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Abstract 

A new model to describe interionic binding in diatomic crystals is proposed. With the inclusion of 
an overlap repulsion of logarithmic form along with charge-charge and van der Waals interaction 
terms, the model is found to yield improved values for the cohesive energy and other parameters of 
alkali halide crystals. Unlike previous forms for the interionic binding in an LiF crystal, in which 
the potential is negative at distances much smaller than the distance of closest approach of Li + and 
F- ions, the present model tends to infinity in the positive energy region before such distances 
are approached. 

1. Introduction 

The nature of the binding in diatomic ionic crystals has been a subject of extensive 
study over the past six decades. A number of attempts have been made to 
approximate the interionic potential in such crystals by assuming them to be 
composed of completely ionized atoms, and earlier models along these lines have been 
proposed by Born and Lande (1918), Born and Mayer (1932), Rittner (1951), Varshni 
and Shukla (1961) and Patel et al. (1967). These models have been accepted as being 
reasonably successful in describing the ionic bond in diatomic molecules and crystals. 
Reviews of the progress in this field have been made by Sherman (1932), Waddington 
(1959) and Ladd and Lee (1964), while recent developments are described by Kachhava 
and Saxena (1963, 1965), Mathur and Singh (1967), Pandey (1969, 1970a), Pandey 
and Saxena (1969), Barr and Lidiard (1970) and Redington (1970). 

In models for the interionic binding, the potential function is represented by a 
large number of terms, but only the following ones are important: 

(i) the charge-charge interaction term ( - Ae2 j r), 

(ii) the dipole-dipole and dipole-quadrupole interaction terms (- Cjr6 and 
- DjrB respectively), 

(iii) the zero-point energy term, and 

(iv) a short-range repulsive term. 

The existence of hyperpolarizability in atoms and molecules has been established 
theoretically (Sewell 1949; Coulson et al. 1952; Buckingham et al. 1956), and 
Lawley (1961) has included this effect in his study of the properties of ion pairs. 

* Paper presented at the 44th Session of The National Academy of Sciences of India, Bhagalpur, 
February 1975. 
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It may be shown from Lawley's theory that the leading term in the hyper­
polarizability contribution to the interaction potential between an unlike ion pair 
is of the form -Le2/rlO, where 

L = 2(J(1 (J(i (J(1 + (J(2) - e2(Bi/2(J(1 + B~/2(J(2) . (1) 

Here (J(1 and (J(2 are the polarizabilities of the ions and B, which is the leading 
hyperpolarizability contribution governing the change in polarizability caused by the 
field gradient of the neighbouring ion, is given by 

(2) 

where the suffixes 1 and 2 distinguishing between ions have been omitted. In this 
expression s is the number of electrons in the group of degenerate orbitals of highest 
energy, 0 is the ground state wavefunction and V is the effective excitation energy 
for the particular perturbation. It is difficult to obtain an accurate evaluation 
of B. Lawley (1961) gave the probable lower limit as 

B = -.2.(J(2/es 
5 ' 

(3) 

s being the number of electrons in the outermost shell. For this value of B the 
expression for L reduces to 

(4) 

The interaction term - Le2/r10 due to the presence of hyperpolarizability in a 
single Na+Cl- bond may be generalized for a sodium chloride crystal so that, 
together with additional geometric factors, the hyperpolarizability per ion pair in 
the crystal is thus the sum of the infinite series 

Le2 ( 12 8 6 24 24 ) 
-;:to 6 - 210/2 + 310/2 - 410/2 + 510/2 - 610/2 + ... 

(5) 

The constant K (analogous to the Madelung constant for charge-charge interaction) 
is a characteristic for the particular lattice, its value depending on the geometry. 

The hyperpolarizability term for diatomic alkali halide molecules has been 
considered only by a few authors (Varshni and Shukla 1965; Pandey 1970b) since it 
contributes less than 0·01 % to the total energy. However, it cannot be neglected 
in any study of binding at separations less than the equilibrium ionic distance, as it 
plays an important role in this region. 

2. Previous Potential Models 

With the inclusion of terms for the various interactions noted above, the forms 
proposed in previous models of the interionic potential energy function ¢(r) for an 
ion pair interacting with each other and with the rest of the lattice are as follows. 

Born and Landey (1918; BL model), 

¢(r) = -Ae2r-1 -Cr- 6 -Dr- s _KLe2r- 10 +Br-m +8; 

Born and Mayer (1932; BM model), 

(6) 

¢(r) = -Ae2r-1 - Cr- 6 -Dr- s _KLe2r- 10 + Q1 exp( -r /ql) +8; (7) 
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Varshni and Shukla (1961; VS model), 

¢(r) = _Ae2r-l - Cr- 6 -Dr- 8 _KLe2r- lO + Q2 exp(-Q2 r 2) +8; (8) 

Patel et al. (1967; PGT model), 

¢(r) = -Ae2r- 1 -Cr- 6 -Dr- 8 _KLe2r- 10 +Q3exp(-Q3r3/2) +8. (9) 

In equations (6)-(9), A is the Madelung constant, B, m, Qi and qi are potential 
parameters and the remaining terms have their usual meaning. These model 
potentials, without the hyperpolarizability term, have been widely used (e.g. Ladd 
and Lee 1958; Saxena and Kachhava 1966; Dheer and Sharan 1967; Cleaver et al. 
1972; Lal and Spencer 1973; Shukla et al. 1973). We shall now examine the 
validity of the models (6)-(9) for the case of diatomic ionic crystals. 

For all of the above models we have* 

lim ¢(r) = - 00 , (10) 
r-->O 

and thus the potential energy curves will approach infinity in the negative energy 
region. The exponential repulsion terms suffer from the fundamental physical draw­
back that they give a constant finite value for r = o. The forms of the pair potential 
for an LiF crystal as predicted by the models (6)-(9) are shown in Fig. la, where it 
is seen that, after the usual minimum at the equilibrium ionic separation ro, the 
curves have a maximum in the region r < ro and tend to infinity as r ~ O. The 
height of the potential barrier for the BL model is about 105 kJ mol-I, very much 
greater than for the other models. 

The potential energy curves in Fig. 1a as predicted by the previous models are not 
satisfactory. Since there must be a finite probability for penetration of ions in each 
direction through the potential barrier (Bohm 1951; Harmony 1972), under these 
conditions a crystal would not remain stable and could either collapse or contain 
heavier nuclei formed by fusion following such tunnelling. There is no evidence to 
show that diatomic ionic crystals have these characteristics. 

The force F(r) = -d¢(r)/dr between an ion pair, as given by the models 
(6)-(9), is plotted as a function of the ionic separation r in Fig. lb. Again the curves 
are not satisfactory since they all give F(r) zero for two values of r, indicating a stable 
crystal for two values of ionic radius, together with the possibilities of crystal 
collapse and the formation of heavier nuclei by the application of an external force 
equal to the height of the force curve. 

It is obvious that the presence of attractive terms proportional to r- 6 , r- 8 and 
r- 1O , when considered with charge-charge interaction and the previous forms of the 
repulsive terms, reduce the height and thickness of the potential barrier. It may also 
be shown that there are additional attractive terms due to dispersion effects (Curtiss 
1967) and proportional to higher inverse powers of r which must further reduce the 
barrier, and thus increase the probability of penetration. A further difficulty with the 
previous potential forms is that they exist as a negative function at small separations 
(Fig. 1a). Since, for an LiF crystal, the electronic shells of the ions will have 

* The property (10) is true for the BL model only for m < 10, but this holds for most of the alkali 
halides. 
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Fig. 1. Comparison of the behaviour of (a) the pair potential <p(r) and (b) the interionic 
force F(r), for an LiF crystal, according to the present potential model and the corre­
sponding curves for the previous models discussed in the text. 
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overlapped long before the interionic separation has been reduced to 1,A, Li+ and 
F- ions cannot exist in this region, and an interionic potential as such cannot be 
defined here. Essentially then there are two main regions to consider: (I) 0 < r < r x 

(where rx is the interionic distance at which the electronic shells come into contact), 
in which entirely different concepts must be introduced to deal with the internuclear 
forces, and (II) r > r x' in which anions and cations can exist in their normal 
state. Obviously a realistic model for the inter ionic potential should be confined 
to region II. 

For predicting the form of the potential energy curve then, from the above 
discussion the BL model is the most successful of the previous models. However, 
in other respects an inverse power function is not as good a representation of the 
repulsive term as an exponential function (Born and Mayer 1932; Rice and 
Klemperer 1957; Varshni 1957; Seitz 1940). One argument that has been frequently 
advanced in support of the exponential function is that such a term is predicted by 
quantum mechanical calculations. Theoretical treatments of the repulsive force 
between closed shell anions and point cations (e.g. Unsold 1927; Bruck 1928) and 
between inert-gas atoms (e.g. Slater 1928; Bleicke and Mayer 1934; Kunimune 1950; 
Sakamoto and Isiguro 1956) have tended to support the assignment of an exponential 
term. However, several of the theoretical results are in serious disagreement with the 
experimental data (Sakamoto and Isiguro). Thus the available evidence suggests 
that present quantum mechanical treatments cannot be applied to the representation 
of the binding in diatomic ionic crystals. Finally, as Dobbs and Jones (1957) remark, 
'The exponential form for the repulsive potential makes calculations of the lattice 
properties rather complicated and, in any case, is, perhaps, not valid in the region 
near the minimum of the total potential which is of course the essential part in 
considering the properties of the lattices'. 

3. A New Potential Model 

Until a complete quantum mechanical treatment of ions in close contact is 
available, the overall effect of the short-range forces can only be represented by an 
empirical term in any model of the potential energy. As demonstrated in Section 2, 
however, existing models are not entirely satisfactory and it would seem worth while 
to consider an alternative form for the repulsive potential term. It is accepted that 
this term will only be an adequate representation within the region II defined above. 
Also, since the adjustable parameters in the empirical model will normally be based 
on compressibility data which involve distortions of not more than 1 % in most 
cases, the model can only be expected to be valid for a comparable range of 
displacements. 

In accordance with the Pauli principle, the short-range repulsion should become 
infinite when the closed-shell electron clouds of the anion and cation overlap and, 
taking account of this, the following logarithmic form for the repulsive potential is 
proposed: 

o/(r) = Plog(l+p'r- n), (11) 

where P, p' and n are constants. With the inclusion of terms for the other interactions, 
as discussed in Section 1, the final form for the potential energy of an ion pair is then 

¢(r) = -Ae2r- 1 -Cr- 6 -Dr- s -KLe2r-lO +Plog(1+p'r-n) +8. (12) 



44 K. P. Thakur 

The last two terms of this equation may be combined to give 

Plog(l +p'r-n) +8 = Plog(a+pr-n) , (13) 

where 8 = P log a now represents the zero-point energy and p = ap'. This particular 
form of representation of the zero-point energy is a convenient one since a turns out 
to have a constant value of 0·988435 for all crystals. 

Table 1. Calculated values of potential parameters for alkali halide crystals 

Crystal -p -p' ro A rx (r + +r _)8 
(kJmol- 1 ) CA6) (A) (A) (A) 

LiF 9609·31 1·73 2·014 1·0959 1·585 
LiCI 927'00 46·37 2'570 1·8953 1·950 
LiBr 644·59 89·10 2·751 2·1134 2·075 
Lil 509·34 169'47 3·000 2·3524 2·260 
NaF 936·04 26·70 2·317 1·7288 1·985 
NaCI 548·41 119·21 2·820 2·2185 2·350 
NaBr 389·41 209·78 2·989 2·4375 2·475 
NaI 319·45 373·74 3·237 2·6839 2·660 
KF 471 ·94 100·96 2·674 2·1578 2·295 
KCI 320·86 321·37 3·147 2·6172 2·660 
KBr 286·95 447·00 3·298 2'7023 2·785 
KI 239·52 730·28 3·533 3·0009 2·970 
RbF 391·81 152·38 2·815 2· 3111 2·430 
RbCI 261·90 467·95 3·291 2'7813 2·795 
RbBr 251·23 619·45 3·445 2'9196 2·920 
RbI 209·42 981·14 3·671 3·1516 3·105 
CsF 278·17 271·91 3·004 2·5453 2·565 
CsCI 176·41 935·01 3·571 3 ·1271 2·930 
CsBr 155·31 1256·41 3'720 3·2849 3·055 
CsI 143 ·15 1872'52 3·956 3'5107 3·240 

A From Pandey (1970a). 8 From Huggins and Mayer (1933). 

Application of crystal stability and compressibility conditions to equations (12) 
and (13) yields the following expressions for the potential parameters: 

x 2 
P= , 

(n+ 1)x-y 
, n(n+ 1)X-Y) p = ro , 

y-x 
1 (n+1)x-y 
oga = 2 ' 

X 
(14) 

where 
(15) 

and 

with p the compressibility and kl the crystal parameter which depends upon the 
particular structure of the crystal. 

The above model is investigated here for a parameter value of n = 6. The 
potential energy and force curves for an LiF crystal from equation (12) are included 
in Figs 1a and Ib respectively. The form of the present potential function is 
satisfactory since, unlike the previous curves, it has a single turning point at 
( - ¢(r 0)' r 0) and tends to infinity in the positive energy domain outside region I. 
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Also unlike the previous models, it is found that equation (12) is not affected by 
the inclusion of higher inverse power terms. The particular value r x of the ionic 
separation at which both the potential energy and force become infinite is given by 

rx = (_pja)l/n = (_p,)l/n, 

which is positive since both p and p' are negative. Thus rx may be interpreted as the 
minimum possible separation between unlike ions in a vacuum at which their normal 
electronic configuration is preserved. 

Calculated values of the potential parameters P, p' and rx for alkali halide 
crystals are listed in Table 1. Values of the equilibrium interionic distance ro and 
the sum of the ionic radii (r + +r _) are also listed for comparison with rx. It can be 
seen that rx is always less than ro and very nearly equal to (r + +r _). Since ionic 
radii vary substantially with the coordination in solids (Shannon and Prewitt 1969), 
it is reasonable to take r x as equivalent to the sum of the ionic radii. 

Having now defined our potential model, we proceed to test it by computing 
several properties of alkali halide crystals. The particular properties we shall 
examine are those which make use of the first, second, third and fourth order 
derivatives of the potential energy. In the following calculations, values of the 
parameters ro, f3 and B have been taken from Pandey (1970a) and C and D from 
Born and Huang (1955). 

4. Evaluation of Proposed Model 

(a) Crystal Energies 

The cohesive energy per mole, W, of a crystal is simply related to the potential 
energy by 

W = -N¢(ro), (17) 

where N is Avagadro's number. Once the values of Ware known, the atomization 
energy Ea may be easily obtained (Sinha and Thakur 1974). The calculated values 
of Wand Ea from the present model are compared with experimental data in 
Tables 2a and 2b. It can be seen that there is generally good agreement. 
Corresponding theuretical values for the previous models are also included for 
comparison in Table 2. For all the models the average percentage deviations of the 
predictions from experiment have been calculated, and the results (listed in the 
table) show that the present model compares more than favourably with the previous 
ones. 

(b) Gruneisen and Anderson-Griineisen Parameters 

The Griineisen parameter y, which has been previously computed by several 
authors (Dugdale and Macdonald 1955; Blackman 1957; Yates and Ponter 1962; 
Kachhava and Saxena 1966; Mishra and Sharma 1972), has been recalculated for 
the present potential model with the help of the relation (Sharma and Jain 1973) 

(18) 

where the primes denote derivatives with respect to r. 
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Table 2. Cohesive energy and atomization energy for alkali halide crystals 
(a) Cohesive Energy W 

Crystal Exp. W A Calculated W (kJ mol-1) from models 
(kJmo\-l) Present BLB BMB VS B PGT A 

LiF 1004·6 1009·5 1041·0 1009·5 1037·0 1057·8 
LiCl 843'1 853·0 828·0 827·9 840·3 840·6 
LiBr 801·2 805'5 786·0 782·0 794'3 790·4 
LiI 753·1 759·6 731·7 727·7 748·3 727'7 
NaF 892·9 898·5 907·3 911· 5 928·3 945·0 
NaCl 772·8 781·8 781·8 777·9 790·1 765·3 
NaBr 736·0 739·8 736·0 736·0 744·4 732'0 
NaI 695·8 701·6 686·0 689·8 674·3 677·6 
KF 792·0 799·5 811·2 810·9 823·8 819·5 
KCl 702·1 712'4 702·7 702'7 711'1 698·4 
KBr 677·8 681·7 677·4 677·4 685·8 668·9 
KI 639·3 645·8 635·7 635·8 643·9 627·1 
RbF 759·8 768·3 781·8 781·9 790·5 773'1 
RbCl 684·5 689'4 681·6 681·8 690·0 673·1 
RbBr 661'1 672·1 652·4 656·4 660·8 639·9 
RbI 626·3 632·9 619·1 623·0 627·3 606'3 
CsF 726·8 736·5 745·8 744·2 752·7 736·1 
CsCl 660·2 660'9 652·2 652·5 660'7 623·2 
CsBr 637·2 646·3 627·1 623·2 631·5 602·1 
CsI 608·4 615·5 589·5 598'0 602·3 564·7 

Average error (%): 0·9 1·5 1·3 1·8 2·6 

(b) Atomization Energy Ea 

Crystal Exp. Ea C Calculated Ea (kJ mol -1) from models 
(kJ mol -1) Present BL BM VS PGT 

LiF 849·4 816·6 848·1 806·6 844·1 864'9 
LiCl 690·4 686·2 686·1 661'1 673·5 673·7 
LiBr 623·4 580'7 561·2 557·3 569'5 565·6 
LiI 539·7 549·3 521·4 517'4 538·0 517·4 
NaF 757·3 729·8 738·6 742·8 759'5 776·2 
NaCl 640·2 639'1 639·2 635·3 647'4 622·6 
NaBr 581·6 539·2 535·4 577·2 589·4 564·6 
NaI 502·1 515·5 499·9 503·7 488·2 497·5 
KF 732·2 707·9 719·5 729·2 732·1 727·9 
KCI 648·5 646·8 637·1 637·1 645·5 622·9 
KBr 594·1 558·2 553·9 553·9 562'3 545·5 
KI 523·0 536·8 526·7 526·8 534·9 518·1 
RbF 711· 3 692·5 706·0 706·0 714·6 697·5 
RbCl 635·9 639·6 631·8 632·0 640·2 623·3 
RbBr 585·8 564·4 544·8 548·7 553·2 522·2 
RbI 518·8 539·7 525·9 529·8 534·1 513 ·1 
CsF 686·2 690·1 697·4 695·8 704·2 687·7 
CsCl 631·8 638·5 629·9 630·2 638'3 600·9 
CsBr 585·8 566·0 546·9 547·0 551·2 521·8 
CsI 523·0 549'7 523·7 532·2 536·5 528·9 

Average error (%): 3·0 2·7 2·8 2·3 3·7 

A Pandey (1970a). B Kachhava and Saxena (1965). c Sanderson (1967). 
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Table 3. Griineisen and Anderson-Griineisen parameters for 
alkali halide crystals 

(a) Griineisen Parameter y 

Crystal Exp. yA Calculated y from models 
Present BLB BM c VS C PGT c 

LiF 1·99 1·97 2·20 1·79 1·80 2'54 
LiCI 1·54 1·62 2·19 1·97 1·70 1·45 
LiEr 1'70 1·81 2·16 2'04 1·66 1·39 
LiI 1'70 2'30 2·09 1· 69 1·37 
NaF 1·57 1·65 2·20 1'99 1·63 1·49 
NaCl 1'43 1'52 2·34 2·28 1·76 1'63 
NaBr 1'55 1·63 2·41 2'21 1·80 1·69 
NaI 1·59 1·65 2·48 2·27 1·87 1·26 
KF 1·48 1·59 2·37 2·17 1·73 1·64 
KCl 1'34 1·48 2·49 2·28 1·88 1·68 
KBr 1·43 1·51 2·53 2·33 1·91 1·78 
KI 1'58 1·65 2·60 2·40 1·97 1·92 
RbF 1·28 1·39 2·44 2·24 1·81 1·80 
RbCl 1· 25 1·34 2·58 2'02 1·93 1·82 
RbBr 1·27 1·35 2·58 2·26 1·95 1·81 
RbI 1'50 1·62 2·66 2·25 2·01 1·88 
CsF 1·72 
CsCI 1·97 1·81 2·83 2·25 2·13 2·20 
CsBr 2'01 
CsI 2·13 

(b) Anderson-Griineisen Parameter J 

Crystal Exp. JA Calculated J from models 
Present BL BM VS PGT 

LiF 3·98 3·94 4·40 3·58 3·60 5·08 
LiCI 3'08 3'24 4'38 3·94 3·40 2·90 
LiEr 3·40 3·62 4·32 4·08 3·32 2·78 
LiI 3·40 4·60 4·18 3·38 2·74 
NaF 3 ·14 3'30 4·40 3·98 3·26 2·98 
NaCI 2·86 3·04 4·68 4·56 3·52 3·26 
NaBr 3·10 3·26 4'82 4'42 3·60 3·38 
NaI 3 ·18 3'30 4·96 4'54 3·74 2·52 
KF 2·96 3·18 4'74 4·34 3·46 3·28 
KCl 2'68 2·96 4·98 4·56 3·76 3·36 
KBr 2·86 3·02 5·06 4·66 3·82 3·58 
KI 3 ·16 3'30 5·20 4·80 3·94 3·82 
RbF 2'56 2·78 4·88 4·48 3·62 3·60 
RbCl 2·50 2·68 5·16 4'04 3·86 3·64 
RbBr 2'54 2·70 5·16 4·52 3·90 3·62 
RbI 3·00 3·24 5·32 4·50 4·02 3·76 
CsF 3'44 
CsCI 3·94 3·62 5·66 4·50 4·26 4·40 
CsBr 4·02 
CsI 4·26 

A Born and Huang (1955). B Kachhava and Saxena (1966). 
c Mishra and Sharma (1972). 
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The Anderson-Griineisen parameter 6 has also been computed using Chang's 
(1967) formula connecting y and 6, which he derived on the basis of the relation 
between y and the change of compressibility with volume given by Dugdale and 
Macdonald (1955). 

The results thus obtained for y and 6 are listed in Tables 3a and 3b, together with 
the experimental values of Born and Huang (1955) and the values calculated from the 
previous models. The predictions of the present model are seen to be generally in 
better agreement with experiment. 

Table 4. Reststrahlen frequency and anharmonicity for alkali halide crystals 
The values of the reststrahlen frequency Va are in units of 10-12 Hz and the anharmonicity 

Crystal Exp. 
Va A Present 

LiF 9·12 7·98 
LiCI 5·12 6·10 
LiBr 5·13 5·42 
Lil 4·32 4·56 
NaF 7·38 6·89 
NaCi 4·92 4·93 
NaBr 4·05 4·03 
NaI 3·51 3·48 
KF 5·76 5·64 
KCI 4·32 4·24 
KBr 3·48 3·49 
KI 3·03 3·31 
RbF 4·80 4·72 
RbCI 3·57 3·52 
RbBr 2·70 2·66 
RbI 2·25 2·36 
CsF 3·62 
CsCI 2·97 2·95 
CsBr 2·22 2·22 
CsI 2·12 

A Dixit and Sharma (1972). 
D Thakur and Thakur (1976). 

factor c is in kJ mol- 1 A -4 

Calculated Va from models 
BLB BM c VS D 

8·40 19·35 20·83 
6·40 10·89 14·82 
5·66 9·48 12·84 
4·77 8·25 11·16 
6·53 7·80 13·10 
5·55 6·60 8·19 
6·09 5·34 6·74 
3·45 4·62 5·75 

7·59 9·00 
4·48 5·25 6·25 
3·94 4·14 4·76 
3·37 3·57 3·86 

6·36 8·59 
3·57 4·26 5·08 
2·85 3·09 3·69 
2·03 2·94 2·87 

6·24 8·32 
2·64 4·61 
2·45 3·09 

2·27 

B Srivastava et at. (1967). 

(c) Anharmonicity and Reststrahlen Frequency 

Calc. c 
PGT D (present model) 

18·68 582·429 
12·96 246·402 
11·75 201·672 
10·25 143·338 
10·49 429·387 
7·35 306·589 
6·31 183·315 
5·37 139· 860 
8·29 297·854 
5·89 165·097 
4·50 140·795 
3·49 164·682 
7·85 260·793 
4·79 158·077 
3·48 126·244 
2·72 107·432 
6·64 254·622 
4·29 162·906 
2·88 161·439 
2·30 121·478 

C Pandey and Gupta (1969). 

When the lattice formed by a cation is displaced by a small distance z (z ~ ro) 
with respect to the anion lattice, the potential energy per ion pair may be expressed 
in the form 

u = u 0 + az2 + cz4 + ... , (19) 

where the constants a and c determine respectively the frequency of oscillations 
and the anharmonic contribution. Terms in odd powers of z are absent from 
equation (19) owing to the centre of symmetry of lattice points in alkali halide 
crystals (Krishnan and Roy 1951; Dixit and Sharma 1972). 

The numerical procedures involved in going from ¢(r) to the frequency of 
oscillations Vo and the average value c of c over all directions have been discussed 
fully by Krishnan and Roy (1951), and their method has been followed here. The 
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results obtained for Vo and c are given in Table 4, where they are compared with 
experimental values of Vo and previous model predictions for this quantity. Once 
more it can be seen that the present model gives generally better agreement with 
experiment. The validity of the calculated values of c cannot be tested owing to lack 
of experimental data, but the results are in the same range of magnitude as those 
computed with other models (Krishnan and Roy 1951). 

5. Discussion 

We have seen that previously proposed models for the potential energy function 
in an ionic crystal are not entirely satisfactory, in that they are defined for a region 
(denoted as region I above) where normal ionic forces no longer control the inter­
action between ions, and the form of the potential energy and force curves is 
unacceptably modified by the presence of the attractive terms for the theoretically 
established dipole-dipole, dipole-quadrupole and hyperpolarizability forces, for 
almost all leading repulsive interaction terms. In order to overcome these difficulties 
a new model has been proposed in which the interionic potential energy tends to 
infinity in the positive energy domain and has imaginary values in region I. It has 
been found that the new model gives a better representation of the experimental data 
for the cohesive energy, the Griineisen and Anderson-Griineisen parameters and the 
reststrahlen frequency than previous models, and is comparable in its predictions 
of the atomization energy. 

Although the earlier models do not give realistic forms for the potential energy 
and force curves, they still yield satisfactory results for the various crystal parameters. 
However, this is because they are constrained by known crystal stability and com­
pressibility conditions and thus all have a minimum at '0 etc. Under these 
conditions any reasonable potential model can be made to yield more or less 
acceptable values for crystal properties, particularly in view of the uncertainties in 
the experimental data, and for a model to be reliable it must be able to also predict 
satisfactory forms for the potential energy and force curves. Obviously this is the 
fundamental requirement, for once a model has this merit it will automatically pre­
dict accurate values of the crystal properties. The form for the potential proposed 
here is an improvement on previous models and, although far from perfect, it may 
help in obtaining a better understanding of the nature of the ionic bond. 
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