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Abstract 

The structure and dynamic stability of isothermal relativistic star clusters are discussed both for 
the case of clusters without dispersion in stellar rest mass and for two families of clusters with dis­
persion in stellar rest mass. We show that the former are dynamically unstable if the central redshift 
is greater than about 0'5, and that the latter are dynamically unstable if the central redshift is greater 
than about O' 6, so that the inclusion of dispersion in mass does not greatly affect the stability of 
isothermal relativistic star clusters. 

1. Introduction 

In this paper we present a detailed discussion of the structure and dynamic instability 
of spherically symmetric isothermal relativistic star clusters. Such clusters have 
isotropic velocity distributions and truncated Maxwell-Boltzmann distributions in 
energy. We study two distinct classes of these clusters in this paper: (a) in which 
there is no dispersion in the stellar rest mass; (b) in which there is dispersion in the 
stellar rest mass. For brevity we refer to the clusters with no dispersion as ND clusters, 
and to those with dispersion as D clusters. 

The structure of ND clusters was first studied by Zeldovich and Podurets (1965), 
and independently by Fackerell (1966). Their dynamic stability was first investigated 
by Ipser (1969) who developed a variational principle for small radial pulsations of 
relativistic star clusters. The specific isothermal clusters that Ipser studied were 
dynamically unstable if the red shift of a photon emitted at the cluster's centre and 
received at infinity (the central redshift zJ satisfied Zc ~ O· 55. More recently, Katz 
et al. (1975) (hereafter referred as KHK) studied the thermodynamic stability of ND 
clusters and reported the existence of two zones of parameter space where these 
clusters might be thermodynamically stable. Since their conditions were only necessary 
for thermodynamic stability, and not sufficient, KHK did not prove that any parti­
cular clusters were thermodynamically stable. The structure of D clusters was first 
studied by Fackerell (1966) and later generalized by Suffern (1976). 

Since Ipser (1969) only studied certain sequences of ND clusters, and because it is 
important to discover whether any ND clusters could be both dynamically stable 
and thermodynamically stable, we have made a detailed study of the dynamic stability 
of these clusters. We have also studied the dynamic stability of D clusters in their 
generalized form. The method we use is a refinement of lpser's variational principle 
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which gives a simple sufficient condition for dynamic instability. This refinement 
was devised by Fackerell (1970, hereafter referred to as Paper I). Although our 
results for ND clusters have been published elsewhere (Suffern and Fackerell 1976), 
no details of the calculations were given in that paper. Some of these results are 
repeated here for completeness and for direct comparison with the corresponding 
results for D clusters. Section 2 presents the theory and structure of isothermal 
clusters, Section 3 describes the method for diagnosing dynamic instability, Section 4 
discusses the numerical techniques used and Section 5 presents and discusses the 
results. 

2. Theory and Structure of Isothermal Clusters 

Throughout the paper we use gravitational units in which G = c = k = 1, and we 
describe the clusters in terms of the spherical line element 

Distribution Functions 

Isothermal relativistic star clusters are characterized by distribution functions of 
the form 

F(m, E) = g(m)H(Emax-E)exp( -Elmo Trx,). (1) 

Here gem) is an arbitrary function of the stellar rest mass, mo is a reference stellar 
rest mass, H is the Heaviside step function, E is the conserved energy along a stellar 
trajectory and Too is the global temperature per unit stellar rest mass. Both E and 
Too are values as measured by an infinitely removed observer. In addition, Emax is a 
cutoff energy which guarantees that all the stars are confined to a finite region of 
space, since clusters with Maxwell-Boltzmann distributions in energy have infinite 
radii and masses unless the energy tail is truncated at some finite value. 

For the two classes of clusters under consideration here, gem) is defined as follows: 

For ND clusters 

gem) = Kmo4~(m-mo), (2) 

where K is a constant, and ~ is the Dirac delta function. 

For D clusters 

(3) 

where rx and yare positive constants. * 

These choices for gem) have been made largely for reasons of mathematical conven­
ience, and not for any intrinsic physical reason, apart from supplying an example 
with dispersion in mass. The extent to which gem) in equation (3) is affected by 
varying rx and y is discussed in Section 5. 

* Fackerell (1966) only considered the case with y = 1. 



Isothermal Relativistic Star Clusters 313 

Integral Expressions for p, P and Po 

For isotropic clusters we may define a mass-weighted distribution function 
(Fackerell 1966, 1970) 

(4) 

where x = E 2 /m 2f3, and f3 is the value of the metric function exp(v) at the boundary 
of the cluster. If R is the coordinate radius of the boundary then we have 
f3 = exp{ vCR)}, and the cutoff energy is Emax = mf3t . This guarantees that no stars 
are found at r > R (Ipser 1969) and restricts the variable x to x ~ 1. 

If we define y = exp{v(R)}/f3 then, in terms of x(x), the pressure p, density of 
mass-energy P and density of rest mass Po are given by the following integral 
expressions (Paper I) 

p=y-2 L1 X(x)x- 1/2(x-y)3/2dx, 

P = 3y-2 L1 X(X)X 1/2(X_y)1/2 dx, 

Po =3y-3/2 L1 X(x)(x-y)1/2dx. 

(5) 

(6) 

(7) 

For gem) given by equations (2) and (3), the Appendix (below) discusses the evaluation 
of p, p and Po in terms of hypergeometric functions. 

Structure Equations 

To write the equations of structure in a suitable dimensionless form we follow 
Fackerell's (1966) procedure: 

(1) We introduce a dimensionless radial coordinate ~ = r/L, where L = (Pc/41Cp~)t 
is a scaling parameter with dimensions of length. Here Pc and Pc denote the values 
of the pressure and density at the centre of the cluster, r = O. 

(2) We introduce a dimensionless mass function v = M(r)/(Lu), where u = Pc/Pc, 
and M (r) is the total mass-energy inside a sphere of radius r. 

(3) We introduce a dimensionless rest mass function w = Mo(r)/(Lu), where 
Mo(r) is the total rest mass contained within a sphere of radius r. 

The field equations for the equilibrium structure of the clusters now take the form 
(cf. Ipser 1969) 

dy/d~ = 2uy(vC 2 +u~p/pc)exp(A), dv/d~ = ep/pc, dw/d~ = ~2exp(tA)po/pc' 
(8a, b, c) 

with 
exp(A) = (1 -2UV/~)-1. (9) 

The equations (8a)-(8c) are integrated from the centre ~ = 0, at which v = 0, w = 0 
and y = Yc < 1 (for Yc specified), to the boundary ~ = ~1' at which y is unity. The 
solution of these equations is further discussed in Section 4. 
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3. Stability Theory 

The sufficient condition for -dynamic instability of relativistic star clusters developed 
in Paper I depends upon the solution of the following single second-order ordinary 
differential equation of Sturm-Liouville type (cf. Paper I, equation 32): 

(e4 UWexp(!A) y3/2 I/I'(e))' 

-eeXP(!A)y3/2[(L + L){3ey' _ (ey')2 + l-eXP(A)}y-1 
, Pc trpc 2y 2 

+ u(e){!(ey:) 2 
_ Sey' _ 2trexp(A) (e2p _ E) 

y 6y 3 Pc e 
+ trey' ~XP(A) e:: -~) + 1-eXP(A)}] I/I( e) = O. (10) 

Here a prime denotes differentiation with respect to e, the function I/IW is a trial 
function associated with Ipser's (1969) variational principle, and U(e) is the following 
phase space integral 

U(e) = _(6/Sy3pc) L1 X<X)X- 1/2(X_y)5/2 dx, (11) 

so that we have U = P L 1.4/Pc in the notation of Paper I, equation (A 7). It follows 
from equation (4) that X (= dxldx) is given by 

x(x) = tltp1/2X-1/2 fooo F Iim, mp1/2x1/2)m5 dm, 

where FE (which is negative) denotes of(m, E)loE at constant m. 

. (12) 

To diagnose dynamic instability iQ a relativistic star cluster, equation (10) is 
integrated from e = 0, with boundary conditions 1/1(0) = I and 1/1'(0) = 0, to the 
boundary of the cluster e = e1' According to the theory outlined in Paper I, a 
sufficient condition for the cluster to be dynamically unstable against small radial 
pulsations is that 1/1 has a node somewhere inside the cluster. We now derive integral 
expressions for U (e) when g(m) has the forms (2) and (3), and the numerical evaluation 
of U (e) is then discussed in the next section. 

For ND clusters, it follows from equations (1), (2) and (12)that 

where for computational convenience (see Section 4 below) we have introduced 
the parameter p, = PIToo • Consequently U(e) follows from equation (11) as 

(J!) = ltK exp( - p,) (1- )5/2 + Y7/2Z5/2 e (1-u)5/2(1- YUIZ)5/2 exp(P,YU)dU) 
U.. 5y 3pc y p, Jo l-Yu ' 

(14) 
where Y = l-yt and Z = 1 +yt. 
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For D clusters it similarly follows that 

and consequently that 

nK( + )-(a+l)( 
U(~) = Y5Y~Pe (Y+J1)(1_Y)5/2 

315 

+lIay7/2Z5/2 e (1-u)5/2(1- YuIZ)5/2{1-J1Yul(Y+J1)r(dl)du ). 
r Jo 1-Yu (16) 

4. Solution of Equations 

Since the equations of structure (8a)-(8c) contain only the ratios PiPe' PiPe and 
Pol Pc, they do not involve the constants K and mo which appear in equations (2) 
and (3). Consequently, these constants do ·not affect the dimensionless structure of 
the isothermal clusters. In dimensionless form, the ND clusters form a two-parameter 
set and, although several choices of parameters are possible, there is one pair which 
is most suitable from a computational point of view: Ye' the value of Y at the cluster 
centre, and J1. It is shown in the Appendix that the equilibrium values of p, P and Po 
are most conveniently expressed in terms of J1. The situation for the D clusters is 
similar, except that they form a four-parameter sequence, where the constants a 
and Y in equation (3) are the two extra parameters. . 

The value of Ye is used as the central boundary condition in equation (8a) and, 
although the equations of structure in dimensionless form do not contain [3, all 
dimensionless properties of ND clusters are uniquely determined once Ye and J1 
are specified. The same applies to D clusters when a and y also are specified. Two 
properties of particular importance are the central redshift Ze = (/3IYe)t -1 and the 
global temperature Too = [3ix I p. It should be noted that [3 is unknown before the 
structure of a cluster is completely determined. But once the structure is calculated, 
it follows from equation (9) that 

where exp(v) = exp( - A) at the surface of the cluster. 
Another important dimensionless property of the cluster is the fractional binding 

energy Iff defined by 

where M and M 0 are respectively the total mass-energy and total rest mass of the 
cluster. Since these quantities are given by M = L(JV(~l) and Mo = L(JW(~l)' it 
follows that 

(17) 

Three additional properties are the ratio 

(18) 

the central condensation in the mass-energy density 
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Fig. 1. Curves relating to dynamic instability of ND isothermal clusters in the Zo, Too plane. All 
clusters above the dashed curve S are dynamically unstable. The full curves A and B enclose areas 
of possible thermodynamic stability discussed by KHK, while the dashed curves C and E denote 
respectively the locii of maximal fractional binding energy and zero binding energy. Ipser's (1969) 
variational principle for the squared frequencies of radial vibration of star clusters becomes positive 
definite below the full curve P for the particular form of trial function employed in this paper. For 
the area contained within the dashed rectangle, the binding energy is depicted in Fig. 2. The dot 
labelled C' on curve C is the position of the cluster upon which Fig. 6 (below) is based. 

and the rest mass density 

(19) 

where Po. is the central value of Po. The quantities 

(p) = 3M/4nR3 and (Po) = 3Mo/4nR3 

are average densities taken over the coordinate volume of the cluster. 
The phase space integral U(~) is evaluated as follows: Since the integrals in 

equations (14) and (16) can be evaluated only in terms of hypergeometric functions 
of three independent variables (this contrasts with p, p and Po, which are evaluated 
in the Appendix below in terms of hypergeometric functions of two independent 
variables), they are most efficiently evaluated by numerical integration. Although a 
numerical technique such as Simpson's rule could be used at each integration step, 
it is more efficient from a computational point of view to use Simpson's rule only at 
the centre of the cluster where Y = Ye' This gives the central value Ue of U, which 
can then be used as the boundary condition for solving the differential equation 
which U satisfies (equation (29) of Paper I), namely 
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2-00 

Zc 

Fig. 2. Three~dimensional plot of the fractional binding energy If for ND clusters over a section 
of the zc, Too plane. Marked on the surface are the following dashed curves: C along which If has a 
local maximum; E along which If is zero; the stability curve S. 

d U y' { 3 ( P p)} 
d[ = - 2y U +y Pc + upc . (20) 

The differential equations of structure (8a)-(8c), the stability equation (10) and 
equation (20) for U were integrated together to determine the structure of the clusters 
and simultaneously to diagnose their dynamic instability. A fourth-order Runge­
Kutta integration scheme was used, and at each integration step the values of p, p 
and Po were evaluated from the continued fraction expansions for the expressions 
(A2)-(A4) and (All)-(AI3) given in the Appendix. Since some clusters have extremely 
large coordinate radii ~1' the variable of integration was changed from ~ to l/~ 

whenever ~ = 10 was reached. 

5. Results and Discussion 

ND Clusters 

The results for ND clusters, obtained from the numerical calculations, are presented 
in Figs I and 2. A region of the zc' Tn plane is shown in Fig. 1. The full curves 
labelled A and B in this figure enclose the two regions of possible thermodynamic 
stability discussed by KHK, while the dashed curve S is the locus of the onset of 



318 Edward D. Fackerell and Kevin G. Suffern 

dynamic instability as diagnosed by equation (10). For all the clusters tested which 
were located in the zc' T ce plane above S, a nqde appeared in 0/ before the boundary 
was reached and these clusters are thus dynamically unstable. The position of S in 
the plane was determined by the criterion that the node occurred at the boundary, 
and we are confident that we tested enough clusters above S to ensure that no regions 
of possible dynamic stability escaped our attention. Our confidence lies in the fact 
that, as the distance from S in· the zc' T ce plane increases, the node occurs relatively 
closer to the centre of the clusters, and does so monotonically with increasing distance 
from S. 

As Fig. 1 indicates, all clusters in KHK's region B of thermodynamic stability 
are dynamically unstable, as are most of those in region A. The only ND clusters 
that could be both dynamically stable and thermodynamicall>: stable are those 
lying in the thin strip above the lower part of A and below S. Sfnce it is necessary 
for a cluster to be stable against all forms of instability if it is to have any chance of 
existing in nature, the only ND dusters that could exist would lie in this thin strip, 
unless other zones of thermodynamic stability exist with smaller central redshifts 
than those shown in Fig. 1. 

The fractional binding energy ,ff as given by equation (17) has a local positive 
maximum along the dashed curve C, is zero along the dashed curve E and is negative 
above E. All dynamically stable clusters have positive binding energies, which is to 
be expected on physical grounds because any cluster with negative binding energy 
is energetically capable of dispersing itself to infinity if perturbed. 

Fig. 2 shows the variation in ,ff over the portion of the Zc' T ce plane which is 
enclosed by the dashed rectangle in Fig. 1. For large values of T ce' the curves Sand 
C are quite close, indicating that the onset of dynamic instability occurs close to the 
locus of maximum fractional binding energy. This agrees with previous stability 
studies of Ipser (1969); and its evolutionary significance was discussed by Fackerell 
et al. (1969). However, for temperatures below Tce ~'O'06, the Sand C curves 
rapidly diverge. This rapid divergence of S towards high values of Zc arises from the 
inability of Fackerell's method (Paper I) to diagnose instability in clusters with an 
extreme core-halo structure (i,e.clusters for which Pc/(p) ~ 103), which is the struc­
ture developed by ND clusters for low temperatures and high central redshifts (see 
Fig. 5 below). In fact, the clusters at the top left-hand corner of Fig. 1 have 
Pc/(p) ~ 1013. The method of Paper I fails in these circumstances because. it is 
based on Ipser's (1969) variational principle with the trial function approximated by 
the first term of an infinite series. The curve P, which also apprQaches high Zc for low 
T ce' is the locus of points at which the numerator integrand of Ipser's variational 
principle becomes positive definite when single-term trial functions are employed 
(see his equations 19 and 28). Such positive definite behaviour automatically 
excludes the possibility of a node occurring in 0/. However, for clusters that do not 
have core-halo structures the method is quite successful, and it is possible that the 
true dividing line in the zc' T ce plane between dynamic stability and instability stays 
close to curve C for all values of T CC' 

D Clusters 

The additional parameters IX and y complicate the structural picture of D clusters 
to the extent that they require a double infinity of zc' Too planes for their complete 
specification. To simplify this picture somewhat we restrict attention here to two 
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specific families of D clusters which together give a satisfactory amount of infor­
mation about the complete parameter space. 

If we define C = m/mo, the distribution in stellar rest mass gem) in equation (3) 
has a maximum at C = (ex - 5)/y == n and, by dividing gem) by its value gmax at C = n, 
we obtain the normalized distribution 

A W = gW/gmax = Wnr exp{ -ny(C/n-l)}. (21) 

We now take nand y as the two additional parameters instead of ex and y, and only 
study distributions with nand y satisfying y > n -1, in order to avoid A (C) having 
an infinite derivative with respect to C at C = O. For a given n, the peak in A (C) 
about C = n becomes sharper as y increases. Fig. 3 shows A (0 for four combinations 
ofn and y. 

The two families of D clusters studied in this paper are: [A], clusters with y = 10 
and n = 0·15, 1 and 5, which were chosen to study the effects of varying the position 
of Amax in sharply peaked distributions; [B], clusters with n = 1 and y = 1· 1, 10 
and 20, which were chosen to study the effect of varying the sharpness of the peak 
with fixed n. We refer below to these as the [A] and [B] families. 

Fig. 4a displays the results for the [A] family. The dashed lines are the loci of 
maximal fractional binding energy, while the solid lines indicate the onset of dynamic 
instability. For temperatures Too ~ 3 there is very little difference in either the 
structure or dynamic stability of these clusters, but marked differences are apparent 
at lower temperatures. When n = O· 15 the binding energy curve does not appear to 
turn over and approach small values of Zc with decreasing Too as happens with n = 1 
and 5. These turnovers occur at successively higher values of Too as n increases. For 
n = O· 15 the stability and binding energy curves are close for all values of Too but, 
for n = 1 and 5, they depart on the cooler side of the turnover points. We are only 
confident that the stability results indicate the true stability picture on the warmer 
side of the turning points because for n = 1 and 5 these D clusters develop core-halo 
structures in a similar manner to ND clusters. Moreover, this process is accentuated 
as n increases. However, when n is as small as 0·15, core-halo structures do not 
develop for small Too, at least for clusters with Zc ;$ 0·65. Consequently, the stability 
results for clusters with n = 0·15 and y = 10 are probably accurate for the entire 
range of Too shown in Fig. 4a. 

Some dimensionless features of the [A] and [B] families, as well as of the ND 
clusters, are displayed in Fig. 5 as functions of Too. In this figure, all clusters have 
Zc = 0·54, the full curves represent the central condensation LI = Pc/(p) and the 
dashed curves represent the dimensionless coordinate radius el. Clusters with large LI 
usually have large e1 as well. As Fig. 5 indicates, for clusters with n = 5 and y = 10, 
both LI and el increase rather dramatically with increasing Too. In contrast with 
this, LI and el do not increase significantly for clusters with n = 0 ·15 and y = 10. 

We did not study any clusters with y = 10 and n > 5 because of numerical diffi­
culties. Since the parameter ex is related to nand y by ex = ny + 5, it follows that we 
have ex > 55 when y = 10 and n > 5. When ex and /l are both large (i.e. for small 
Too) we have difficulty evaluating the expressions given in the Appendix for 
p, p and Po by the method of continued fractions. This difficulty arises from the last 
factor {l-u/l(l-yt)/(y+ /l)} -~ from the integrand in equation (AI4), which increases 
extremely rapidly when the dummy variable of integration U approaches unity with 
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both 0( ~ 1 and Jl(l-yt)j(y + Jl) ~ 1. The value n = 5 was about as large as we 
could manage with y = 10. 

Fig. 4b is a similar plot to Fig. 4a but for the [B] family; the clusters with n = 1 
and y = 10 being common to both families. There are marked similarities between 
Figs. 4a and 4b in that the low temperature clusters of the [B] family also show an 
increase in central condensation when y is large. Some dimensionless features of 
specific models from the [B] family are shown in Fig. 5 for comparison with the other 
clusters. On the basis of the above stability and structural calculations, it seems 
unlikely that any D clusters belonging to either the [A] or [B] families can be 
dynamically stable for Zc ;<:; 0·6. 

IL-__ L-__ ~ __ ~ __ ~ __ ~ __ ~ __ ~ ____ ~ __ L-~I 

10 0-5 0-2 0-1 0-05 0-02 0-01 0-005 

Too 

Fig. 5. Central condensation LI = Pc/<p) (full curves) and dimensionless coordinate 
radius ';1 (dashed curves) as functions of Too for all D clusters considered here (except 
for (1,1; 1» and for ND clusters. All clusters in this figure have Zc = O· 54, and the 
values of the parameters (n, y) are indicated for the D clusters. 

Correspondence Between D and ND Clusters 

The D and ND clusters do not form a completely disjoint set because ND clusters 
can be obtained as a special limiting case of D clusters. For a fixed value of n, the 
form of g(O in equation (3) approaches the delta function b(' -n) as y ~ 00, provided 
the constant K is chosen so that 
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The required value of K for this to be true is 

K = r(ny + 5) mg yny+ 1/r(ny + 1) . 

Thus, if n ~emains finite in the iimit y --+ 00, we expect the dimensionless structure 
of D clusters to approach' that of ND clusters;. The fact that K inust be specified 
in the process is irrelevant since the dimensionless structure equations (8a)-(~c) do 
not contain K. Also irrelevant to the'result is the fact that . 

instead of g( 0 --+ b(m - mo), because the presence of n in the delta function argument 
only amounts to a redefinition of mo. Since this does not affect the dimensionless 
structure either, it is not necessary to have n = 1 in b(m-nmo). 

The quantities Pc/(p) and ~1 for ND clusters are given for comparison with D 
clusters in Fig. 5. The D clusters with structures closest to ND clusters are those 
with n = 5 and y = 10, and n = 1 and y = 20, but neither of these sequences are 
close for the entire range of Too in Fig. 5. Although all the D clusters that we calcu­
lated with n = 1 and y = 20 had dimensionless structures agreeing to three significant 
figures with the dimensionless structures of ND clusters in the region of the zc' Too 
plane for which Zc ;$ 2 and i 00 ;<: 8, it appears that much smaller values of the ratio 
nly than we are able to use would be required to obtain similar agreement over the 
entire zc' Too plane. 

Dimensional Properties of Isothermal Clusters 

The discussion so far has concerned only dimensionless properties and features 
of the clusters. Before any physical quantities such as the total mass-energy, the 
radius or the number of stars can be calculated, a value for the scaling parameter K 
must be specified. However, from a computational point of view, it is more convenient 
to specify the total rest mass Mo. This is equivalent to specifying K, since M 0 also 
acts as a scaling parameter for the isothermal clusters (Misner et al. 1973, p. 686). 
Once the dimensionless structure is calculated and M 0 is specified, the total mass­
energy follows from M = (1- tC)Mo and the coordinate radius follows from 
R = (1- tC)Mo .. -1, where .. is the dimensionless ratio MIR given by the right-hand 
side of equation (18). For ND clusters the total number of stars N is given by 
Mo = Nmo, once the reference stellar rest mass mo is specified. In the case of D 
clusters this last relation is replaced by Mo = Nm, where m = (yn+ l)molY is the 
mean ste)lar rest mass .. A further quantity of interest is the central number density 
of stars nc. If we denote by 17 the dimensionless ratio ~V3 W(~l) in equation (19), it 
follows that nc = (n)17 for both types of clusters, where (n) = 3N14nR3. In terms 
of astrophysical units, Rand nc become 

and 

for ND clusters, where mo is the solar rest mass. 
A basic assumption underlying the theory behind the clusters discussed in this 

paper is that the effects of direct stellar collisions can be ignored. We can check the 
validity of this collisionless theory by comparing the mean time between collisions 
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for a typical star ffC with the time taken for a star to travel once around the boundary 
of the cluster ffo. If ffc ~ ffo, the collisionless theory is valid. Since ffo = 2n .. - t R 
we can write 

1020 ,--____ --,-_____ --r-_____ .--____ --,1020 

,-.. ... 
10 16 I g, 

'-' 

~ 

"- 10 12 
'-

------- -R 

10-4 L-____ ~ _____ -'-_----...I---,.__-----' 10-4 
. 10 9 ' 1010' 1011 10 12 10 13 

N 

Fig. 6. Curves illustrating some physical properties of an ND cluster with Ze = 0·490 
and T", = O· 295 (corresponding to the point C' in Fig. 1) as functions of the total number 
of stars N. The mean time between stellar collisions ,re is shown for clusters consisting 
of main sequence stars ,r::., white dwarfs ,r~ and neutron stars ,r~, together With the 
time ,r0 for a star to orbit once around the boundary of the cluster. Also shown are 
the central number density of stars nc and the physical coordinat~ radius R. 

(22) 

For an estimate of ffc we can use the Newtonian expression of Spitzer and Saslaw 
(1966, equation 16) which, in our notation, becomes (for ND clusters) 

ffc = 2.36 X 10-25 .. -7/2(1-C)(mo/mo)3(r/ro)-2N2 
. 1+2'12xlO 6 .. l(molmo)(r/ro) 1 

yr, (23) 
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if r 0 is the solar radius. From equations (22) and (23), the condition :!Ie ~ :!10 now 
entails 

(24) 

which is consistent with Fackerell (1968, p. 644). 
For an ND cluster with Ze = 0'490, Too = 0'295, r = 0·109 and 1] = 10 (i.e. a 

cluster corresponding to a point on the Ze' Too plane indicated by the dot C' in Fig. 1), 
Fig. 6 displays the quantities :!10, :!Ie, Rand ne as functions of N. The collision 
period :!Ie is shown for three series of clusters, each containing a different population 
of solar mass stars. The three stellar populations comprise: main sequence stars 
with r/ro = 1, white dwarfs with r/ro = 10- 2 , and neutron stars with r/ro = 

1· 5 X 10- 5 . For the white dwarfs and neutron stars, the condition (24) is satisfied 
for all values of N shown in Fig. 6 but, for the main sequence stars, it is only satisfied 
for N;;;: 3 X 1012 • By comparison with Newtonian star clusters, all the clusters 
represented in Fig. 6 are extremely compact, with radii satisfying 4·3 X 10-4 ~ R 
~ 4·3 pc, and they all have extremely large central stellar number densities. The 
average stellar number densities (n) are also extremely large for these clusters since 
1] = 10 implies (n) = 0·1 ne' 

6. Conclusions 

The method of Paper I for diagnosing dynamic instability in relativistic star 
clusters is quite successful when applied to isothermal clusters provided the particular 
clusters do not have core-halo structures. In general, the method works well for 
isothermal clusters with Pe/(P) ;;:; 103 . The results presented in this paper, together 
with those of KHK, indicate that there are very few isothermal clusters with no 
dispersion in the stellar rest mass which can be both dynamically and thermo­
dynamically stable. The few clusters which are stable all have Ze :::::: 0·5. 

The structure of isothermal clusters with dispersion in the stellar rest mass is 
strongly influenced by the stellar rest mass distribution. Although we have not made 
an exhaustive study of clusters of this type, our results indicate that, with the particular 
form of the rest mass distribution considered in this paper, none of the clusters are 
dynamically stable for Ze ;;;: 0·6. We unfortunately have no information regarding 
the thermodynamic stability of these dispersive clusters. 

A more powerful method for studying the dynamic stability of relativistic star 
clusters will have to be developed before we can successfully study the stability of 
core-halo isothermal clusters. One of us (K.G.S.) is currently developing such a 
method based on a variational principle containing an arbitrary number of terms, 
instead of a single term as used in this paper. 
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Appendix. Evaluation of p, P and Po 

Most of the results given in this appendix are taken from Fackerell (1966). 

ND Clusters 

In the case of ND clusters, the mass weighted distribution function x(x) follows 
readily from equations (1) and (2) as 

(AI) 

Substituting equation (AI) into equations (5)-(7) then results in the following 
expressions for p, P and Po: 

p = (8nK/15y2)yS/2Z3/2exp(-J.l)<I>l(1, -3/2,7/2; Y/Z,J.lY) , (A2) 

P = 3P +(8TCK/3y)y3/2Z 1/2 exp( - J.l) <1>1(1, -1/2,5/2; y /Z, J.lY), (A3) 

Po = (8nK/3)y-3/2y3/2Z1/2 exp(-J.l)<I>l(l, -1/2,5/2; Y/Z,J.lY) 

-(16nK/15)y-3/2 yS/2Z1/2 exp(-J.l) <1>1(2, -1/2,7/2; Y/Z,J.lY). (A4) 

Here Y = 1-yt, Z = 1+ yt, and <1>1 denotes Humbert's confluent hypergeometric 
function in two independent variables whose integral representation is (Appell and 
Kampe de Feriet 1926, p. 127) 

it-. ( b' ) - rcc) II. a-1(1 )c-a-1(1 )-b ( ) d (AS) 'l'1 a, ,c, x, Y - rca)rcc-a) 0 u -u . -xu exp yu u. 

We employ the following numerical technique to evaluate the hypergeometric 
functions occurring in p, p and Po. For x < I, the function <l>l(l,b, c;x,y) has the 
following expansions in terms of generalized hypergeometric functions of a single 
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variable (Appell and Kampe de Feriet 1926, p. 127) 

00 

«P1(1,b,c;x,y) = L {(b)nf(c)n} lF1(n+l,c+n;y)x n (A6a) 
n=O 

00 

= L 2Fl(n+l,b,c+n;x)ynf(c)n· (A6b) 
n=O 

We write the series (A6a) and (A6b) in the form· 

00 

«P1(1,b,c;x,y) = lFl(l,c;y) L Sn (A7a) 
"=0 

00 

=2Fl(1,b,c;x) L Tn, (A7b) 
n=O 

where So = To = 1 and, for n > 0, Sn and Tn are defined recursively by 

(ASa) 

T. = _y_2Fl(b,n+2,c+n+l;x) T.. 
n+1 c+it 2Fl(b,n+l,c+n;x) " 

(ASb) 

The ratio of hypergeometric functions in equation (ASa) is most conveniently 
evaluated by using the continued fraction expansion (cf. Khovanskii 1963, p. 13S) 

lFl(n+2,c+n+l;y) c+n (c-l)y (n+2)y cy 
lFl(n+l, c+n;y) - c:+n - c+n+ 1 + c+n+2 - c+n+3 

(n+3)y (c+l)y 
+ c+n+4 - c+n+5 + .... 

To evaluate the confiuenthypergeometric function lF1(1, c;y) in equation (A7a) 
we use the following relation 

lFl(1,C;y) = rcc)y1-c exp(y) +(1-c)'I'(I,c;y), 

which is a special case of equation (7) of Erdelyi (1953, p. 275): Here '1'(1, c;y) is 
the integral 

'I'(l,c;y) = 5000 exp(-yu)(1+u)C- 2du, 

provided Re(y) > O. This integral can also be expanded by a continued fraction 
expansion, the appropriate expansion in this case being (Wall 1945, p. 356) 

1 2-c 1 3-c 2 4-c 3 
'I'(I,c;y) = y +-1- + Y +-1- + Y +-1- + y + .... 

The ratio of hyper geometric functions in equation (ASb) may be. evaluated by Gauss's 
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continued fraction expansion (cf. Wall 1948, p. 337) 

2Fl(b, n+2, c+n+ 1; x) c+n b(c-1)x (n+2)(c+n- b+ 1)x 
2Fl(b,n+1,c+n;x) - c+n - c+n+1 - c+n+2 

(b+1)cx (n+3)(c+n-b+2) 
- c+n+3 - c+n+4 

(A9) 

The expression (A9) may also be used to evaluate 2Fl(l, b, c; x) in equation (AI6) 
bel,owwith the substitution n =;= -1. For \y \ ~ 3 in equation (AS), it is most 
efficient numerically to use the expansion (A6b), but for \ y \ > 3 it is most efficient 
to use (A6a). , 

Finally, the rest mass density Po, which involves <1>l(i, -1/2,7/2; Y/Z, p.Y), is 
calculated by means of the following recurrence relation 

<1>l(a,b,c;x,y) = {(c-I)/(a-I)}<1>l(a-l,b,c-l;x,y) 

- {(c-a)/(a-l)} <1>l(a-l, b, c; x,y). (A 10) 

This is an immediate consequence of the integral representation (AS). 

D Clusters 

When gem) is given by equation (3), the distribution function x(x) becomes 

From this expression, the quantities p, p and Po are given by 

p = (8nK/ISy2) y 5/2Z 3/2(y + p.)-OC Fl(l, -3/2, rx, 7/2; Y/Z, p.Y /(y+ p.)) , (All) 

p = 3P + (8nK/3y)y3/2Z1/2(y + p.)-OC Fl(l, -1/2, rx, S/2; Y/Z, p.Y /(y+ p.)) , (AI2) 

Po = (8nK/3y 3/2) y3/2Z1/2(y+p.)-OCF1(1, -1/2,rx, S/2; Y/Z,p.Y/(y+p.)) 

-(16nK/ISy3/2)y5/2Z1/2(y + p.)-OC Fl(2, -1/2, rx, 7/2; Y /Z, p.Y /(y+ p.)), (A 13) 

where Fl denotes Appell's hypergeometric function in two independent variables. 
The following integral representation 

for Re(c) > Re(a) > 0 is taken from Picard (1880). 
In the present case, we may use the expansion (Appell and Kampe de Feriet 

1926, p. IS) 
00 

Fl(1,b,b',c;x,y) = L {(b)n/(C)n}2Fl(b',n+1,n+c;y)xn, (A1S) 
n=O 

provided \ x \ < 1. We evaluate the series (AIS) by expressing it in an analogous 
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form to the series (A 7a), namely, 
00 

F1(1,b,b',c;x,y) = 2F1(1,b',c;y) L Sn, (A16) 
n=O 

where So = 1 and, for n > 0, 

S +1 = x b+n 2F1(n+2, b', c+n+ l;y) 
" c+n 2F1(n+l,b',c+n;y) . 

The continued fraction expansion (A9) can again be used to calculate the ratio of 
hypergeometric functions in equation (A16) as well as the function 2F1(1,b', c;y). 

An examination of the integral representations (AS) for <1>1 and (A14) for F1 
reveals that, as far as the parameters a, band c of F1 are concerned, F1 satisfies an 
identical recurrence relation to equation (AlO). This is used to calculate the hyper­
geometric function appearing in the second term of equation (A13). 
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