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Abstract

A calculation of magnon sideband lineshapes is given which uses a simple phenomenological
Hamiltonian allowing of an exact solution. The perturbation Hamiltonian has an improved form
compared with that used by Richardson (1974). We consider the effect of a small concentration of
substitutional spin impurities on the sideband. An example of an f.c.c. ferromagnetic crystal is
studied in detail, and the conditions for the appearance of local modes due to the impurity are
discussed. The possibility of resonance modes occurring within the abserption band is considered
but, for the f.c.c. crystal studied here, this appears to be unlikely to within the accuracy of the
numerical calculations undertaken.

1. Introduction

In a previous paper (Richardson 1974, referred to hereafter as Paper I) the author
presented a simple model for calculating magnon sideband lineshapes in impure
ferromagnetic crystals. A model of this type is discussed further in the present paper,
but here a more realistic form is taken for the perturbation Hamiltonian describing
the interaction of the crystal with an applied electric field. We apply the model to a
three-dimensional f.c.c. crystal and discuss the predicted magnon sideband lineshape
and how this will be affected by a substitutional spin impurity.

As in Paper I, we take a model Hamiltonian with Frenkel-type excitons and
include a quadratic form of exciton-magnon interaction. The model crystal
Hamiltonian adopted has the form

Ho =Y ei(k)aj a, + Y e, bf b, +g Y. (af by +b; ap) +yN" Y afa,., (1
k k k k,k’
where a; and b are magnon and exciton creation operators respectively, and the
sums over k are over the first Brillouin zone of the lattice. The first term of equation
(1) represents the magnon Hamiltonian of the crystal. The magnon energy &, (k) is
given for a ferromagnet by

g(k) = 2|7 Sz(1—y) —z|J|S?p, ()]
where. :
9. =2z"1Y exp(ik.A) and ~p=JS|JS—1, (3a,b)
%) L ;

with J and S the pure crystal exchange integral and spin, and J' and S’ the correspond-
ing values for the impurity. The sum over A in equation (3a) is over all nearest neigh-
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bour sites of any magnetic ion and z is the number of nearest neighbours. The last
term of equation (2) is a constant due to the impurity and will only have the effect
of shifting the entire spectrum by that amount. We therefore ignore it in what follows.

The second term of equation (1) represents the exciton part of the Hamiltonian.
Because of the observation that the high-energy cutoff of the magnon sideband is
very close to & (k)| ., (see e.g. Stevenson 1966; or, more recently, Srivastava and
Stevenson 1972; Srivastava et al. 1973) and also the general fact that the dispersion
of the exciton energy is small, we assume that any such dispersion has a negligible
effect on the magnon sideband. We therefore choose the exciton energy ¢, to be
independent of wavenumber.

The third term of equation (1) gives a form of the exciton-magnon interaction in
the crystal. A more rigorous four-operator form has been given, e.g. by Eremenko
et al. (1974), and has also been used in the calculations of Parkinson and Loudon
(1968) and Moriya and Inoue (1968). All these authors found it necessary to make
some approximations when evaluating Green’s functions from the four-operator form,
and it may be readily shown that the quadratic form used here is an approximation
to the more rigorous form obtained by using their decoupling methods. We
therefore avoid the need for making decoupling approximations in our Green’s
functions by the choice of our quadratic form. As is pointed out in Section 2, the
present simple model calculations can give results very similar to those of the more
sophisticated model of Parkinson and Loudon (1968) if the exciton-magnon inter-
action strength g is given some k dependence.

The last term of equation (1) describes the effect of an impurity on the crystal.
A rigorous expression for the impurity parameter y as a function of k and k' has been
given by Callaway (1963). For the present case where we take y to be k independent,
we find that it may be approximated as

Yy~ 2|J|Sze for e=J'|J—1. (4a,b)

From the form of the impurity term it will be observed that the impurity will
cause scattering of magnons with wavenumber k into those with wavenumber k',
and thus we expect a perturbation of the density of states of the crystal. For a pure
crystal the density of states is given by

go(4) = N1 Zl;é(sl(k)—)t), ©)
while for an impure crystal the density of states is given by (Paper I)
_ 1 din(2(2))
o(7) = au(d) —1 1m( LUTD)) ©)
where
P(4) =1 +yN~1 Y {e(k)— 2} M
k

arises from the secular determinant of the magnon and impurity Hamiltonians.
We may write equation (7) in terms of real and imaginary parts by giving A a small
imaginary part and using Dirac’s relation

lim (x+ie)™! = P/x Find(x), (8)

=0+
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where P denotes the principal part of the integral. Then we write
2(2) = 1 +7R(A) +iny go(4) ®

using equation (5) and defining
R() = (P[V*) f o) =2} " dk, (10)
y*

where we have changed the sum to an integral over the first Brillouin zone of volume
V*. The function R(A) is the Hilbert transform of go(4).
If we define a function 6(4) such that (Callaway 1974)

tan(6(2)) = —ny go(A/{1 +yRA)}, (1
it can be shown that equation (6) for the density of states may be written
a(4) = 8o(A)—(nn)~' do/dA, (12)

where 7 is the number of unit cells in the crystal. If there are a small number n of
impurities, their effects may be added. We therefore obtain for the change in density
of states due to the impurity

Ag(A) = —(c¢/n)dd/dA, (13)

where ¢ = n/y. It should be noted that there is an error in the case of a one-
dimensional crystal, as described in Paper I, where the absolute value of the derivative
was taken. Since the total number of states in the system is conserved, if there is an
increase in the density of states in one region there must be decreases elsewhere.

The perturbation Hamiltonian used in Paper I to describe the interaction of the
crystal with an applied electric field represents only a very simple approximation to the
correct Hamiltonian. This may be seen from the observation that in most crystals
the parent exciton has a different dipole character from that of the magnon sideband,
so that for an electric dipole sideband (as most commonly observed) the parent
exciton will be magnetic dipole in nature and will not couple with an electric field.
This point has been discussed in more detail by Richardson (1976).

A more exact form of perturbation Hamiltonian would take into account both
the excitons and magnons together. We here choose a form which has been used by
many authors. It is analogous to the Hamiltonian first discussed by Tanabe et al.
(1965) for indirect exchange coupling between excitons and magnons in the presence
of the field, and to the Hamiltonian proposed by Halley and Silvera (1965) for direct
electromagnetic coupling, although the magnitudes of these two types of interaction
may be quite different. That is, we take the perturbation as

Hyp = 1Y (ag by +axby), (14)
3

where [ is the time-dependent strength of the perturbation and includes the strength
of the applied field. It is expected that the perturbation Hamiltonian (14) will give a
more realistic description of magnon sideband lineshapes than that given by the
Hamiltonian of Paper I.
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The present calculations represent the absorption of a single polarization direction
in the crystal by a particular polarization of the applied field. That is, we obtain the
result for a particular component of the optical absorption tensor (Richardson 1976)

anv(a)) = - %(,0 Im(Gnv(w)) s (1 5)

where the dyadic Green’s function is defined by the time Fourier transform of

Gp(t=1) = Lp,(t—1),p,(0)) ~
= —{hZ(B)} " Tr(exp(—BH o) [p,(t —-.pOD0M.  (16)

Here p, is the nth component of the crystal dipole moment, Z(p) is the canonical
partition function, f = 1/kT with kg Boltzmann’s constant and 7 the temperature,
6(z) is a stepfunction which is unity for # > 0 and zero for ¢ < 0, and [p,(t—1"),p,(0)]
represents the commutator of p, and p,. In the present case we are therefore
interested in evaluating the Green’s functions

G(w) = K& b +a,by, ai b +ay by, , 17

where the Green’s function on the right-hand side has been time Fourier-transformed,
making use of the Hamiltonian (14), where the operators in the sum represent the
crystal polarization due to the applied field (Moriya 1968).

2. Calculatiohs

The crystal Hamiltonian (1) was diagonalized in Paper I, which should be
referred to for details. The result of the diagonalization is that equation (1) may be
written as A -

Ho = ; AT CHCyu+2~() C3 Cii}s (18)

where the new operators C,; and C,, are defined by

_RYOEXNC e, ((V+0RYE G b,
X A e Yy ey S L
_RYO-XNte 4 {(Y-XRY)i« b,
B SRR (7= S e Y- my MG
and ‘
P*0) = Heat D) £ Y (1), (20)
for . ' |
HM=Tlab-57 X0 =222 vo = e@HIE. Clabo
k

The eigenvalue /4 of the magnon and impurity parts of the Hamiltonian is
obtained from solutions of the secular equation

2() =1 +(*y/1\/);{81(k)—/1}_l =0. : %))
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In the limit as the exciton-magnon interaction strength g goes to zero, 1™ — ¢,
and A~ — J, so that for g nonzero we have an exciton-like branch represented by the
operators C,;, and a magnon-like branch represented by the operators C,,. Since
it is readily shown that C,, and C,, satisfy boson commutation rules and commute
with each other, we may consider the excitation modes of C;; and C,, as being new
elementary excitations having both some magnon and some exciton character.

We may use the inverse relationships to the equations (19) to rewrite the
perturbation Hamiltonian (14) in terms of the new operators for which the crystal
Hamiltonian is diagonal. The result is

Hy = l; [(2Y(A)}  H{CH1 Cf +C14Cyi —(C3,Co, +C2,Cap)}
+H{XW/YAWHCT,Co +C1,Clp)]. (23)

We may now evaluate the Green’s functions (17). There are only three nonzero ones,
and we shall see how they are obtained by evaluating one of them explicitly. We
treat the Green’s function

€11 C22 Cila C30> - @4
This has an equation of motion in time Fourier transform as
10 {({Cy1;3C2,Ci1 C320) = {[C12C2, Ciyr C32:1) +<{[C14 Cass # 0], C2 C3177 5
‘ (25)

where the first term on the right-hand side is the average equal-time commutator.
The commutator of the Green’s function on the right-hand side of equation (25)
may be evaluated to give

KICy; Copy #ols Cila Coiyy = {27 () + A7 ()IKCy1 o, Cr €1y, (26)
while the equal-time commutator gives
([C1s Cas Ciy €33 D> = (Cy3 €3> 6(2, ) +{Cl, €220 60 X) = (2, 2)  (27)

since from equation (19b) we have

C,,10> = 0. (28)
Therefore equation (25) may be solved exactly to give

KCy; Coy, Cilyr €50 = 60, X)[[heo —{AF(2) + A~ (A)}]
= 80, V)/{ho — (e +2)} (29)

by making use of equation (20). The other nonzero Green’s functions are
{C11Crz Cily Ciyy = 04, A){hew =247 (D)}, (30a)

(€23 Cay, Clyr €330 = 8(4, )/{hew =247 ()} (30b)
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The optical absorption lineshape (equation 15) will be given from the imaginary
parts of equations (29) and (30) by

) & —30 3 (XD V() (ho—(e:+1)
+{4Y2(D} o (hw—22% (D) +(ho—22"(D)}]. (31

It will be seen from equation (31) that the second and third terms on the right-hand
side give the two-exciton and two-magnon absorption lines when there is an exciton—
magnon interaction present. Note that the lines are shifted from their g = 0
frequencies by the interaction, as well as being modified in shape from the single
excitation lineshape by the factor {4Y?2(1)} .

The magnon sideband lineshape is given by the first term of equation (31), i.e.
the absorption lineshape is given by

w(w) ¥ —3oN~* ; [(e2=*/{(e2—1)* +49°} ] 8(hew— (e, + 1))
~ —21w f [ —=D*/{(e2—A)? +4g%}] 6(ho— (e, + 7)) 8(2) dA

r —2n0[(2e, —hw)?[{(2e, —hw)* +4g%}] s(ho—e,), (32)

where g(hw —e¢,) is the impure magnon density of states given by equation (6) or (12).
The calculated magnon sideband thus has the following properties (from
equation 32):

(1) It lies on the high energy side of the parent exciton frequency &, (not shown
here as it is not considered as coupling to the electric field).

(2) It has a bandwidth of &;(k),., = &o-

(3) It has the shape of the magnon density of states modified by a function
dependent on the exciton-magnon interaction strength g.

(4) The low energy edge of the band is at ¢,. In reality the band may be shifted
slightly from this lower limit by the exciton-magnon interaction, as pointed out by
Parkinson and Loudon (1968), although such a shift should be quite small.

The dependence of the sideband lineshape on the exciton-magnon interaction
occurs through the term

f(9, @) = &, —hw)*[{(2e, —hw)* +497} . (33)

To discuss what values of g have the greatest effect on the lineshape (equation 32),
we consider f(g,w) as a function of g. It has a maximum of unity at g = 0, and a
point of inflection at

g = (2~ 3hw)/\/3 ~ (e,—0)/2/3 (34

when f(g,w) = 0-75. Since in general ¢, > ¢, the point of inflection occurs far from
the origin and f(g, w) will be slowly varying for all values of g and w. In the neighbour-
hood of the point of inflection f(g, w) is nearly linear and has a maximum slope of
approximately 3(e, —&,) !, which is small. We therefore conclude that the function
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f(g, w) will have little effect on the lineshape for any value of g though, for increasing
values of g, the magnitude of the absorption will be reduced.

The above conclusions do not agree with the calculations of Parkinson and
Loudon (1968) who found that the exciton-magnon interaction had a significant
effect on the lineshape, causing the maximum of the antiferromagnetic perovskite
crystal density of states to shift from the edge of the band, and to become finite.
It is felt that the reason for this difference is due to the omission of a k dependence
of g, which may be too rough an approximation. If we give g some & dependence,
it is simple to show that for the pure crystal case we can obtain a form for the sideband
lineshape like that of the first line of equation (32) with g replaced by g(k), A replaced
by &,(k) and the sum over 1 by a sum over k. This is then a weighted density-of-states
expression, and would give the behaviour discussed by Parkinson and Loudon (1968)
if g(k) were large near the edge of the Brillouin zone. The same conditions would
apply for the impure crystal model discussed here, though the simple diagonalization
procedure would no longer apply. In principle the calculation can still be done
exactly, however. For simplicity we have ignored any k dependence of g in the
present calculations, as we are mainly interested in the effect of an impurity on the
sideband.

Example

It is most straightforward to explain the effects of a substitutional spin impurity
on the magnon sideband by discussing an example. Only two reports of magnon
sidebands in ferromagnets being observed experimentally have been made. The
first report, by Hulin et al. (1971), described an emission spectrum of EuO. Since
combinations of operators other than those used in the present Hamiltonians are
allowed for emission spectra, it is felt that the present model is not adequate to
describe or explain this spectrum. The other report, by Meltzer (1972), was on the
absorption spectrum of GdCly. Meltzer indicated that the mechanism of sideband
absorption was via a single-ion transition rather than the coupled-ion interaction
assumed by the form of our Hamiltonians. It must therefore be concluded that
neither of these two experiments is useful for comparison with the present theory.
There have been no reports of the effects of impurities on magnon sidebands in ferro-
magnets. We therefore consider here a hypothetical crystal and investigate all the
effects expected due to the impurity.

Because of its cubic symmetry, and hence likely lack of any large anisotropy
field, we choose a face-centred cubic (f.c.c.) crystal like EuO. Such a crystal has the
magnon energy

g,(k) = %eo[3 —{cos(3k, a) cos(3k, a) +cos(3k, a) cos(3k, a) +cos(3k, a)cos(3k, a)}l,

(3%
where
g = 32JS. (36)

The pure crystal density of states go(4) was calculated using a Monte Carlo method
(Buchheit and Loly 1972), and the data from this calculation were used to estimate
the shapes of the optical absorption spectrum of the sideband for different values of
the exciton-magnon interaction strength g. Details of this and other numerical
calculations used in the present paper are given in the Appendix.
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The f.c.c. density of states has a logarithmic divergence at the high-energy end
of the band due to the symmetry points W and X and the points on the interval
joining them as shown in Fig. 1 (Loly and Buchheit 1972). There is also a type-I
van Hove singularity at 0-75 of the bandwidth due to the point L (Fig. 1) which
behaves like , .

t(@.—w)} for o Sw, and ow-w, for ©2 o

co

with w, the cusp-point frequency (Swendsen and Callen 1972).

kz

N

Fig. 1. First Brillouin zone of the f.c.c.

crystal, showing the irreducible zone

L bounded by TLKWXU, and the cube
X Uk

with side I'X over which the numerical
r -»*y  integrations were taken. The cube con-
K W tains 12 equivalent irreducible zones.

k

X

The numerical calculation does not reproduce well the logarithmic behaviour
near the edge of the band, though the trend for the divergence is shown. For a more
accurate calculation we would require many more than the 10 values of & that were
used, with a resultant large increase in computer time. Since the accuracy of the
calculation goes as N* for N random numbers, to double the accuracy we require
four times the number of points. It is felt that the present calculation with an
estimated accuracy of better than 59 overall is adequate for the example we wish to
discuss. The Monte Carlo method was chosen because of its versatility especially
with calculations in crystals whose unit cells may be combined or transformed into
cubes.

Fig. 2 shows the results of calculating the magnon sideband lineshape for
different values of the exciton-magnon interaction strength g for the pure crystal
(y = 0). All the curves were calculated from the same values of the density of states
to enable a direct comparison to be made. The parameters used for the examples
shown in Fig. 2 are not intended to be realistic values of any transition, but are taken
from the transition in EuO discussed by Hulin et al. (1971). The values of exciton
and magnon energies taken were

€, =27100 cm™ and g =45 cm™!. 37

The magnon energy was estimated in two different ways. Barak et al. (1974) have
given values for the exchange integral ranging from 0-37 to 0-52 cm™! which, with a
spin of 7, may be used in equation (36) to estimate ¢,. Alternatively, McGuire et al.
(1963) gave an expression for the Curie temperature from molecular field theory as

T.=8S(S+DJ, (398)
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which may also be used to estimate g, using the Curie temperature of 69-4 K
for EuO and a spin of I for the host ions.

It will be seen from F1g 2 that the intensity of absorption falls as g is increased.
This effect is the result of the form of the exciton-magnon Hamiltonian, the third
term of equation (1), causing the exciton-magnon pairs induced by the perturbation
(14) to be destroyed. The effect can be offset to some extent by the fact that, as g
increases, so also would one expect the parameter / to increase in equation (14) since
both Hamiltonians are concerned with exciton-magnon interactions. From the slope
of f(g,w) it is found that, for the same density-of-states data, there is a very slight
reduction in the maximum of the edge of the band compared with the intensity at
the cusp point at ¢, +0-75¢,, though the effect is very small.

Fig. 2. Absorption curves a(w—¢&,)
representing magnon sidebands of a
pure f.c.c. crystal (such as EuO) for the
indicated values of the dimensionless
exciton—magnon interaction strength
parameter g/e,. Note the cusp points
at 0-75 .

a-(w—ez) (arbitrary units)

w—€y

We now -consider the effect of an impurity on the magnon sidebands shown in
Fig. 2. It is readily shown that, although the pure crystal density-of-states
go(4) is zero outside the band, the real part of the lattice Green’s function is nonzero
in this region. It is therefore possible from equations (11) and (12) that the total
density-of-states is nonzero at select points outside the band. These will occur when

1 +yR(A) = 0. (39

The frequencies A for which equation (39) is satisfied may be found most simply by
considering the intersection of the curve of R(1) with —1/y. These curves are
therefore shown in Fig. 3 for three possible ranges of y which may give some
interesting results.

It will be noted that, for values of y which are positive (represented in Fig. 3 by
the dashed line A), local modes will occur outside the band on the high-energy
side at frequency 4,. For small positive values of y the local mode will be very close
to the band and may be unobservable. For y negative, but sufficiently large so that

[yl > 1/R, (40)

holds for the point R; shown in Fig. 3, there will be a local mode at frequency 4,
below the band (dashed line B). The local mode will approach the edge of the
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band as y approaches —1/R;. A condition such as equation (40) may occur if the
impurity-host exchange integral J' is positive (antiferromagnetic coupiing) or if J’
is sufficiently smaller than J and ferromagnetic. This may be seen by the approximate
relation for y in terms of ¢ (equation 4a).

R(Alfo)

Fig. 3. Plot of the real part R(A) of the
f.c.c. lattice Green’s function both
within and without the band 0 < 4 < 1.
The dashed lines A, B and C represent
values of —1/y (see text).

Az O Ay A3 1 A
Me,

For values of y negative but less than —1/R, (dashed line C) there can be no local
modes, as the curves do not intersect outside the band. For y satisfying the condition

—1/R, > y> —1/R,, 41)

it may be possible for a ‘resonance’ mode to occur within the band. That is, the
change in the density of states may be large for values A = ; or A, shown in the figure.
To determine whether a resonance mode will in fact appear, we firstly infer from
equation (13) that the change in the density of states must be positive (for a negative
change an ‘antiresonance’ may occur). This alone is not sufficient for the resonance
to be observable. Because the change in the density of states is multiplied by the
concentration ¢, which is small, the overall effect of the change will be small unless
there are large changes at the particular frequencies for resonances. To make this
clear, we consider the case when equation (39) is satisfied for A within the band.
We may write 1 +yR(1) as the first term of its Taylor series, i.e.

L+yR(A) & 9(A—20) R(D) |15, - (42)

Then equation (11) becomes
7 8o(4) 1= 2, )
P(A—20) R'(D) |12,

After some manipulation we obtain for the change in the density of states
(equation 13)

tand ~ — (43)

Ag(h) = —%el[{(A—1p)* +4T?}, 44)
where the width of the resonance is given by (Callaway 1974)

I = RrooW/RDesor 45)
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Hence, near A = J, the change in the density of states has a Lorentzian lineshape
with a width determined by I' (equation 45). Because of the small factor c, Ag(4) will
only be large near 1 = A, if I' is much smaller than unity, so that the width is much
narrower than the width of the band, i.e. the conditions for a resonance to occur
within the band are

|[ryp<1 and r<o. (46a, b)

We have investigated these conditions numerically for the f.c.c. crystal. It is clear
from Fig. 3 that only for points like A3 is the derivative of R(J) negative (go(4) is
always positive) allowing the condition (46b) to be satisfied, i.e. the range of
possible values of A for which it may be possible to have a resonance is (from Fig. 3)

0'7580 < (1_82) < &, (47)

since R(A) has a negative slope in this region.

12}
'_L_,_ Lor Fig. 4. Plot of numerical calculations
of possible resonance mode lifetimes
. | I'=*| for seven values of y satisfying
° the condition (41), i.e.
0-8 1 1 —1-05<y< —1-75.
1-0 1-25 1'5

¥l/eo

Fig. 4 shows the results of the numerical calculation. It is a plot of values of
| F~1|, the lifetimes of the resonance mode (which should be much greater than
unity for a resonance) against some values of | y | for y negative and satisfying the con-
dition (41). It will be seen that the largest lifetime occurs for | y| just greater than
1/R,, as is expected from an inspection of Fig. 3 since R(1) has its greatest slope
there, but that the lifetime is not sufficiently large for the resonance to become
observable. For values of y which are negative and outside the range of equations
(40) and (41) there is no solution to (39) in any region, and we expect there to be no
observable effect on the spectrum.

3. Conclusions

We have shown in this paper how a simple ferromagnetic model may be solved
exactly to give an expression for the shape of a magnon sideband in the absorption
spectrum of a crystal. It has been possible to account for the effects of an impurity
on the crystal by means of a Koster-Slater type model.

It is found for a wavenumber-independent exciton-magnon interaction strength
g that the magnon sideband is proportional to the frequency times the magnon
density of states and is approximately independent of the value of g, which affects
the intensity of absorption but has little effect on the shape. If we were to include a
k dependence of g it would be found that for g(k) large near the edge of the band that
the pure-crystal results of Parkinson and Loudon (1968) could be emulated. For
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the impure crystal the matrix diagonalization is no longer simple, but the effect of a
k-dependent value of g should also be much greater than found here.

The calculated magnon sideband in the present work is found to describe more
faithfully the observed properties of sidebands (Hulin ef . 1971) than the previous
model (Paper I). That is, the sideband can now be shown to exhibit the correct
high-energy cutoff energy of &, and width & also, while the previous model was
capable of only describing one or the other of these properties if the parameter g
of Paper I was made a free parameter.

Numerical calculations have been made of the magnon sideband lineshape expected
from the model for an f.c.c. ferromagnet. The effect of a substitutional spin impurity
has been studied in detail, and it is found that for positive values of the impurity
parameter y that local modes will occur on the high-energy side of the band. For
negative values of y large enough to satisfy the condition (40) it is found that local
modes will occur below the band.

The possibility of resonance modes appearing within the band has been inves-
tigated for negative values of y satisfying the condition (41). It was found that it is
unlikely that resonance modes will occur in f.c.c. ferromagnets within the magnon
sideband because it is not possible to satisfy both of the conditions (46) for a
resonance.

We therefore conclude that for all values of y which do not allow for the
appearance of local modes, the effect of a substitutional impurity will be unobservable.
For values of y for which a local mode will appear, it is expected that there will be
no observable change to the in-band region, as shown for the pure crystal in Fig. 2.
This is because of the small value of the concentration of impurities that we have as-
sumed, and is also a result of Rayleigh’s theorems on impurity spectra (Maradudin
et al. 1971) which show that, when a local mode occurs, the vibration modes within
the band cannot change by more than the energy separating the pure crystal modes.

It is felt that the great advantage of the present model over the more complicated
antiferromagnetic calculations of Moriya and Inoue (1968), Parkinson and Loudon
(1968) and Eremenko et al. (1974), who also considered the exciton-magnon inter-
action, is the fact that the problem may be solved exactly in a straightforward way
while still describing the essential features of the observed spectra. The calculation
of antiferromagnetic crystal magnon sidebands may also be done simply with a model
of this kind (Richardson 1976). The model also allows for improvement by taking
a k dependence of the exciton-magnon interaction strength g..

Parkinson (1969) has discussed a calculation of the effect of a substitutional spin
impurity on an antiferromagnetic crystal magnon sideband. He found similar
criteria to the present work for the existence of local modes above the band. He also
discussed the occurrence of resonances within the band but concluded that the
resonance will be shifted from the solution of ] = o of equation (39), due to the
strong energy dependence of g4(4) in the region. However, the condition that
equation (45) for the resonance width be small can only be met if g,(4) does not have
a strong energy dependence. We therefore expect the resonance to occur at exactly
A = Jo. The present model therefore, despite its simplicity, is capable of reproducing
many of the features of more detailed calculations and has the further advantage of
allowing a clear discussion of the existence of resonance modes to be made in a
semiqualitative way.
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Appendix
Numerical calculations
Pure Crystal Density of States

There have been many and varied attempts to evaluate numerically the pure
crystal density of states (equation 5) in three-dimensional crystals. Joyce (1971) has
given an analytic expression for the f.c.c. crystal Green’s function in terms of complete
elliptic integrals of the first kind. Unfortunately the expression given is too complicated
to be of great value in actual computations.

The most common method of estimation until recently was to attempt to calculate
series approximations for the integrals involved. For example, Mahanty (1966) and
Ra (1971) gave a Fourier series method for calculating the lattice Green’s functions,
while Byrnes et al. (1969) gave a calculation of b.c.c. Green’s functions in which they
expanded the integrand into a geometric series. Chadi and Cohen (1973) and
Morita (1975) made use of special symmetries in the Brillouin zones of cubic
crystals to obtain accurate averages over the zone, and to predict values of the lattice
Green’s function at any point in the zone given its value at certain special points.
All methods so far described have the restriction that they must be rederived for each
particular crystal of interest, and often there is no guarantee that a method which is
successful for one crystal structure will be tractable for any other structure.

One method which is readily adaptable to any crystal whose unit cells may be
added or transformed into a cube is that of Monte Carlo type integration using
pseudo-random numbers. A good description of the method is given by Buchheit
and Loly (1972). Other Monte Carlo calculations using various types of inter-
polation with improved accuracy for a given computing time have been described
by Mueller et al. (1971), Gilat and Raubenheimer (1966) and Cooke and Wood
(1972). The method described by Buchheit and Loly was used in the present paper
to calculate the pure crystal density of states, because of the advantage the method
has in its flexibility. The method is described as follows:

In the Brillouin zone of the f.c.c. crystal (Fig. 1) the irreducible zone is the volume
bounded by TLKWXU. The points within this zone may be transformed by crystal
group operations to cover the entire volume of the Brillouin zone. The volume is
25 th of the entire Brillouin zone. Such a zone is common to all cubic crystals and
greatly simplifies integration over the entire zone, as the total integral is simply
48 times the integral over this volume. For the Monte Carlo calculation we generate
points throughout the cube of side I'X (Fig. 1) in the first octant. This cube
contains 12 irreducible zones and the integral will be 4 times the calculated value.

The Monte Carlo method involves generating triplets of random numbers between
0 and 1, multiplying by = and evaluating &,(k) from equation (35) for the triplet.
The range of energies 1 is divided up into a set of histogram cells, and unity is
added to the cell corresponding to the magnitude of &,(k). This is repeated until
sufficient smoothness of the curve is obtained, the error being proportional to
N~% for N points generated in the cube.

As also pointed out by Buchheit and Loly (1972) an estimate of the energy at which
van Hove singularities occur in the density of states may be made from evaluating the
minimum of the group velocity at the energy of each cell. The group velocity is
given by

v, = Vg (k). (A1)
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The minimum of |v,| will go to zero at any van Hove singularity, but is nonzero
elsewhere. This procedure is highly sensitive and is valuable for determining
singularities near the edges of the zone, or where there is only a slight apparent change
in the slope of the curve of density of states at the singularity.

Impure Crystal Density of States

The impure density of states is given by equation (12). We must therefore evaluate
the function & defined by equation (11), which means we require the Hilbert transform
(equation 10) of go(4) written as

1 SV
R() = f_: fo 20(_’1 ; i (A2)

where P signifies the principal part of the integral, and we have taken 3o(A)
normalized to be nonzero between 0 and 1.

Equation (10) or (A2) may be evaluated using the Monte Carlo method as for the
pure density of states go(4), but instead of one cell having a weight of unity for
each value of k, all cells have a weight for each k, the ith cell having weight

W, = —In{|(0;4, — on)/(@— o}, (A3)

where w; is the energy of the ith cell, w,, is the energy of the cell in which ¢,(k) lies
for that particular k, and W,, = 0. Equation (A3) is just the Hilbert transform of a
stepfunction which is unity between w; and w;,; and zero elsewhere.

As a consequence of the weight function (A3) the numerical calculations take almost
an order of magnitude longer than for the density of states for the same final accuracy.
It was therefore considered desirable to find an alternative means of evaluating
R(%). The method used follows from considering the Monte Carlo calculation of
Buchheit and Loly (1972) with the Fourier series calculation of Mahanty (1966).
The pure crystal density of states go(4) is evaluated using the Monte Carlo method
to the desired accuracy. Use is then made of a numerical fast Fourier transform
procedure (Gentleman and Sande 1966) to evaluate the Fourier coefficients g, of
8o(4). This enables the real part R(2) to be readily calculated since (Mahanty 1966)

R(2) = 7% Y a, [cos(nﬁi){si(nn/l) +si(nn(1—1))}

—sin(nmA){ci(nnd) —ci(nn(1-2)}], (A4)

where si and ci are the sine and cosine integrals (Abramowitz and Stegun 1965).
From the nature of the calculation, the accuracy of R(1) is less than that of go(4),
particularly near the singularities, where high frequency terms of the Fourier series
may be required which will have poor accuracy due to the statistical noise in the
evaluated function go(4). It is felt that the accuracy is sufficient to describe the
essential features of the change in density of states due to the impurity.

The next stage is to evaluate the derivative of R(1) with respect to energy, which
is required for equation (45). The differentiation done numerically is very difficult
because of the large amount of noise. The method used was developed by Anderssen
and Bloomfield (1974a, 1974b) whose papers give the details of the calculation.
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Because of the high noise level, the data are smoothed considerably when differen-
tiated, and there is some distortion of the result, particularly near the singularities.
The method is also poor near the ends of the interval. One way to improve on the
result is to calculate go(4) more accurately so that R(1) is more accurate, but for the
present purpose the computation time involved was considered too great. The
results for the derivative we have given, however, are within an order of
magnitude of the correct values, thus allowing for a semiqualitative discussion of
the appearance of resonance modes.

Local Mode Frequencies

To determine local mode frequencies we are interested in finding R(2) outside the
band. There are several ways in which this may be done. Outside the band there
are no singularities, and R(4) may be obtained by direct analytic integration. It
may also be found outside the band by the method described in the preceding
subsection of this appendix, making use of the Fourier coefficients a, of go(A). It
is found that the limits on the accuracy of the coefficients mean that the determination
becomes less accurate as one moves away from the band edge. For the f.c.c. crystal
the method is good to values of A less than about 1-5 times the width of the band.
The method will therefore work only for local modes close to the band (i.e. for
A small).

The simplest method of calculating R(1) outside the band is to use the Monte
Carlo method described in the previous subsection, with each cell having the
weight given by equation (A3). The accuracy of the calculation will be the same
over its range of frequencies and can be made as good as desired by increasing computer
time. For calculations far removed from the band, the accuracy may be reduced by
large differences in equation (A3). Because of the smoothness of the curve and the
absence of singularities outside the band, the calculation of R(A) gives far greater
accuracy in this region for the same number of random numbers than the calculation
inside the band. We therefore decided to use this method to calculate R(A) in the
regions outside the band, as shown in Fig. 3.

Although some of the methods mentioned in this appendix give greater accuracy
than those chosen for use in the paper, the present methods were selected on the
grounds of the ease with which they may be applied to any cubic crystal, and many
other crystals as well.

Manuscript received 3 November 1975





