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Abstract 

The geodetic motion of a test particle in the NUT (Newman et al. 1963) field is investigated and the 
rotational effects are deduced. The behaviour of particles and light near the Schwarzschild singularity 
points is also considered. 

1. Introduction 
The problem of investigating the motion of a freely falling test particle in a specific 

physical situation brings out some of the inherent physical interactions defining a 
field. This fact has stimulated many workers in the discipline of general relativity 
to carry out a study of particle motion for numerous physical situations. We mention 
here only some examples: Hilton (1965), by investigating the motion of a test particle 
and of light in the Schwarzschild space-time, concluded that the singularity at 
r = 2m represents. a real barrier that is irremovable on physical grounds. Rosen 
(1970) also arrived at the same view from a study of geodetic motion in the neigh­
bourhood of r = 2m. However, we note that the investigations of Finkelstein 
(1958), Fronsdal (1959) and Graves and Brill (1960) lead to the contrary viewpoint 
that the barrier is not a physical one. In an unpublished work on the motion of a 
test particle in the gravitational field of a charged particle, we obtained results which 
coincided with those of Hilton and Rosen. We note also that Markley (1973) has 
utilized Hamiltonian· methods to investigate geodetic motion in a Schwarzschild 
field and that he deduced some interesting features for the limiting velocity of a 
test particle. Since the Hamiltonian approach yields a comprehensive attack on the 
problem, we adopt it here to investigate rotational effects in a NUT (Newman et al. 
1963) field. In Section 2, the motivation for introducing the NUT field is briefly 
explained. The geodetic motion of a test particle and of light is then examined in 
Section 3, and the results of Hilton, Rosen and Markley are shown to emerge as 
special cases when the angular parameter a is made zero. 

2. NUT Space-Time 

Newman et al. (1963), in an attempt to solve the empty space-time field equations 
of general relativity, Rmn = 0, arrived at the solution widely known as the NUT 
metric, which is given by 

ds2 = _A- 1 dr 2 -(r2+a2)(d82 +sin2 8d¢2) +A{dt +4a sin2(1B) d¢y , (1) 
where 
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The metric (1) belongs to the Petrov class: type-I degenerate, and admits a four­
parameter group of motion. It is also a member of a class of stationary and axially 
symmetric metrics which possess nonshearing but curling geodesic rays with nonzero 
divergence. It contains two parameters m and a, and reduces to the Schwarzschild 
metric for a = O. Furthermore, we find that the space-time depicted by the metric 
(1) is singular at r = m ± b, where b = (m2 + a2)t, and also along the line of symmetry 
() = 0, () = n. It should be noted though that the metric is regular at r = O. 

Misner (1963) introduced a periodic coordinate time and then showed that the 
metric (1) possesses the strange property that every observer at rest in the coordinate 
system has a closed time-like worldline. Bonner (1963) also found an interesting inter­
pretation for the NUT metric, according to which, the metric describes the field of a 
spherically symmetric mass (m) together with a semi-infinite massless source of 
angular momentum (a) along the axis of symmetry. Bonnor removed the singularity 
at () = 0 by a coordinate transformation, and he tentatively maintained the view 
that () = n is a physical singularity representing a source of the field. He attributed 
a linear source of pure angular momentum along () = n to the presence of the term 
in de/>dt. 

Having thus inquired into the physical aspects of the NUT metric, we now express 
it in a form which is advantageous for our discussion. We transform the curvature 
coordinate r to R in such a way that 

r = r(R) and 

Then equation (1) can be written as 

ds2 = A(R)(dt2-dR2) _{r2(R)+a2}(d()2 +sin2()de/>2) 

+8A(R)asin2(!()de/> {2asin2G-()de/> +dt}. 

For convenience we now write r and A in place of r(R) and A(R) respectively. 

(2a, b) 

(3) 

For radial motion of light we have ds = d() = de/> = 0, so that equation (3) 
yields dR/dt = 1. Thus in the new coordinate system the radial speed of light is 
unity. which we now take to be the unit of measurement of speed along the radial 
direction. 

Integration of equation (2b) produces 

R = r +mln(r-m)2 _b2) +bln(r-m-b)/(r-m+b» +c, (4) 

where c is a constant of integration. Choosing c such that at some point we have 
r = R = h, say, we then obtain from equation (4) 

R - I (r-m)2- b2) I (r-m-b)(h-m+b») 
- r +m n + n ( b)(h b) • (h-m)2-b2 r-m+ -m-

(5) 

From this equation we observe that: 

(i) r(R) is a monotonic increasing function, and 

(ii) lim r(R) = m+b and lim r/R = 1. 
R-.-co R->+oo 

Thus the domain of r ~ m + b is to be replaced by - 00 ~ R ~ 00. 
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3. Radial Motion of Test Particle 

The motion of a test particle satisfies 

bIdS = 0, 

and so from equations (3) and (6) its path is described by 

b Iit dt = 0, 

where 

1= A(I- R2) - (r2 + a2){ 112 + sin2(8) 4>2} + 8aA sin2(-!8) 4> {2a sin2(!B) 4> + I}, 
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(6) 

with an overhead dot signifying differentiation with respect to time. The Lagrangian 
for the moving particle is then given by 

L = -aft, (7) 

where the constant a characterizes the moving particle and is always positive (Landau 
and Lifshitz 1971). 

The equations of motion for 8 and cfJ are 

where 

and 

where 

If we take the initial conditions 

and cfJ = 0, 4> = ° 

(8b) 

(9a) 

(9b) 

(10) 

then, from equations (8)-(10), we get {j = <tJ = 0, which implies that the particle 
continues to move along the radial direction. If we now write the Lagrangian L 
using equations (7) and (10) as 

L = -a{A(I-R2)}t, (11) 

the canonical momentum PR conjugate to R is then given by 

The Hamiltonian H now becomes 

(12) 

For sufficiently large values of R, we have 

(13) 
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The right-hand side of this relation can be interpreted (on removing the bracket) 
as follows: The first term resembles the special relativistic rest energy plus the kinetic 
energy of the test particle, if oc is considered to be the particle's rest mass. The second 
term denotes the Newtonian potential of a gravitational field acting on a gravitational 
mass of OC/(1_R2}~, with the radial variable r in place of R. The third term is the 
contribution to the potential (for a repulsive force) arising from the presence of a 
source of angular momentum. The fourth term plays the role of the potential of a 
repulsive force due to the mass m, this situation having no Newtonian analogue. It is 
clearly seen that the source of angular momentum increases the potential for a re­
pulsive force. 

From equation (13) we find that the Hamiltonian does not involve the time t 
explicitly, so that H represents a constant of the motion equal to the total energy 
(including rest energy), which we denote by ocE. Thus we have from equation (12) 

(14) 

Since E is always positive and A is nonnegative for the metric (1), it is evident that 
equation (14) restricts R such that R < 1, that is, the radial velocity of a particle 
is always less than the local speed of light; when R = 1, E is infinite. The solution 
of equation (14), namely 

(15) 

reveals the alternative possibility that R = 1 when A = 0, which implies that 
r = m+b and that this value of r corresponds to the metric singularity (we neglect 
the situation corresponding to r = m-b because, for r < m+b, r becomes a time-like 
coordinate). Therefore we conclude that, at the singularity, the velocity of the particle 
approaches the velocity of light. In this situation R coincides with the metric velocity 
V defined by Rosen (1970). 

If we now rewrite the speed of the particle in the original coordinate r, we have 

Denoting rp and r, as the radial speeds of the particle and light respectively, we find 

r, = A and 

At r = m+b, we have rp = r, = O. Furthermore, it can easily be seen that, at 
r = m+b, we have rp = 0 and 1', = O. Therefore, at the singularity r = m+b, 
the coordinate velocity and acceleration of both the test particle and light vanish. 
Thus the observer using rand t as coordinates may conclude that both the particle 
and light stop at r = m+b. However, for a proper observer the situation will be 
different: he will conclude that the particle approaches the velocity of light asymp­
totically as r --+ m + b. 

To get a better picture of the situation at r = m+b, we examine the motion of 
the test particle in the neighbourhood of this point. Defining a new radial coordinate 
uby 

u = r-(m+b) (16) 

and restricting ourselves to radial motion, we may describe the space-time in the 
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neighbourhood of u = 0 (that is, r = m+b) by 

ds 2 = -(m+b)u-1 du2 + u(m+b)-l dt2 . 

If alternatively we take v as the radial variable defined by 

r-(m+b) = v2j4(m+b) 
then we obtain 

with 2e(m+b) = 1. 
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(17) 

(18) 

(19) 

Incidently the transformation (18) is similar to that of Einstein and Rosen (1935). 
It is also interesting to note that the space-time expressed in the two different forms 
(17) and (18) is the same as that considered by Rosen (1970) and hence, in respect 
to the motion of particles and light rays, his discussion holds good in our situation too. 

By suitably adjusting the initial conditions, the trajectories of a particle and a 
photon have the following expressions: 

Particles 

4Bu = D2 - (s - 2nD)2 

v = (_I)"{q2 -(s-2nq)2p. 

v = q sech(et). 

Photons 

4Bu = D2_2gp 

4Bu = 2gp-D2 

for 

v2 = q2-2kp for 

v2 = 2kp-q2 

V = qexp( -et). 

for (2n - I)D ~ s ~ (2n + l)D , 

for (2n-l)q ~ s ~ (2n+ l)q, } 

o ~ 2gp ~ D2, } 

D2 ~ 2gp ~ 2D2, 

o ~ 2kp ~ q2 and v ~ 0, 

q2 ~ 2kp2 ~ 2q2 and v ~ 0, ) 

(20a) 

(20b) 

(2Oc) 

(20d) 

In the above expressions D, e, g, k and q are constants, p is the parameter in place of 
s, B = m+b, and n is a nonzero integer. Thus we see that particles trace segments 
of parabolas and semicircles (as shown in Figs 3 and 1 respectively of Rosen 1970), 
while the paths of light rays are composed of the two straight lines and parabolas 
(as depicted in Figs 4 and 2 respectively of Rosen 1970). All the geodesics describing 
the motion of particles and light rays are seen to be reflected at the boundary separating 
the physical and nonphysical regions. Furthermore, the proper time required for 
both a particle and a photon to reach r = m+b from r > m+b (sufficiently large) is 
finite, whereas the coordinate time required is infinite for both. Hilton's (1965) 
interpretation of this phenomenon on physical grounds is thus convincing. Returning 
to equation (15), we get 

ii.. = -(I-R2)(mr2 +2a2r _ma2)j(r2+a2)2, 

• 2 ( m 2a2 3ma2) 
~ (1-R) -"2--3 +-4- . 

r r r 
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If we restrict ourselves to the second order of approximation, we find that the 
acceleration is always negative and has a Newtonian analogue; the extra terms 
containing the angular momentum parameter a are correction terms without a 
Newtonian counterpart. 

By analogy with special relativity, we define the mechanical momentum of the 
moving particle as 

where f3 is the relativistic mass of the particle. The gravitational force on the particle 
is then given by 

F = dPm/dt, 

(21) 

From equation (20) it is easily seen that, in addition to the Newtonian attractive 
force, there are other attractive and repulsive forces associated with the source of 
angular momentum. However, if a is set equal to zero, the metric (1) reduces to the 
Schwarzschild metric, and all our results then reduce to the corresponding results 
obtained by Markley (1973). 
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