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Abstract 

The MHD approximation has been made in general relativity to derive expressions in terms of the 
fluid's total proper energy density and rest-mass density for the variation in the strength of the 
magnetic field during the anisotropic gravitational collapse in which the condition ()abHaHb = 0 
holds throughout the collapse, where ()ab is the expansion tensor. The physical significance of this 
condition is also examined. 

In this paper, we consider the nonisotropic gravitational collapse in relativistic 
magnetohydrodynamics (MHD) for which 

(1) 

holds during the collapse, where 8ab is the expansion (or rate-of-strain) tensor and 
H a is the magnetic field four-vector. We derive expressions for the variation in the 
magnetic field strength during the collapse in terms of the total proper energy density 
p and the rest-mass density r of the fluid. This allows us to determine the relative 
importance of the magnetic energy density and the fluid energy density during the 
collapse. We also consider the physical significance of the condition (1) which 
determines the mode of the collapse. 

The results derived here can be regarded as generalizations of those obtained by 
Carstoiu (1963) in nonrelativistic MHD. Carstoiu showed that if the condition (1) 
were satisfied, with 8ab the three-dimensional expansion tensor, then as the fluid 
evolves the magnetic field strength is proportional to the fluid density. The present 
analysis is similar to that of Yodzis (1971) and Mason (1976), who considered the 
case of an isotropic gravitational collapse defined by the condition (Jab H a Hb = 0, 
where (Jab is the shear tensor. We use units in which the velocity of light is unity. 
The signature of space-time is (- + + + ); covariant and ordinary partial differen­
tiation are denoted by a semicolon and comma respectively; and an overhead dot 
denotes the covariant derivative along a particle world line so that, for example, 

MaxweU's Equations 

In this section we obtain an expression for the magnetic field strength H in terms 
of the expansion 8 = ua;a' on the assumption that the condition (1) is satisfied. 
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Maxwell's equations in the MHD approximation are (Lichnerowicz 1967) 

(2) 

If we contract equation (2) with Ha and use Ha ua = 0, we obtain 

(3) 

where H2 = HaHa > 0. Now we have (Ellis 1971) 

(4) 

where Wab is the vorticity tensor and ua is the acceleration. Substituting equation (4) 
into (3) and noting that HbUb = ° and also that, since Wab is skew-symmetric then 
wabHaHb = 0, we obtain 

(5) 

Thus, if the condition (1) is satisfied, we have 

H/H=-(). (6) 

Using this equation, we can now derive two expressions for H by obtaining () first 
in terms of the fluid's total proper energy density p and secondly in terms of its 
rest-mass density r. 

Expression for H in Terms of p 

We assume that the fluid is a perfect fluid with the equation of state p = (y-l)p, 
where y is a constant satisfying 1 ~ y ~ 2. The upper limit y ~ 2 ensures that the 
speed of sound (dp/dp)t does not exceed the speed of light. The case y = 1 
corresponds to dust, and y = 4/3 corresponds to highly relativistic charged particles 
or isotropic radiation. Zel'dovich (1962) has argued that an equation of state with 
4/3 < y ~ 2 is possible and could be valid for extremely dense matter such as could 
occur in the final stages of a gravitational collapse. We refer to the limiting case 
y = 2 as 'stiff matter' (Ellis 1973). 

The continuity equation in the MHD approximation is (Lichnerowicz 1967) 

p+(p+p)O = 0. (7) 

With the equation of state p = (y-l)p, this expression reduces to 

e = -Pjyp. (8) 

Substituting for () in equation (6), we obtain 

H/H = p/yp. (9) 

Thus H p -l/r is constant on the world line of a fluid element and so, as the fluid evolves, 
H is proportional to pl/r. The variation, as a power of p, of H and of the magnetic 
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energy density J:J1H2, is as follows for the case of dust, isotropic radiation and stiff 
matter: 

2 

p 

In a gravitational collapse in which the condition (1) holds, the magnetic energy 
density will always grow faster than the total fluid energy density p, except for the 
case of stiff matter when it will grow at the same rate as p. Thus, if 1 ~ Y < 2, the 
magnetic energy will eventually become the dominant form of energy independent of 
how small the magnetic field strength was initially. This compares with the situation 
in an isotropic gravitational collapse in which J:J1H 2 will grow more slowly than p 
if 4/3 < Y ~ 2 (Yodzis 1971). Finally we note that Carstoiu's (1963) nonrelativistic 
result coincides with that for dust in general relativity. 

Expression for H in Terms of r 

Conservation of rest-mass implies that 

(nf);a = 0, (10) 

so that we have () = - fir. Using this expression for () in equation (6), it follows 
that H,-l is constant on the world line of a fluid element, and so H is proportional to 
, as the fluid evolves. This result is independent of the equation of state of the fluid. 
In a gravitational collapse in which the condition (1) holds, the magnetic energy 
density will grow at a rate proportional to ,2, and so will always eventually become 
more important than the rest-mass density. The result of this section coincides with 
Carstoiu's (1963) nonrelativistic result if we identify the classical fluid density with the 
rest-mass density in general relativity. 

Physical Interpretation 

To determine the physical significance of the condition (1) which determines the 
mode of collapse, we consider the relative position vector Xf between two neighbouring 
fluid particles. This vector can be split into a relative distance bl and a direction nU. 
The rate of change of relative distance is given by (Ellis 1971) 

(11) 

If we suppose that M is the relative distance between two neighbouring particles on a 
magnetic field line then we obtain nU = HUIH. Because of the frozen-in property of 
magnetic field lines (Ellis 1973), these particles will always lie on the field line. Thus 
it follows from equation (11) that the condition (1) implies that the relative distance 
between neighbouring particles on magnetic field lines remains constant. If the fluid 
is collapsing, the direction of the collapse will be perpendicular to the magnetic field 
lines, there being no compression along the field lines. With this interpretation, it 
can be checked that the results obtained above agree with those which can be derived 
by considering the case Yl1 = const. in Cocke's (1966) analysis or by setting 
bl = const. in the work of Ellis (1973). 
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