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Abstract 

The vorticity propagation equation for a perfect fluid in general relativity is derived in a form which 
is the same as that of Maxwell's equation for the magnetic field four-vector in relativistic 
magnetohydrodynamics. Starting from this result, an expression for the change of vorticity during 
a gravitational collapse is obtained in terms of the spatial geometry, using a procedure similar to 
that introduced by Cocke (1966) in relativistic magnetohydrodynamics. It is assumed that the 
equation of state of the fluid is p = 1Xp" where IX is a constant and p, is the total proper energy 
density. If t < IX :s;; 1, it is found that the vorticity tends to zero during an isotropic collapse, in 
agreement with a result obtained previously by Ellis (1973) using a different procedure. Nonisotropic 
collapses are also considered. The dynamical importance of vorticity in a gravitational collapse 
is examined by considering the behaviour of w2 /p,. 

Introduction 

Cocke (1966) has investigated the problem of a gravitational collapse in 
relativistic magnetohydrodynamics (MHD) by obtaining expressions in terms of the 
spatial geometry for the change of the magnetiC energy density during the collapse. 
This useful approach allowed both isotropic and nonisotropic collapses to be 
analysed. The purpose of the present paper is to apply Cocke's technique to 
examine, in general relativity, the change in the vorticity of a perfect fluid which 
undergoes a gravitational collapse. Both isotropic and nonisotropic collapses are 
considered. We first derive the vorticity propagation equation in a form which is 
the same as Maxwell's equation for the magnetic field four-vector in relativistic 
MHD, and this in turn allows us to express the vorticity in terms of the spatial 
geometry. 

We use units in which the velocity oflight is unity. Latin indices are understood to 
run from 0 to 3 and Greek indices from 1 to 3. The time coordinate is denoted by 
XO and we adopt the convention that the metric tensor gab has signature (- + + +). 
Ordinary partial differentiation is denoted by a comma and covariant differentiation 
by a semicolon. We use an overhead dot to denote the covariant derivative along the 
particle world line; so that, for example, Aa == Aa.bUb• Parentheses are used to denote 
symmetrization and square brackets to denote skew-symmetrization. 

Vorticity Propagation Equation 

We first derive, for a perfect fluid, a vorticity propagation equation which has the 
same form as Maxwell's equation for the magnetic field H a in relativistic MHD, 
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namely (Lichnerowicz 1967), 
(1) 

We start with the identity 
(2) 

and operate on it with the totally-skew permutation tensor 1]abcd. On using the sym­
metry property Rs[bcd] = 0, this yields 

1]abcd Ub;cd = 0. (3) 
Now, we have 

(4) 

where (Tbc is the shear tensor, () = ua;a is the expansion, hbc = gbc +Ubuc is the 
projection tensor, Wbc is the vorticity tensor and itb = Ub;d u d is the acceleration vector. 
As (Tbc and hbc are symmetric, equation (3) becomes, on using (4), 

(5) 
Now 

(6) 

where wr is the vorticity vector and, noting that 

(7) 

we see that equation (5) can be written as 

(8) 

Equation (8) .is quite general. We now show that, for a perfect fluid with an 
equation of state p = pep), where p is the total proper energy density, equation (8) 
can be written as 

(9) 

where r is the acceleration potential defined by 

r = exp(fP ~), 
PoP+ P 

(1O) 

with Po some standard pressure. Equation (9) for rwa compares with equation (1) 
for H a , As the differential equation of the streamlines of a perfect fluid is 

(11) 
we have in terms of r 

(12) 

Thus we have 
llJabcd(U u), = _lr-lnabcdr U, 
2 b c ,d 2 " ,b c,d (13) 

and, on using equation (4) again, we can rewrite this as 

l nabcd (it u) =lr - 1 "abed r' it U - lr - 1 nabcd r W 
2 ., b c;d 2 " ,b c d 2 ., ,b cd' (14) 
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But it follows from equation (12) that the first term on the right-hand side of (14) 
is zero. Using equations (6) and (7) we obtain finally 

(15) 

On combining equations (8) and (15), we obtain (9), which is the vorticity propagation 
equation we require in the following analysis. We see that in general relativity rwa 

and H a obey the same equation, rather than wa and H a, as in nonrelativistic theory. 

Expressions for (J) and 11 in Terms of Spatial Geometry 

Equation (9) can be written in terms of an ordinary divergence as 

(16) 

where g is the determinant of the metric tensor gab. If we now consider a co-moving 
coordinate system in which the contravariant spatial components of the fluid 
four-velocity are zero throughout all space-time, then we have 

(17) 

We will not assume that the system possesses any particular symmetry properties, 
e.g. we do not assume that gOa = 0 (ex = 1, 2, 3). If we let a = ex in equation (16) 
then it follows (using 17) that, in this co-moving coordinate system, (16) reduces to 

(18) 

Thus it follows that 
(19) 

where Wa(xP) are three functions of the spatial coordinates xP only. We now introduce 
the spatial mat ric tensor Yap defined by (Landau and Lifshitz 1971) 

(20) 

It can be shown that g = goo y, where Y is the determinant of YaP (Landau and lif­
shitz). Thus equation (19) becomes 

(21) 

We now chose coordinate axes so that initially W 2 = W 3 = 0 which, as the 
w a are time independent, will always be true. It therefore follows from equation (21) 
that w2 = w3 = 0 always. Now it also follows from the identity Wa ua = 0 and 
equation (17) that, in the co-moving coordinate system, Wo = O. Thus W = (Wi Wi)t, 

where W = (wa wa)t is the magnitude of the vorticity. To evaluate w, we express Wi 

in terms of Wi: 

(22) 

But as Wo = 0, it follows from the identity Wo = gOawa that WO = -(godgoo)w1. 
Therefore, by equations (20) and (22), we have Wi = Yl1 wl and hence w = .J Yl1 Wi. 
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Thus using equation (21) we have 

(23) 

It remains to obtain corresponding expressions for /1 and r. 
We consider /1 first and assume that the equation of state of the fluid is P = rx/1, 

where rx is a constant. To ensure that the velocity of sound relative to the fluid does 
not exceed the velocity of light, we must have 0 ~ rx ~ 1. With this equation of 
state, the continuity equation for a perfect fluid, namely, 

(24) 
becomes 

(25) 

Using a similar argument to that used above, this equation reduces, in the co-moving 
coordinate system, to 

Thus it follows that 
(JY/1I/(I+a)).o = o. 

It = D(xfl)jyt(1 + a) , 

(26) 

(27) 

where D(xfl) is a function of the spatial coordinates xfl only. Also, with the equation 
of state p = rx/1, we have from equation (10) 

r = (/1/ /1oyl(1 h) , 

where /10 = rx- I Po. Thus, by equation (27) we have 

(28) 

(29) 

where R(xfl ) is a function only of the spatial coordinates. Finally, using equations 
(23) and (29) we can express ill in terms of the spatial geometry as 

(30) 

The expressions (27) and (30) allow us to analyse the changes in /1 and ill in terms 
of the spatial geometry as the fluid collapses. 

Gravitational Collapse 

We use Cocke's (1966) definition of a gravitational collapse: a gravitational 
collapse is defined as a situation in which at some fixed spatial point (xiJ) in the co­
moving coordinate system, /1 tends to infinity for some sequence of times xO. From 
equation (27) we see that geometrically the necessary and sufficient condition for a 
collapse to occur is that Y ~ 0 for some sequence of times. As Y ~ 0 there are three 
possibilities for YlI: either Yll remains nonzero or diverges; or Yll ~ 0 but Ylljy 
still tends to infinity; or Yll ~ 0 and Yujy remains finite or tends to zero. We 
now consider each situation separately. 

Situation 1: Yll Remains Nonzero or Diverges 

The direction of the collapse is essentially perpendicular to 0), as the length of the 
fluid element in the direction of 0), which is proportional to (Yll)t, does not tend to 
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zero. From equation (30) it follows that, if 0 ~ IX < 1, w will always tend to infinity. 
For IX = 1, which is the stiffest possible equation of state, we have w ,..., (Yll)t and 
so w will remain finite or diverge depending on whether Y11 remains finite or 
diverges. A particular case of interest in this situation is that in which Yll remains 
constant. The collapse is then perpendicular to <0. If Yll is constant then it follows 
from equation (30) that w ,..., y-Ha-l) or, on using equation (27), that w ,..., fl(l-a)/(l+o). 

The variation of wand w2 I fl as a power of fl for significant values of IX during a 
collapse in which Y11 remains constant is as follows: 

'" 
W 

w2/p 

o 1/3 
P pi 
P const. 

const. 
p-I 

The situation IX = 0 corresponds to 'dust' and IX = t to radiation. The results for 
dust in general relativity coincide with nonrelativistic results. Zel'dovich (1962) 
has argued that an equation of state with t < IX ~ 1 is possible and could be valid 
for extremely dense matter such as occurs in the final stages of the collapse. The 
variation of w 2 I fl, which by Raychaudhuri's equation is a measure of the dynamical 
importance of vorticity (Ellis 1973), is also given as a power of fl in the above 
tabulation. We see from the tabulation that w always diverges to infinity except for 
IX = 1 when it remains constant. Thus for no value of IX does w tend to zero, unlike 
the case of an isotropic collapse as shown below. If IX < t, the vorticity becomes 
more important dynamically as the collapse proceeds, while if t < IX ~ 1 its 
dynamical importance decreases in the collapse. 

Situation 2: Yll Vanishes and Yllly Diverges 

As Yll --> 0, the fluid element is crushed in the direction of <0 as well as in 
directions perpendicular to <0. A particular case of interest in this situation is the 
isotropic collapse for which Y11 = y+. By equations (27) and (30) we have for an iso­
tropic collapse 

and w ,..., fl(2 - 3a)/3(1 + a) • 

The variation of wand w2/fl as a power of fl for significant values of IX during an 
isotropic collapse is as follows: 

'" 
W 

w 2 /p 

1/9 

const. 

2/3 
const. 

We see that if IX > ~ then w decreases and will eventually tend to zero as the collapse 
proceeds, the greatest rate of decrease being proportional to fl- 1/6 which corresponds 
to IX = l. For 0 < IX <~, w tends to infinity but at a slower rate than the 
nonrelativistic prediction (IX = 0). For IX = ~, w will remain constant during an 
isotropic collapse. Finally, for IX < t the dynamical importance of w increases during 
the collapse, while for t < IX ~ 1 its importance decreases. These results agree with 
those already obtained by Ellis (1973) using a different procedure. 

Situation 3: Yll Vanishes and Yllly Remains Finite 

It follows from equation (30) that w '" yta(YIIly}i;; during the collapse. For 
IX = 0, W --> 0 if Yllly --> 0 but will otherwise remain finite. For 0 < IX ~ I, w will 
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always tend to zero. Of particular interest in this situation is the collapse in which 
'YuiY remains constant. Physically, the cross-sectional area of an element of a vortex 
tube remains constant during the collapse. If 'YuiY is constant, we have 

and W '" tt-a/(l + a) . 

The variation of wand w2/tt as a power of tt for this mode of collapse is as follows: 

o 
const. 

JL- 1 

1/3 
JL- 1 {4 

JL - 3{2 

We see that for all values of a the dynamical importance of w decreases as the 
collapse proceeds. Unlike the case for a = 0 (nonrelativistic theory), w does not re­
main constant for a > 0 but participates in the collapse, eventually tending to zero. 

Conclusions 

We have seen that the method introduced by Cocke (1966) to analyse the 
gravitational collapse problem in relativistic MHD can also be applied to the 
collapse of a rotating perfect fluid in general relativity. Both isotropic and noniso­
tropic collapses were analysed, and significant departures from the predictions of 
nonrelativistic theory were found. The results we obtained agree with those derived 
previously by Ellis (1973). The present theory can also be applied to the expansion 
of a fluid from an initial singularity. As noted by Cocke, however, this analysis 
does not give information on which kind of collapse (or expansion) will occur for 
given initial conditions. 
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