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Abstract 

The results of the Riska-Stenholm quantum theory for an inhomogeneously broadened laser are 
re-derived without using the Doppler limit approximation which restricts the utility of this theory. 
The photon distribution peak is seen to occur at a significantly lower photon number and the threshold 
condition is dependent on Yablku, where Yab is the relaxation parameter and ku the Doppler parameter. 
The dimensionless intensity parameter is obtained and the results are compared with the existing 
theories of Riska and Stenholm and of Scully and Lamb. 

1. Introduction 

Lamb's (1964) theory of optical masers, which describes the atoms quantum 
mechanically while treating the electromagnetic field in the cavity by classical Maxwell 
equations, gives a qualitative explanation for most of the laser phenomena, and its 
validity in the Doppler limit has been demonstrated by Stenholm and Lamb (1969). 
We have extended this theory to the case where the natural line width is comparable 
with the Doppler line width (Mohanty and Nayak 1974). 

In further calculations Scully and Lamb (1967) incorporated the quantum nature 
of electromagnetic radiation while staying within the basic framework of semi­
classical theory where the atoms are assumed to be stationary. The atomic motion 
was subsequently taken into account by Riska and Stenholm (1970) for the resonant 
case, i.e. where the transition frequency w of the lasing atoms is in resonance with 
the cavity eigenfrequency Q. However, the usefulness of the latter analysis is limited 
by the Doppler approximation, and it is unable to describe the exact effect of relaxation 
parameters which have a considerable influence on the performance of a gas laser 
(Mohanty and Nayak 1974). The main purpose of the present paper is to incorporate 
the effect of relaxation parameters into the quantum theory of the laser. 

2. Model and Equations of Motion 

The basic model, which follows closely that of Riska and Stenholm (1970), consists 
of lasing atoms with an upper level I a), a lower level I b) and a transition frequency 
between levels of w = (Ea - Eb)/h. These atoms which have velocity v and which 
are all in the upper state are injected into the cavity at a rate ra' The transition fre­
quency is in resonance with the single cavity eigenfrequency Q. In order to describe 
the loss mechanism, atoms in the lower state f3 of the two nonresonant broad levels ex 
and f3 are introduced at a rate rp into the cavity. All these atoms have a decay rate 
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Y" for the state 1'/. The atomic motion is assumed to cause a Doppler shift in the 
transition frequency so that (0 = Q+(Q/c)v = Q+kv. 

The complete system is described by the density ma.trix 

Pan,pn' = (anlpIPn'), (1) 

I an) being the field-atom condition for the nth photon with the atom in the state 
I a). The calculations of Riska and Stenholm (1970) give the equation of motion 
for the diagonal element Pnn as 

dPnn/dt = -An+1 Pnn +AnPn-l,n-l +C(n+l)Pn+l,n+l -CnPnn, (2) 

where An and C represent the integrals 

(3a) 

(3b) 

with Yab = ·!(Ya+Yb) and g the coupling constant. The velocity distribution for the 
atoms W(v) is assumed to be Maxwellian with the form 

The quantity An may be evaluated by rearranging the integral in equation (3a) 
to give 

A = 2g 2ra Yab n f +00 exp( _V2/U 2) dv 
n YaU.jn -00 (kv)2+Y;b(1+4g2n/YaYb) 

= _ 2g2ra ~ab n J.. f + 00 exp.( - (2) dt 
Yiku) .In lZn -00 IZn- t 

_ 2.,Jng2raYab n (. ) 
- 2 W lZn 

Yiku) Zn 

where 

Defining 

we finally obtain 
(4a) 

where the function 

is known as the probability integral for complex arguments and is widely tabulated 
(Faddeyeva and Terent'ev 1961). 

By a similar method to the above we may evaluate the integral C from equation 
(3b) to obtain 

(4b) 
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where z' = Yaplku. Although the exact value of C may be easily incorporated (see 
Section 4), for the moment we will only consider the approximation for broad levels, 
Yap ~ ku. In this case C is given by 

C :::::: 2g2rp/yp Yap' (4c) 

Equation (2) now becomes 

dPnn/dt = -A w(izn+ l)(n + l){l +B(n+ l)IA}-t Pnn 

+Aw(izn)n{I+BnIA}-tpn_l,n_l +C(n+l)Pn+l,n+l-CnPnn' (5) 

3. Steady State Solution 

In the steady state, the solution of equation (5) takes the form 

n 

Pnn = (AIc)nN n w(izv)(1 + BvIA)-t , (6) 
v=o 

where N is a normalization constant. From this expression the threshold condition 
can be evaluated (the threshold being the state where the losses of the cavity are 
equal to the pumping rate). It is clear then that Pnn will have a peak at n = O. Since 
the rate of change near the peak is very small, we can approximate Pl,l by PO,o, 
which gives 

(7) 

This condition is slightly greater than the threshold condition AIC = 1 assumed by 
Riska and Stenholm (1970), which was obtained by inspection. 

Since w(izn) is a real function, equation (6) can be easily solved for any combination 
of AIC and BIA. For small values of Zv we have 

w(izv) :::::: l-(2YablkuJn)(1 + BvlA)t 

and, under this approximation, equation (6) takes the form 

= (~)nN Ii [ 1 -~J 
Pnn C v=o (1 + BvlA)t ku..jn· 

(8) 

The only difference between equation (8) and that of Riska and Stenholm (1970) 
is the presence of the second term in the square brackets, but this has an appreciable 
effect on the photon statistics. Above threshold, the peak value of Pnn occurs at 
n = np ' which may be approximately calculated by assuming Pnpnp = Pnp-l,np-l' 
We then have 

1 _ ~ ( 1 _ 2Yab ) 
- C (1+ BnpIA}!- ku.Jn' 

which gives 

n = ~( (AIC? -1) 
p B {1 + (2Yab/ku..jn)(A/C)Y . 

(9) 

It may be noted here that by substituting np = 0 in equation (9) we obtain the 
threshold condition 

AIC = (1 -2YablkuJn)-1. 

Equation (7) reduces to this form for small Zl and BI A ~ 1. 
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Keeping in mind the condition "lab ~ ku, we can write equation (9) approximately as 

which shows that the peak occurs at a considerably lower photon number than the 
(np)RS deduced by Riska and Stenholm (1970). As A/C increases so does np' and the 
peak thus shifts towards a higher photon number. This is to be expected since an 
increase in A/C means that pumping is greater than the loss by which amplification 
occurs and so there is a higher probability for more photons to be present. This 
broadening of the distribution curve with increase in A/C can be clearly seen in Fig. I, 
where the exact distribution Pnn is shown for two values of A/C. 
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Fig. 1 (above). Exact photon 
distributions for the two indicated 
values of A/e with B/A = 0·005 
and Yab/ku = 0·1. 

Fig. 2 (left). Approximate variation 
of the width K2/np as derived in the 
present paper compared with previous 
results: 

SL, Scully and Lamb (1969); 
0]'-.-0--]...1..2----'].-4--].1-.6--]...1..8----'2.0 RS, Riska and Stenholm (1970). 

Ale 

The half-width of the photon distribution is obtained approximately from equations 
(8) and (9) in a similar way to that given by Riska and Stenholm (1970). From the 
condition Pnp+K.np+K = !Pnpnp' the half-width is given by 
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This relation gives a wider photon distribution than that of Riska and Stenholm. 
Neglecting the term involving (Yab/ku)2 in equation (10), we have 

This again brings out the interesting fact that Yab/ku has a marginal effect at threshold. 
The approximate value of K2/np is compared with that of Riska and Stenholm (1970) 
and of Scully and Lamb (1967) in Fig. 2. It may be noted that the approximate 
value of K2/np in the present case compares well with the exact values in the two 
other cases. However, our exact values, as derived from Fig. 1, are still higher. 

4. Discussion 

As noted above, Fig. 1 shows that the peak of the photon distribution occurs 
at a lower value of n than that predicted by Riska and Stenholm (1970). For 
A/C = 1·44, the peak of the distribution found by Scully and Lamb (1967) occurs 
at np = 90, which is the value at the peak predicted by Riska and Stenholm (1970) 
for A/C = 1·2. The peak for Pnn in the present work occurs at np = 105 for 
A/C = 1·44. This shows that the effect of Yab/ku is more pronounced at higher 
photon numbers. The width of the distribution curve increases as A/C increases 
because Pnn depends heavily on Yab/ku and its effects become stronger for higher 
values of A/C. 

The expression for A/C given by Riska and Stenholm (1970) is 

(11) 

Since Yp and Yap are much greater than ku, the ratio ra/rp is not very important. How­
ever, if atoms are pumped to the upper lasing level at a much higher rate than to the 
lower level (ra ~ rp) and if Yp is assumed to be somewhat larger than Ya' then Yap 
need not be too large compared with ku. When the previous stringent condition 
Yap ~ ku is lifted, we obtain the expression (4b) above for the integral C, and we 
then have 

(12) 

which is dependent on ku only through w(iYap/ku). For a system with Yap ~ ku, 
equation (12) shows the well-known property that the amplification is the ratio of 
the number of atoms r aIY a (=.!V a) in state a to the number of atoms r p/ Yp (=.!V p) 
in state 13. If.!Va is greater than.!Vp then Yap need not be larger than ku, and so we 
have A/C = .!Va/.!VP when the loss level is not broad. However for Yap ~ ku equation 
(12) reduces to the form (11). 

Finally, the dimensionless intensity parameter I can be calculated from the relation 
I = (B/ A)np. Substituting the expression for np from equation (9), we have 

I = (A/C)2 -1. 
{I + (2Yab/kuy'n)(A/C)Y 

(13) 

In Fig. 3, I is plotted against A/C for two values of Yab/ku and the results are compared 
with those of Scully and Lamb (1967) and Riska and Stenholm (1970). It is seen that 
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the rate of increase of I as predicted by Riska and Stenholm (RS curve) is reduced 
as Ale increases, showing a saturation effect. This is an important departure from 
the results of Riska and Stenholm. For Yablku = 0·1, I increases from zero at 
Ale = 1·15 while for Yablku = 0·05 it starts at Ale = 1·05. This shows that at 
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Fig. 3. Dependence of the 
dimensionless intensity parameter I 
on Ale for 'Yablku = 0·1 and 0·05. 
The present results are compared 
with those of: 
SL, Scully and Lamb (1969); 

RS, Riska and Stenholm (1970). 

threshold Ale is greater than unity and is a function of Yablku. In contrast, the 
RS curve starts from 1= 0 at Ale = 1·0. It is also seen from Fig. 3 that as 
Yablku decreases I approaches the RS result and coincides with it at Yablku = o. 
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