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Abstract

It is shown that the matrix elements of the tensor operators describing a new type of crystal field can
be calculated using the properties of the spin <> quasi-spin transformation. The relationship of this
field to electron correlation in open shells is clarified, and its contribution to the ground state split-
tings of S-state ions is discussed.

Introduction

There is considerable interest in obtaining an understanding of the physical pro-
cesses underlying the observed splitting of the S ground state of ions with half-filled
shells, such as Gd**. An important aspect of these splittings is that significant contri-
butions arise from processes which give small (i.e. unobservable) contributions to the
crystal field splittings in other open shell ions. In particular, Wybourne (1965, 1966)
pointed out that large contributions to the S-state splittings arise from the relativistic
crystal field. A more recent analysis (Newman and Urban 1972) has made it clear
that other processes must also make important contributions to these splittings.

Schwiesow and Crosswhite (1969) suggested that the large deviations of the excited
state levels of Gd** from fitted crystal field parameters could be explained in terms
of an effective ‘charge conjugation invariant’ form of the crystal field. This makes
nonzero contributions to diagonal matrix elements of the type

KE7TSL My, Mg| V|7 5L M} M2y

(where L represents an arbitrary total orbital angular momentum), for which the
crystal field contribution is identically zero. Newman (1970) pointed out that a crystal
field of the type postulated by Schwiesow and Crosswhite could arise as a result of
there being a difference between the radial forms of the spin-up and spin-down
electronic wavefunctions. Freeman and Watson (1961) have obtained a Hartree-Fock
solution for Gd** showing a considerable spin dependence of the radial wavefunctions
in this ion due to exchange polarization.

The purpose of the present work is to give a formal treatment of this new type of
crystal field (which we shall call the exchange crystal field), relating it explicitly to the
‘classical’ crystal field and giving a prescription for the evaluation of its matrix
elements. At the same time we shall establish the validity of the intuitive dia-
grammatic representation of Gd3* matrix elements given by Newman (1970) and
find a relationship between the exchange crystal field and the correlation crystal field
discussed in that paper.
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Spin < Quasi-spin Transformation

Judd (1967a) introduced the concept of ‘complementary’ states related by the
interchange of spin and quasi-spin quantum numbers. This transformation can be
expressed simply as a transformation of the annihilation and creation operators for
electrons in a given nl shell a,, ,, , a}, .. as

mymss Ymimg

+

am—('_)(—l)l_ma—m—a (1)

the spin-up operators remaining unchanged. It is easily checked that the commutation
relations are preserved by this transformation. The spin operators

Sy =Y ab ., S_ =Y al s,
" " (22)
S. = 1Y (ahs s —ale a,)
become quasi-spin operators (Flowers and Szpikowski 1964)
0y =Y (=D "ahat ey Q=Y (=D e,
" " (2b)

Qz = %Z(a:n+ A+ +a;rn— am— _1):
m

where the sums are over the orbital states within a given nl shell.

Judd (1967b) has noted that hole—particle conjugation of the spin-down electrons
(as represented by equation 1) corresponds to a simple interchange of the representa-
tions of U, which span the spin-down states of the lanthanide f¥ shell. In the standard
notation this transformation interchanges the number of ones and zeros in the repre-
sentation [1...10...0]. We now see that the equivalence of this transformation to
equation (1) proves it to be equivalent to the spin <> quasi-spin transformation re-
lating equations (2a) and (2b). Hence the results obtairied by Judd (1967b) are relevant
to the present discussion. In particular, this formulation shows that the spin «» quasi-
spin transformation gives a complete mapping of the states with an even number of
. electrons in the nl shell onto the states with an odd number of electrons in the same
shell. The vacuum state |f°) transforms as

[£9Y — |f78S Mg=—1).
This validates the use of Feynman diagrams by Newman (1970), in which
|7 88 Mg=—1>

replaces the vacuum state. Hence, every Feynman diagram defined in the usual way
with respect to the vacuum state has a new and well-determined significance after the
spin < quasi-spin transformation.

Transformation of the Crystal Field
The crystal field is a one-particle spin-independent potential of the form

f;’ = Z a:"mamzu<m1 l V|m2>9

mymap
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where ¥ may be expressed in terms of the unit tensor operators U fzk) as

V=Y BU®.

q, evenk

The spin < quasi-spin transformation gives

? - [:}T = Z (a;ll'*' amz+ +a—m1— aT—mz—)<m1 l V|m2>

mymy

=y (am,+ Ay + —a:nl— Ay )My |V Imy) +83, 3

mymz

where we have used the relation {—m, |V | —m,)> = {(m, |V |m,). Hence, V} repre-

sents the difference in the crystal field experienced by electrons with spin-up and spin-

down. It is not invariant under rotations in spin space, as it depends on the arbitrary

choice of the spin quantization axis for the state corresponding to the vacuum state.
We note that an alternative way of writing Py is

Vi= Y anutmumoplo.Vimu +B3. “
mymap
Dropping the additive constant and transforming to an arbitrary axis of quantization,
we can generalize the operator expression g, V' to

Vr = (4/7h%) Z 8;-SV;,

where § represents the total spin operator for the many-electron state. This is just
the spin-dependent operator proposed by Newman (1970) to account for the obser-
vations of Schwiesow and Crosswhite (1969). It may also be written in the more
symmetric form

Ve = Q) Y. 5,8,V V), 5)

which suggests that we refer to Vi as the exchange crystal field.

The main aim of this work, however, is to find a procedure for evaluating the
many-electron matrix elements of ¥ so that it can be employed in fitting experimental
data. Let the transform of the unit tensor operator Uq"‘) be Xq("’, so that

V-V =kz,3’q‘X,(1") .
q

Using the fact that matrix elements are invariant under the spin «» quasi-spin trans-
formation, we may evaluate the matrix elements of Xq(") between f7 states which are
diagonal in total spin S’ (= Q) as follows.

(T PCDL M, Q'=S, My=My | X®| f7eC¢OL My, Q'=S, My=M,)
= (N Q My P OL My, Mg=0 | U® |tV Q My @S*OL My, Mg=0),  (6)

where N is even and the common label 7 indicates that the remaining quantum numbers
for all states are indentical.
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According to the Wigner—Eckart theorem, the right-hand side of equation (6) may
be written as

’

(__ l)L—ML ( ) (fNTQMQ(2S+1)L ” U(k) ” fN‘CQMQ(ZS+1)L) .

—-M;, q M

L

It follows that the matrix elements of X; q(") which are diagonal in S’ may be determined
using

<f7,L.(2S'+1)LML, Q’:S, M_é I Xq(k)l f7,c(23'+1)L/ Ml,,, QI=S’ M§>
( 1)“‘“( bk L,) M;
=\ N
-M, q M;
X (fNT, QZS,, (2S+1)L H U(k) ” fNT, Q=S’, (2S+1)L) . (7)
There are also matrix elements of X* between {7 states of different total spin S’

with the same value of M. Following the same procedure as above we find that these
can be evaluated using the relation

<f7‘L'(2Q+1)LML, Q/=S, M$~=MQ |Xq(k)[ f77(2Q+3) Mlln Q,=S, M§=MQ>
L k L
= (-pr
-M, q M
x (%1 Q My @S*OL || U® | fV7, 0 +1, My S+DLY), ®)
where, again, the reduced matrix elements of U® have been tabulated by Nielson
and Koster (1963).
Racah (1943, equation 67) gives the relation which enables us to remove the

Mg (= M,) dependence of the reduced matrix element. In terms of quasi-spin
formalism this may be written

(fNTQMQ(2S+1)L ” U(k) ” fNT, Q+ 1’ MQ(ZS+1)LI)

_ ((Q+MQ+ 1)(Q_MQ))%
20+1

X (fNT Q’ MQ= _Qa (2S+1)L H U(k) ” fNT’ Q+ 19 MQ= _Qa (2S+1)L,) . (9)

If this equation is used it becomes unnecessary to look up separate reduced matrix
elements for each value of Mg (=M,).

An attempt to use second-order perturbation theory to calculate the spin dependence
of the 4f radial wavefunctions for Gd**, and hence V7, gave an effect that was an order
of magnitude too large. This failure is presumably due to the fact that higher order
contributions, due to the spin polarization of closed shells, are also important. Never-
theless, the result makes it unlikely that V7 is negligible for Gd**.
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Transformation of the Correlation Crystal Field

The correlation crystal field is a general two-particle spin-independent effective
potential
U = % Z a;lzuz a;r"”“ am3u1 amA/l4<m1 mZ l U l m3 m4> ’ (10)

mipy

which includes anisotropic components due to the effect of the crystalline environment
on the electron—electron interaction, but which is normally taken to exclude the large
isotropic Coulomb interaction (U = e*/r;,). In tensor operator form it may be
written

U= T AT T ), (1)
k

9192 ~ 41
iqi

where k, + k, is restricted to even values (Bishton and Newman 1970). A consideration
of possible mechanisms (Newman et al. 1971) suggests that terms with even k, and k,
dominate, so we shall neglect the odd-k terms in the following.

In order to investigate the effect of the spin <> quasi-spin transformation on U, it
is convenient to separate it into four components depending on the spin suffixes of
the operators:

0= Z Oy ) - (12)

nip2

Transforming the operator products in equation (10) according to the spin <> quasi-
spin transformation (1), we find that

U->0 =0++)+0(--)-0(+-)-0(—+)

+3 Z Kmym, | U|mymy>—{mymy | U|mymy))

mymz

+ Z a;rnl-'. am2+<m1ml U!mm2>’ (13)

mmymy

The matrix elements of U with respect to given states of f¥ will be equal to the matrix
elements of U’ with respect to the complementary states. Judd (19676) has discussed
some consequences of this relation in the special case where U represents the Coulomb
interaction. We are more concerned here with relationships between the anisotropic
parts of U.

The last term of equation (13) has the form of the exchange crystal field described
in the previous section. Hence the correlation crystal field in the f2 configuration
gives a contribution in the sextet states of the f7 configuration which can be represented
as an exchange crystal field, quite apart from any processes which contribute directly
to this potential. This means that a parameterization of the type suggested by Schwie-
sow and Crosswhite (1969), which neglects explicit consideration of the correlation
crystal field, will nevertheless include some contributions from this source.

The components U(+ +) and U(— —) give zero contribution to the sextet states
of f7. Hence equation (13) shows that the contribution of the correlation crystal field
to the energy of these states is equal and opposite to that in the f? states with the same
L values, apart from the extra term already discussed.
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Conclusions

It has been shown that the spin <> quasi-spin transformation allows us to adapt
tables of matrix elements for the unit tensor operators U® so that they can be used
to calculate matrix elements of the tensor operators X, which describe the exchange
crystal field. This new type of field has been demonstrated to be equivalent to the
spin-dependent field proposed by Newman (1970). The existence of an effective
correlation contribution to the exchange crystal field for f7 systems has also been
noted.
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