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Abstract 

The connection between nonlinear diffusion and diffusion cooling of ions in a bounded gas is 
examined using the BGK model kinetic equation. 

Introduction 

The evolution in time of the density distribution of an ensemble of ions in a neutral 
gas subject to an electrostatic field has been studied by several authors (see Part I 
(Robson 1975) and references therein) with particular regard being paid to the 
nonlinear character of the diffusion process when density gradients are steep. For 
zero field and an unbounded gas, the ions tend eventually to be distributed uniformly 
and to reach thermal equilibrium with the neutral molecules. The presence of 
boundaries, however, has a profound effect upon the properties of the ion swarm 
at long times and thus, for instance, thermal equilibrium is never achieved. This 
phenomenon of 'diffusion cooling' (Biondi 1954) is shown in the present paper to be 
associated with the persistence of nonuniformity in the ion density and with non­
linear diffusive effects. 

As in Part I, we take a model kinetic equation for the ions, namely, the BGK 
model equation (Bhatnagar et al. 1954). This model cannot be justified a priori, 
but it does make the problem mathematically tractable. A similar approach was 
adopted by Grewal (1964) in studying the analogous problem of Brownian motion, 
although he did not consider the effects of boundaries. The limitations of the BGK 
model were discussed in Part I, and we note here that it is perhaps best suited to 
describing cases where collisional exchange phenomena are important (Whipple 
et al. 1975; H. R. Skullerud, personal communication). 

Theory 

For mathematical simplicity we take plane-parallel geometry, and hence work in 
one dimension with spatial and velocity coordinates x and u respectively. The BGK 
model kinetic equation (Bhatnagar et al. 1954) for the ion distribution function 
feu, x, t) is then 

7t +urx = -v{j-nw(a,u)} , (1) 

>I< Part I, Aust. J. Phys., 1975, 28, 523-31. 



172 R. E. Robson 

where v is the ion-neutral collision frequency, 

n(x,t) = f~oo du/(u,x,t) (2) 

is the ion number density, 

is the Maxwellian distribution function for the ions in thermal equilibrium with the 
neutral gas molecules (temperature T), and 

rx2 == mjKT, 

K being Boltzmann's constant and m the ion mass. 
In solving equation 0), we assume that the net ion particle current away from the 

walls is zero, that is, 

foo du u/(u,x = O,t) = 0= fO du u/(u,x = L,t), 
o -00 

(3a) 

where L is the distance between the walls. This, however, is only an approximation 
to the exact boundary conditions: 

f(u> O,X = O,t) = ° =f(u < O,X = L,t), (3b) 

which signify that no ions whatever are reflected back into the gas (McDaniel 1964). 
Another approximation made here is to assume a solution of the form (one spatial 
Fourier mode approximation): 

feu, x, t) = exp( - wt){ A(u) sin(kx) + B(u) cos(kx)}, (4) 

where wand k are constants (Corngold 1964). 
Substituting equation (4) in (1), we find that 

and 

where 

A(u) = vw(rx,u){a(v-w)+kbu}C(u) 

B(u) = vw(a, u){b(v-w)-aku}C(u) , 

C(u) = {(kU)2 +(V_W)2} -1, a = f~oo du A(u) and 

while 
n(x, t) = exp( -wt){asin(kx) +bcos(kx)}. 

The equations (5) have a nontrivial solution only if 

I-v(v-w) f~oo duw(a,u)C(u) =0, 

(5a) 

(5b) 

b = f~oo du B(u) , 

(6a,b,c) 

(7) 
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which is the 'dispersion relation' connecting OJ and k. This can be conveniently 
written in terms of the well-known plasma dispersion function (Fried and Conte 1961): 

1 +i(kA)-1 Z(iO = 0, (8) 

where ( = (kA)-1(1-OJ/V) and A = ~2/lJ.v is the ion mean free path. The constant 
k is to be fixed by the boundary conditions (3). 

Equation (8) is of the same form as equation (11) of Part I for ions diffusing in 
an unbounded neutral gas in the absence of an electrostatic field. (There is a slight 
difference in notation: to obtain the equations in Part I, OJ is to be replaced here 
by iOJ.) In the present case, k is 'quantized' by virtue of the presence of boundaries. 
The physical significance of equation (8) and its connection with the equation of 
continuity is discussed in Part I. The boundary conditions (3), together with 
equations (4), (5) and (8), yield the following equation for k: 

tan(kL) = 2(b/a){(b/a)2 -I}, 

and E1 is the exponential integral. 

where b/a = ~n(OJ/v)C1 exp( - (2)/E1(e)' 
(9a, b) 

In most practical cases, the ion number density varies very slowly over distances 
comparable with the mean free path. Nevertheless, we allow for moderate variations 
and assume that 

kA < 1 and (to) 

If we use the asymptotic expansions for the plasma dispersion function and the 
exponential integral, equations (8) and (9b) become respectively 

OJ/v = t(kA)2{1-t(kA)2 + ... } (11) 
and 

(12) 

Equations (7) and (11) taken together show that n satisfies the following 'diffusion 
equation' 

where Do = !A2V is the thermal equilibrium diffusion coefficient occurring in Fick's 
linear law of diffusion, while 

(14) 

is an 'effective diffusion coefficient' for the ions and (j = tDo is a higher order 
transport coefficient. Clearly, we have D < Do, although the difference decreases as 
kA --* 0; that is, as the density gradient becomes weaker, Fick's law of diffusion 
applies. The quantity kA can be made small by increasing the neutral gas pressure 
(i.e. by reducing A) or by enlarging the enclosure. From equations (9a) and (12), 
it follows that the allowed values for k are 

k = mn/(L +~nA), where m = 1,2,3, .... (15) 
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The expression for n(x, t) therefore consists of a summation over terms like those on 
the right-hand side of equation (7), each corresponding to different modes m of 
diffusion. The lowest-order mode (m = 1) dominates at long times, since w(k) 
increases with k (see equation II), and only this mode is considered here. 

Extrapolating n(x, t) linearly beyond the physical boundary, we find the distance 
at which n vanishes (linear extrapolation distance) to be given by 

d = I n(~:r:O.L I = b/ka = !)lrA. (16) 

The ratio d/)", = !)n ~ 0·89 compares with values of 0·67 obtained by simplified 
mean free path arguments and O· 71 obtained from Boltzmann transport theory 
(McDaniel 1964, and references therein). 

For an unbounded gas, the ions eventually reach thermal equilibrium with the 
neutral gas molecules, whatever the initial density distribution. However, the presence 
of boundaries and the resulting loss of ions by diffusion result in the mean ion 
energy reaching a steady value, uniform throughout the enclosure, but below 
the thermal equilibrium value of !KT. By equations (4), (Sa), (5b) and (8) we have 

Gmu2 ) = {l/n(x,t)} J:oo du!mu 2!(x,u,t) = !m(w-v)w/k 2 (17) 

and, assuming kA < 1, it follows from (II) that 

(18) 

Clearly, Gmu2) ~ !KT as the enclosure is enlarged or the gas pressure increased. 

Discussion 

The phenomenon of diffusion cooling was first observed by Biondi (1954) for 
electrons in the afterglow of low pressure argon and neon discharges. * The physical 
explanation involves the preferential leakage of high energy particles to the walls, 
with the remaining particles having a lower average energy. We have seen in the 
present paper that diffusion cooling for ions is significant when the mean free path is 
not negligible compared with the dimensions of the enclosure, under which conditions 
nonlinear diffusive processes occur, leading to a lower effective ion diffusion 
coefficient. It should be noted that, although we have taken plane-parallel geometry 
for simplicity, the main results of this paper are actually applicable to all geometries 
(although the value of k and the spatial form of n will differ). 

It is to be emphasized that we have used a model kinetic equation as the starting 
point and hence the derived formulae should be regarded as being only qualitatively 
correct. Some deficiencies of the BGK model are discussed by Grewal (1964) and 
in Part 1. There are two important effects which are missing from this model: 

(i) The collision frequency v is assumed here to be a constant, independent of 
energy. Recent investigations (Robson 1976) for electrons indicate that 
'diffusion heating' can occur if v varies more rapidly than linearly with energy. 
However, we have D < Do in all cases. 

* Diffusion cooling also occurs for neutrons in thermal reactors (Beckurts and Wirtz 1958). 
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(ii) The model is inadequate for dealing with charged particles whose mass is 
greatly different from that of the neutral molecules, and thus is not suitable 
for electrons. The parameter determining the importance of nonlinear 
diffusion effects and hence diffusion cooling is actually kA., where A. is the 
mean free path for energy transfer. Since for electrons A./A ~ 1, while for 
ions A./A ~ 1, it is clear that, at a given pressure, diffusion cooling may be 
significant for electrons but not for ions. It should be noted that the 
extrapolation distance d ~ A in all cases, and thus it may be neglected for 
electrons even when diffusion cooling is strong. A more detailed discussion 
of the theory for electrons was given by Leemon and Kumar (1975), and an 
analysis of the recent experiment of Rhymes and Crompton (1975) for 
electrons in mixtures of neutral gases was given by Robson (1976). 

Finally we note that, if the approximations (3a) and (4) are not made, there 
results an integral equation for the ion density: 

(19) 

where the kernel, 

K(rf) = v fooo du {w(a, u)/u} exp{ -(v-w)l1!u}, (20) 

must be evaluated numerically (Abramowitz 1953; Abramowitz and Stegun 1965). 
Thus, although the form of the solution (4) is clearly incompatible with the rigorous 
boundary conditions (3b), and the less stringent conditions (3a) imply a negative 
(and therefore unphysical) distribution function for certain velocities u, these 
approximations are essential to keep the problem mathematically tractable. A 
rigorous numerical solution of the integral equation (19) could have an intrinsic 
mathematical interest but may not be of much use for elucidating the more important 
physical aspects of the problem. 
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