (with 
s = 0'01, z'/h = 1) together with their envelope (dashed curve), and (b) the 
curve sPecifying the electrode positions Yo(y) which maximize the current 
density at depthy. The dot-dash curve in (a) gives the current density 
distribution for electrodes placed well below the interface. 

(5) 

In Fig. 6a we have reproduced the set of current density curves for y ;;?; hand 
the fixed values of the current electrode depth y' of Fig. 5. We note that these curves 
have an envelope which each curve touches (the dashed curve of Fig. 6a). The 
maximum current density that can be obtained at depth y is given by the envelope 
value. In order to obtain this maximum current density, the current electrodes 
should be placed at depth y~(y), and in the lower layer (region 2) we find that this 
places the current electrodes below the position y (that is, yMy) > y). Fig. 6b shows 
this optimum depth y~(y), given as {yMy)-y}/h, as a function of y/h for the 
particular conditions of the figure. The function for the envelope current density 
can be written le(Y) and we must have 

le(y) = lzCy; YMY». (6) 

Specific expressions for yO(y) and le(y) cannot usually be obtained, and these functions 
are determined numerically in the required cases. 
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The current density distribution for electrodes at large depths (y'/h ~ 1) 
approaches a fixed form shown by the dot-dash curve in Fig. 6a;the maximum 
current density approaches the homogeneous value 

1m = I/2nz'z. 

We note particularly that the envelope curve shows that the current density below, 
but close to, the interface can never be increased to near this homogeneous value, 
since there is always a region of depleted current density there no matter how close 
to the interface the electrodes are placed. 

We also note that the current density distribution for electrodes sited at yb(y) 
does not peak at y (cf. Fig. 6a) but at a depth yp(y), say. We can determine the posi
tion and magnitude of this peak by noting the result (proved in Appendix 2) that 
if current electrodes are placed at y~, say, then the maximum in the current density 
occurs at 

ym(Y~) = y~(y~). (7) 

The function on the right-hand side here is the same function as that noted above 
for the optimum positioning of the electrodes and shown in Fig. 6b. The value of 
the peak current density is lz(Ym;y~) which, by equation (5), is equal to lz(y~;ym)' 
and this in turn, by equations (6) and (7), is the value of le(Y~), the envelope current 
density at the electrode depth. Thus to optimize the current density at y, the 
electrodes are placed at a depth yb(y), the current density at y is le(y), and the resul
tant current density distribution peaks at 

YP = Ym(yb(y») == yb(yb(y» , (8) 

with value le(Y~(Y»)' that is, the envelope value at the electrode position. 
In the assessment; in a practical application, of the siting of the electrodes, 

current density curves such as those of Fig. 5 appropriate to the values of s, z' and 
y' are required. One can, of course, make a complete calculation of the curves but 
in many cases a quickly obtained approximation is adequate. A useful approximation 
of the current density curves can be produced from curves of the envelope function 
le(y), the associated optimum-depth function yb(y), the current density curve lz(Y; h) 
for electrodes at the interface (y' = h) and the current density curve for electrodes 
at large depth. 

The construction of the approximate current density distribution depends upon 
the results noted in the preceding paragraphs, and the graphical procedure is 
illustrated in Fig. 7. It is as follows: If the current electrodes are at depth Yl then 
the current distribution peaks at Yz, touches the envelope curve at Y3 and meets 
the interface at lz(h; Yl)' The current density at Y2 is the envelope value at Yl and 
the distribution below this peak (i.e. for Y > yz) has the homogeneous form (the 
dot-dash curve H in Fig. 7). The current density curve meets the interface at 
lz(h; Yt) and since, by equation (5), this is equal to lZ(Yl; h) it can be constructed from 
the given distribution lzCy; h) as shown. The interface point, envelope point, peak 
point and the shape beyond the peak is sufficient information for an excellent 
approximation to the current density curve for electrodes at Yl to be drawn. . 
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Finally, in this section, we note that consideration of the optimum siting of 
electrode positions can arise when the potential electrodes are set downhole. With 
a fixed target depth the objective is to place the potential electrodes such that fl<Pd 
is maximized. We have already shown that the distribution of fl<Pd downhole has 
the same form as the current density distribution (i.e. except for the interface 
discontinuity discussed in Section 4~ Fig. 5 applies equally well to potentials fl<Pd); 
thus the whole of the discussion of envelopes, electrode placement for maximization 
and construction of the approximate distributions on the y axis, carried through for 
the current density, can be interpreted immediately in terms of potentials measured 
by downhole electrodes. 
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Fig. 7. Illustrating the construction of the approximate current density profile 
for electrodes at depth Yl (under the conditions s = 0'01, z'/h = 1). The curve 
for J.(Y;Yl) peaks at Y2, touches the envelope at Y3 "and meets the interface at 
J.(Yl; h) (see text). Note that to a good approximation the curve J.(y; h) versus 
Y has the same shape as curve H, the homogeneous form (Yl ~ h). 

6. Reciprocity Relationships 

In Section 4 we noted that the expressions for JZ(y;y') and fl<Pd(y;b) had the same 
form. This identical form is a special case of more general results arising from the 
fact,noted in Section 2, that the Green's function G (x; x') is symmetric in its argu
ments x and x'. Two such theorems which are useful in this problem are given 
below. 

Theorem 1. Suppose that a monopole current source of unit strength at x' 
produces a current density j(x; x') at position x: Then a current dipole of moment 
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p at x produces a potential 

</Jix';x) = -p.j(x;x')/u(x) (9) 
at position x'. 

The relationship (9) is the primary one here and its proof is the development of 
equation (A4) in Appendix 1. An example of its application is the case of electrodes 
at Xl and X2 and a target at position Xo. If the electrodes are used as current 
electrodes with currents 10 and - 10 respectively, the current density at Xo is 

J(xo; Xl,X2) = 10j(XO;Xl) -loj(XO;X2)' (10) 

If there is a current dipole of moment p at Xo, the potential difference between Xl 

and X2 is 
A</Jixl, x2; xo) = </JiXl; xo) - </JiX2; xo)· (11) 

With the use of equations (9) and (10) this becomes 

A</Jixl ,X2; xo) = -p.J(xo; Xl' x2)/lo u(xo), (12) 

and when p is parallel to J 

A</Jixl ,X2; xo)/p = -J(xo; xl,xz)/Iou(xo)· (13) 

This result shows in general the identical mathematical dependence upon Xl and X2 
of: (i) the current density at Xo due to currents 10 and - 10 at the electrodes and 
(ii) the potential difference between Xl and Xz due to a dipole at Xo. In particular, 
positions of Xl' X2 which maximize J at Xo are those necessary to maximize A</Jd with 
a dipole at Xo' The equivalence of the expressions for Jz and A</Jd noted in Section 4 
and used in this paper is a special consequence of this result and theorem 2(iii) 
noted below. 

Theorem 2. If hex; x') is the current density parallel to the surface at X = (x,y, z) 
due to a unit source at x' = (x', y', z') then jll has the following properties under 
interchange of coordinates: 

(i) interchange of x and x' reverses jx, 

jxCx,y,z; x',y',z') -jxCx',y,z; x,y',z'); 

(ii) interchange of z and z' reverses jz 

jix,y,z; x',y',z') = -jix,y,z'; x',y',z); 

(iii) interchange of y and y' maintains the direction of iu with 

u(y')jll(x,y,z; x',y',z') = u(y)jll(x,y',z; x',y,z'); 

(iv) interchange of source point x' and field point X yields 

u(x')jIl(X;X') = -u(x)iu(x';x). 
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The results (i)-(iv) are a consequence of the reciprocity of G (x; x') and the planar 
geometry. From these factors we have 

G(x;x') = F{(x-x,)2+(z-zY,y,y'} = F{(x'-x)2+(z'-z)2,y',y} = G(x';x), 

(14) 

and (i)-(iv) follow from the relation (14) and j = -G'VG. The results (i) and (ii) 
are also obvious from the geometry, while (iv) follows from the first three results 
or may be obtained directly. The relation (14) and hence the results (i)-(iv) also 
apply to the general case of G' a function of y only. The relation (5) used extensively 
in the discussion of envelopes and maximization in Section 5 is a particular 
application of (iii) with G'(y) = G'(y'). 

7. Frequency-domain IP and Time-domain IP 

In practice time-domain IP and frequency~domain IP measurement techniques 
are used rather than the direct current (DC) technique for which our calculations 
have been made so far in this paper. In this section we relate our previous results 
to the more commonly measured quantities of these domains and show that the 
same reductions (and improvements) apply to them. 

Our analysis here involves the inclusion of frequency dependence. The basis is 
the widely used method of Siegel (1959) of modelling the IP sources by regions of 
different conductivity G'p which, in a polarizable material, is a function of the angular 
frequency OJ. Following our DC analysis, a small polarizable sphere of volume V 
in a. medium of conductivity G'm can then be replaced by a frequency-dependent 
current dipole at the centre of the sphere with a moment p given by 

p = -k(OJ)J, with k(OJ) = 3 V(G'rn - G'p)/(2G'rn +G'p) , (15) 

when the applied current density is J. The frequency-dependent conductivity of the 
IP source, G'p(OJ), may be complex, thus giving a phase relationship between current 
and potential; the background conductivity G'rn is considered to be independent of 
frequency. 

In frequency-domain IP, the system is excited by the same current first at OJ1 
then at OJ2 and the corresponding potentials ¢(OJ1) and ¢(OJ2 ) are measured at the 
potential electrodes. The frequency-effect parameter FE, defined by 

FE = {¢(OJ1)-¢(OJ2)}/t{¢(OJ1)+¢(OJ2 )} , (16) 

is used as a measure of the IP effect. To relate this FE to the present work we note 
that a monopole source of strength J(OJ) placed at x' produces a potential 

J(OJ) G(x; x') 

at x (electromagnetic coupling effects can be ignored provided frequencies are 
sufficiently low). This results in a source dipole at the target point Xs of moment 

p = -k(OJ) J(xs;x') = +k(OJ)G'mJ(OJ)oG(xs;x')/oxs. (17) 
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From equation (9) the resultant potential at a measuring point x is given by 

<p(w) = l(w)G(x;x') +p(w).{oG(x;xs)/oxs} 

= l(w)[G (x; x') - {k(w)/um} j(xs; x') .j(xs; x)]. (18) 

Consequently, with l(w1) = l(w2) = I, we have 

FE = k(W2)-k(W1) (j(Xs;X').j(Xs; x»). 
Um G(x;x') 

(19) 

When the IP source is in the lower region, the effective conductivity up(w) and k(w) 
are not likely to be changed by the overburden. Thus FE in the presence of 
overburden is changed by a factor 

( j(Xs; x') .j(xs; x») / (j(Xs; x').j(xs; x») . 
G(x; x') al,a2 G(x; x') a2,a2 

(20) 

This factor can be calculated readily from our DC formulae, and its relationship 
to our present calculations is discussed below. 

In time-domain IP, the decaying signal voltage due to IP sources is observed 
after the termination of a steady excitation current I applied at x' from t = 0 to to. 
The potential at x in this case is obtained by Fourier analysis, treating the applied 
signal as having a continuous distribution i(w) dw in the angular-frequency interval 
w to w + dw and summing the effects of these currents by evaluating the potential 

f+OO 

qJ(t) = -00 <p(w)exp(iwt) dw, (21) 

in which <p(w) is the monochromatic response given by equation (18) with I(w) 
replaced by i(w). Carrying out the analysis gives 

qJ(t) = IG(x;x'){U(t)-U(t-to)} 

-{K(t) U(t) -K(t-to) U(t-to)}{j(xs;x).j(xs;x')}/um , (22) 

with f+ OO + iC 

K(t) = (2ni)-1 w- 1 k(w)exp(iwt) dw 
- 00 +Ic 

(23) 

and U(t) the step function: U(t) = 0, t < 0; U(t) = 1, t> O. 
The second line of equation (22) gives the signal rise after switching on at t = 0 

and the signal decay after switching off at t = to due to the IP sources. It can be 
evaluated given k(w). However, for our present purposes this evaluation is not 
necessary, we simply note again that k(w) is the same with or without overburden 
and thus so is K(t). Consequently the signal at all times in the decay phase is 
changed by the factor 

(j(xs; x) .j(x.; x'»al,a2/(j(xs; x) .j(xs; x') )a2,a2' (24) 
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which is the same factor as in the DC case. Thus our DC comparisons are 
immediately relevant whether one is interested in the amplitude immediately after 
switching off at t = to or in the integrated response. 

The factor (24) is roughly proportional to S2 and represents an attenuation of 
the signal in the presence of overburden of higher conductivity than the host rock 
(s = 0'2/0'1 < 1). We note here that the factor (20) for the FE differs from (24) by 
a factor 

(G(x; X'»a2,a'/( G(x; X'»al.a2' 

which is "'S-l. Hence the factor for FE is roughly proportional to s rather than S2. 

Thus it may appear that FE is a better measure to use in field surveys. This is 
misleading and is a consequence of the normalization introduced by the division 
by H cp( WI) + cp( (2)} which is essentially the voltage at the measuring site without IP 
signal and is proportional to s. The same apparent improvement can be obtained for 
time-domain studies by normalizing with the potential prior to to. The important 
point here is that the signals are attenuated by the overburden by the factor (24) 
in each case and it is necessary to be able to detect them in the presence of background 
potentials. No artificial normalization will change this fact. 

8. Discussion and Conclusions 

We have used a very simple model here to demonstrate quantitatively the effects 
of placing current and potential electrodes below the surface in IP surveys in 
locations with a highly conducting overburden layer. In practice we envisage the 
electrodes being placed down boreholes already existing or specially drilled. It 
is evident from the figures (e.g. Figs 4 and 5) that the substantial shielding of the ore 
body by the overburden can be overcome by going downhole. In general, however, 
little improvement is obtained until the current or potential electrodes are placed 
substantially below the overburden-host-rock interface. 

In the case of the particular geometry used here for illustration we have shown the 
spatial distributions of current and potential. A typical practical case may have 
overburden of depth h '" 100 times as conductive as the host rock, an IP target at 
depth '" 2h below the surface, and potential and current electrodes at separations of 
hand 2h respectively. With electrodes on the surface the overburden reduces the 
IP signal voltage to about 1/1000 of that of the homogeneous case. This factor is 
changed to 1/2 by placing the current electrodes at depths of '" 1·7 h, and so, for 
practical purposes, the severe attenuation is completely overcome. 

We have also taken up the question of positioning of the electrodes for maximum 
excitation of the target IP source and maximization of the signal potential 
received. Although the simple target to current-electrode geometry assumed will not 
generally prevail in practice, the concepts introduced here will be useful in more 
general cases. The main conclusion from the maximization study is that there is a 
blind zone just beneath the interface. This is of major importance in exploration 
surveys in Australia, for it means that targets that are in this zone are shielded by the 
overburden even if the electrodes are placed downhole. 

Either current electrodes, potential electrodes, or both may be placed downhole; 
there will be practical difficulties with· both in the same hole and a combination of 
downhole current electrodes and surface potential electrodes may be most useful. 



572 L. J. Gleeson and Y.-C. Thio 

We note that the placement of potential electrodes downhole restricts the range of 
mapping one has available, since essentially one is replacing mapping in the surface 
plane with mapping on a vertical line (or lines). 

The signal potentials given have been determined for direct currents and potentials. 
We have shown that they are directly applicable to the time-domain and frequency
domain signal potentials measured in practical surveys. 

Finally we remark that the model assumed here has been a simple one, assuming 
a small target source. With an extended source the details will be different but 
we expect that the considerable shielding of the overburden layer will be overcome 
again if electrodes can be sited below the interface. 
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Appendix 1. Green's Function 

With a homogeneous medium, the Green's function of equation (1) in Section 2 
is simply G(x;x') = (4nulx-x'I)-1. For the stratified geometry of Fig. 1, the 
Green's function can be constructed from the original source together with an 
infinite set of images of appropriate strength. For a source point at x' and an 
overburden thickness h, .the images are located at the positions: 

i'(n) = x' +2nhk, n = ± 1, ±2, .... , 

x'(n) = x' -2{nh +(x' -g).k}k, n = 0, ± 1, ± 2, .... 

In these expressions 9 is the position vector of any point on the ground surface and 
k is a downward unit vector normal to that surface. 
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Denoting the overburden layer as region R1 and the lower layer as region R2, 
the Green's function G (x; x') at x for the source at x' is given by 

4n a(x) G (x; x') 
00 

L pinHi x-x'(n) 1- 1 + 1 x-x'(n) 1- 1}, X E R 1 , x' E R 1 ; (Ala) 
n= -00 

00 

= (I-P12) L p~2{lx-x'(n)I-1+lx-x'(n)I-1}, xER2 , x'ER 1 ; (Alb) 
n=O 

00 

= (I+P12) L P12{lx-x'(n)I- 1+lx-x'(n)r 1}, X E R 1 , x' E R 2 ; (Alc) 
n=O 

= Ix-x'I-1_P12~X-X'(-I)I-1 

00 

+(l-Pi2) L p~2Ix-x'(n)I-1, X E R 2 , x' E R2 • (AId) 
n=O 

Here a(x) is the conductivity at position x, with the value a1 for x E R1 and a2 for 
x E R 2 , and 

P12 = (a1 -(2)/(a1 +(2) 

is the reflection coefficient at the interface. Each term represents a contribution 
from an image point. The expression (Ala) is for the case of both electrodes in the 
overburden or upper layer, and the other cases can be identified similarly. The 
reciprocity between x and x' in equations (AI) is apparent if we note the relationships 

Ix-x'(n)1 = Ix'-x(-n)l, 1 x-x'(n) 1 = 1 x' -x(n) I, 

which are a property of the circumflex (x') and tilde (x') image operators. 
We obtained the solutions (AI) using image techniques similar to those employed 

in potential theory in electrostatics with dielectric layers. Subsequently we found 
the results to be well established in the literature (e.g. Hummel 1932) and also 
developed alternatively by Hansen et al. (1967). 

The current density at x due to a unit monopole at x' is obtained from 

j(x;x') = -a(x)oG(x;x')/ox (A2) 

and given explicitly in this case by differentiating the expressions (AI): 

4n:j(x; x') 
00 

L piWI x-x'(n) 1- 3(x-x'(n») 
n= - 00 

+ 1 x-x'(n) 1- 3(x-x'(n»}, X E R 1 , x' E R 1 ; (A3a) 

00 

= (l-P12) L P12{lx-x'(-n)I- 3 (x-x'(-n» 
n=O 

+ 1 x-x'(n) 1- 3(x-x'(n»}, X E R 2 , x' E R 1 ; (A3b) 
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00 

= (1 + P12) L P12{1 x-f'(n) 1- 3 (x-f'(n)) 
11=0 

+ I x-x'(n) 1- 3 (x-x'(n))}, X E R 1 , x' E R2 ; (A3c) 

= I x-x' 1- 3(x-x') - P121 x-x'( -1) r 3 (x-x'( -1)) 

00 

+(1-pi2) 2: P12I x -x'(n)I- 3 (x-x'(n)), X E R2 , x' E R2 . (A3d) 
n=O 

The potential at x due to a current dipole of moment p' sited at x' is 

<Pix; x') = p'.{oG(x;x')/ox'}, 

= p'. {oG(x'; x)/ox'}, 

= -p'.{j(x';x)/u(x')}, (A4) 

the last step following from equation (A2). Since the relation (A4) involves j (x; x') 
which is given by the series (A3), we may again use those series to evaluate <Pix; x'). 

Appendix 2. Maximization of Current Density Jz(Y;y') 

With the geometry of this problem, the current density Jz(Y;y') at a depth y 
on the y axis is given explicitly by equation (3) in Section 3. The function yb(y) 
giving the value of y' which maximizes JzCy;y') at fixed y is given implicitly by each 
of the equations 

oJz(y;yo)/oyo = 0, oJzCyo;y)/oyo = 0. (A5a, b) 

The second of these follows from the first on noting JzCy; y') = Jz(Y'; y). With 
y' fixed, the current density peaks at Ym(y') given implicitly by 

oJz(Ym;y')/oYm = 0. (A6) 

Except for notation, equations (A6) and (A5b) are identical, and hence 

Ym('1) = Yo('1) , (A7) 

as noted in equation (7) of Section 5. 
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