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Abstract 

A review is given of the level density formula in hadron physics, which has reached a completely 
developed state on the basis of the bootstrap equation. It is shown how the approximate formula 

can be entirely deduced except for the input parameters: D ~ 1 and mo ~ 138 MeV, the pion mass. 
Applications are sketched to large-angle pp scattering, to nucleon-antinucleon annihilation and to 
Ericson fluctuations in np scattering. 

Introduction 

The following review is confined to what one might call the 'statics' of particle 
statistics: namely, discussion and applications of the level density formula. This 
topic has recently reached a very nice state of completeness and self-consistency, and 
is therefore very suitable for a short review. We do not consider here the 'dynamical' 
problems of particle statistics, such as multiparticle production, distribution and 
analysis, and high energy reactions in nuclear matter. These subjects currently 
occupy a large and vigorously growing literature. 

Although many authors have contributed significantly to our present topic, the 
treatment here follows mainly that of S. C. Frautschi and C. J. Hamer. 

We seek a formula for hadron level densities that is analogous to the well-known 
statistical treatment of nuclear levels. This has been known since the pioneering work 
of Hagedorn (1965), the level density p(m) for states of mass m being given by 

p(m) = cma exp(bm) , (1) 
where 

a;::; -3, c;::; (1-3) moa-l. 

These parameters are obtained both empirically (Hamer and Frautschi 1971) and 
theoretically (Frautschi 1971; Nahm 1972). Here m" ;::; 138 MeV is the pion mass. 
Two important differences from the nuclear case should be noted: (1) The density 
rises directly as the total rest mass energy mc2 of the system and hence becomes large 
at relatively low excitation on the Ge V scale; overlapping resonances being very much 
the rule in hadron statics. (2) The effective 'temperature' of the hadronic system is 
to first approximation T = lib, and hence a constant largely independent of excitation 
energy. 
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Self-consistent Bootstrap Equation 

This fundamental equation (the self-consistent bootstrap equation) is given here in 
its nonrelativistic form, but only minor modifications are required to make it 
covariant (Hamer 1973). The level density p(m) at a total mass m is expressed in 
terms of the integrals over all possible contributing configurations of constituent 
particles of mass m i, the density of the constituent states being p(mJ Thus 

(2) 

Ei = mi+Qi, 

with Pin = D (j(m - mo) the density of the input states, Q i the kinetic energy of 
the ith particle, mo the minimum mass of the particles (that is, m,,) and D the 
degeneracy of mo. 

The necessity and sufficiency of the exponential term in equation (1) can be proved 
from equation (2) (Hagedorn 1965), but we only sketch an argument for it here: 
As m ~ 00, we neglect Pin to obtain 

(3) 

where in the last term we have neglected the integrals over d3pi as Qi ~ O. Thus the 
dominant factor in equation (3) must be of exponential form: 

p(mi) ~ exp(bmi)· 

To determine secondary factors in equation 0), like the power of m, requires 
consideration of Q, -=f. O. In general, the average Qi ~ mo ~ m;, so that the situation 
is nonrelativistic: 

f d3PiP(mi) ~ f d3(2miQY/2exp(bEi-bQi) = exp(bEi)(2nmdb)3/2. (4) 

This is evaluated at fixed E;, so that 

'IEi=m. 
i 

This already suggests a power law factor, so we try p(m;) = ema exp(bmi) and then 
obtain 

(5) 

An important point is that, as m ~ 00, integrals like equation (5) converge only if 
a < - 5/2. Closer inspection indicates that a = - 3 in this model, as is seen by 
Laplace inversion (Nahm 1972; Hamer 1973): The transform integral 

f exp( - [3E) p(E) dE 

is singular as [3 ~ b+; the singularity goes as J([3-b), which inverts to give in 
equation (5) another power of m-- t . 
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I now present a rough argument (Frautschi 1971) to show for any a < - 5/2 how 
the form of p(m) is self replicating in the bootstrap. For a < -5/2, h(mJ is maximal 
for small mj > mo > 0, the last condition being necessary for convergence. The most 
likely pattern for the n-particle term as m --+ 00 is all mi small (m; ~ mo), except for 
one m/ ~ m to make up the total I mi = m. The major term has 

f d3pi (P(P) f dm j (j(E-m)p(mJ ~ p(m) , 

and anyone of the particles can contribute this, and so there is a multiplicity factor n. 
Thus, neglecting Pin for m ~ mo, 

1 ( V ),,-1 
p(m) ~ p(m) n~2 nl (2n) 3 n{h(moW- 1 

= p(m) I X'/nl = p(m){exp(x)-l}. (6a) 
,,=1 

Therefore, we have 
Vh(mo)/(2n)3 = x ~ In2. (6b) 

This is a second numerical parameter (after a = - 3) determined from theoretical 
arguments alone. 

Scaling Laws of p: Algebraic Dependence on V, D, mo 

To obtain scaling in V and D, we mUltiply equation (2) throughout by A to obtain 

If we now view AP = p' as a bootstrap function, we have 

p' = p(m, V/A, AD) = Ap(m, V,D) (7b) 

by construction, and therefore p(m, V,D) = Du(m, VD) = T(m, VD)/V. 
To obtain scaling in m, we put 

m = mox, mi = mOxi' Ei = mOei , E = moe, Pi = moqi' P = moQ, 

and define p(x) = mo p (mo x). Then we obtain 

(8) 

In equation (8), the powers of mo all cancel in the integrals except for (j(e-x), which 
provides the mol that is absorbed in the definition of p on the right-hand side. Thus 
we see that 

p(x, mo, V, D) = p(x, Vm~, D) = D u(x, VDm~) 

as above or, finally, that 

p(m) = p/mo = (D/mo) f(m/mo, VDm~). (9) 
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Comparing equation (9) with the general form (1) we see that 

and thus 

D (m)a P = Co - - exp(mbo(VD)1/3). 
mo mo 

(11) 

Evaluation of Parameters 

Equation (11) contains six parameters, but mo and D are part of the input. This 
leaves four to be determined, of which two are known: equation (6b) and a = -3. 
It should be noted that Co is trivial in significance relative to bo, and so we can evaluate 
it roughly. This we do by requiring equation (11) approximately to reproduce Pin: 

or 
(12) 

to this order of accuracy. 
We now rewrite equation (6b) as ln2 = 2col/2(2nbo)-3/2, whence 

y = DVm~:::::; 30b~. (13) 

For D = 1, we take V:::::; (4/3)nmC;3, so that y = (4n/3) :::::; 4 and, by equation (13), 

bo :::::; 0·5 (I4a) 
and thus 

b = yl/3 bo/mo :::::; 0· 8/mo . (14b) 

This compares exactly with the empirical parameters given in equation (1), except 
of course for D, which doesn't show empirically. 

It may be worth pausing to reflect on the remarkable features of this analysis. 
Starting simply with the bootstrap conditions in equation (2), we have deduced a 
completely detailed form for the level density: 

D (m)-3 p(m) = - - exp(0·8(m/mo)), 
mo mo 

(15) 

where D and mo are input parameters. We expect of course that mo :::::; 138 MeV, the 
mass of the pion, as it is the lightest and most prolific of the strongly produced 
particles. Somewhat less strongly, we may also expect that D :::::; 3 or 1, according as 
the model is for n+n-no or for nO only (which may approximate the fuHn charge 
spectrum with restriction on isotopic spin of the system). Note that mo :::::; m" for 
baryon as well as meson level densities, since the pion is the particle of smallest mass 
emitted in cascade decays of the system. 

With regard to cascade decays, the bootstrap model has another remarkable 
feature (Frautschi 1971), which is contained in equation (6a): in the formula 

xn - 1 

p(m) :::::; p(m) L (n-I)" 
(n=2) • 

each term in the summand represents the normalized probability Pn of n-particle 
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emission by the state at mass m. Hence 

Pz = 0'69, P3 = 0·24, (16) 

This nicely justifies the usual practice of concentration on two- or three-body emission 
in elementary particle calculations. 

Applications 

Computer Analysis of Equation (2) 

Now let us turn to a few applications of these formulae. A first interesting 
'application' is not to a comparison with experimental data but to a computer 
analysis of equation (2) for the bootstrap made by Hamer and Frautschi (1971). 

6 

2 

o 

(a) 

- p(m) = 3·80 m -2,95 exp(I-014 m) 

r-l Bootstrap generated 

n Rosenfeld tables 

~ Input states 

15 

(b) 

- Hagedorn and Ranft (1968) 

15 20 

m/m" 

Fig. 1. Bootstrap calculation of (a) the meson level density and (b) the total hadron (meson plus 
baryon) state density. The mass (energy) unit is mn = 138 MeV. 

These authors assumed various discrete input states from the data in the Rosenfeld 
tables (Particle Data Group 1970), and iterated equation (2) many times on a large 
computer. The results are given in Figs 1a and lb. Fig. 1a shows the meson state 
densities computed from the known pseudoscalar and vector meson states as input. 
The asymptotic fit is in good agreement with the expected parameters discussed in the 
previous section. Fig. Ib shows the same type of calculation for all hadron states, 
baryons plus mesons. The solid line in Fig. 1b refers to a fit (Hagedorn and Ranft 
1968) that took b ~ 0·86/m" in equation (1) but did not have a simple power of m 
as a preceding factor. The main point of comparison between Figs la and lb is 
that the asymptotic level density for mesons alone is the same as for all hadrons, 
although the empirical inputs are different. This is indirect confirmation of the above 
remark that mo ~ m" for both mesons and baryons. 

Wide-angle pp Scattering 

The transverse momentum distribution in hadron collisions at high energies should 
be largely determined by statistical considerations and should in fact be dominated 
by the exponential factor. The probability of emission of a particle of total energy E 
by a colliding state of mass m is: 

P(E) = p(m-E)/p(m) ~ exp(-bE) = exp(-E/T) , (17) 
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where T is the (constant) 'temperature'. The transverse momentum distribution is 
determined by integrating out the longitudinal component, 

P(PJ.)P1- dPJ. ~ toooo dPxexp( -(p;'+Jl2}t:IT) 

~ f ~ 00 dpx exp( - pJT) exp( - p;,/2JlT) 

= (2nJlT)t exp( - JlIT), 

where Jl2 = pi + m2. Most emitted particles will be pions. so that Jl -t p 1- very 
rapidly, and so we have essentially: 
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P (PJ.) ~ exp( - PJ.IT). (18) 
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Fig. 2. Proton-proton elastic scattering as a function of transverse momentum p 1. = P sin 8. 

One way to test the result (18) is with elastic pp scattering at wide angles, which 
should not reflect grazing incidence or peripheral effects. The scattering is supposed 
to be due to collision excitation of the protons to a high degree, followed by multipion 
exchange with the transverse momentum distribution of equation (18), which then 
becomes the transverse distribution for pp. The data on wide-angle elastic pp scattering 
are shown in Fig. 2 (Orear 1964). The fit is a remarkably straight line over almost 
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10 decades, an accuracy far greater than that of equation (18), of course. The value 
T = 158 MeV is obtained from the fitted line. The more obvious case of p+p --+ 

p+(anything) doesn't seem to work as well (Hagedorn and Ranft 1972), but it also 
gives T ~ 150 MeV. 

Hucleon-Antinucleon Annihilation (NN) 

On the statistical model (Hamer 1972), the average pion energy is 

(19) 

Then, for a system of mass m ~ m" decaying into pions, the number of pions is 

The observation for pp at rest is 

m/m" = 13·6, n" = 4·6 ±0·1, 

(20) 

(21) 

in good agreement with our deduced 0·8 = bm" above. Note that formula (20) is 
fairly good even at the mass ofa p meson, mp = 0·8 GeV, since it gives n,,(mp) ~ 1·9 
as compared with the observed value of 2! 

The linear mUltiplicity formula 

(22) 

should hold as long as N + N results in annihilation. At energies high enough to be 
inelastic in NN, the growth of (n,,> with m will diminish. Such a reduction in n" of 
course holds from the outset for NN, where only a fraction of the average energy 
goes into statistical excitation. 

It is of interest to note that NN annihilation was one of the oldest applications 
of the original statistical model (Fermi 1950) for elementary particles. Originally the 
bootstrap was not included, only free pions in a box being considered. This required 
V --+ 8 V to make a fit, which was disastrous. It is a great success of the bootstrap 
model to eliminate this discrepancy. 

Ericson Fluctuations 

As a final application, we consider the interesting topic of Ericson fluctuations in 
particle physics. This idea was developed originally for low energy nuclear physics 
(Ericson 1960; Ericson and Mayer-Kuckuk 1966) but it has recently been considered 
in connection with elementary particle reactions. 

Although hadron levels become very dense-with a spacing of a few keV at 5 GeV 
excitation-the average width per level is probably constant, say r ~ 200 MeV. 
Hence individual levels are not resolvable, and there is tremendous overlap. Thus, 
in a reaction at energy E, some N = rp(E) levels will be contributing. Statistical 
fluctuations will thus be of order N -t and, if N is not too large, we can observe these 
'Ericson fluctuations'. This effect has been well studied in nuclear physics for some 
years. Earlier efforts to find It in pp scattering failed, but now it appears to be present 
in np scattering. For the present discussion our development follows S. Frautschi 
again (Frautschi 1972). 
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In the case of elastic scattering at a fixed angle (), we may write the amplitude as 
Ael«()) = AcC()) +A F«()), where Ac and AF are the coherent and fluctuating amplitudes 
respectively. If we then represent an average over a macroscopic energy region, say, 
(2~3)r '" SOO MeV by angular brackets then 

(23) 

by definition of the coherent and fluctuating amplitudes. We may now write any 
cross section as a = G 1 A 12, where G is a geometrical factor for total or differential 
measurement. Thus, we have 

(0) = G< 1 A 12) = G< 1 AF 12) +G< 1 Ac 12) 

= O'F+O'C, (24) 

since the interference terms vanish. The standard deviation C of a (normalized 
correlation function) is given by 

(2Sa) 

Now, < 1 A41 ) may be expanded as 

+0 +0 +3O'~, 

where the evaluation of the last term depends on a gaussian shape assumption for A F , 

and that of the second-last term depends on the anti symmetry of A F. Thus equation 
(2Sa) becomes 

(2Sb) 

The form (2Sa) for C can be evaluated experimentally and then compared with 
equation (2Sb) to yield O'F/O'C. Combining this with <a) = O'F+O'C' we can then 
obtain the cross sections individually. 

At the particular angle () = 0°, the amplitudes add coherently for all angular 
momenta, so that 

(26) 

Here y is a reduction factor for the fraction of scattering that goes by direct channel 
resonances as opposed to pomeron exchange in the t channel. We expect y ~ 0 as 
E ~ 00, and so we try 

(27) 

where O'~~imp is the asymptotic total cross section. 
Experimental tests of the above ideas have been made with np elastic scattering 

at 2~3· S GeV, and at S GeV (Carlson 1973; Schmidt et al. 1973). To do this required 
some modification of detail, since pCE) can vary by an order of magnitude across a 
single level width. The main point was to let <a) = O'F+O'C be a smooth monotonic 
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function of energy instead of a constant, as in the nuclear case; with a similar 
behaviour of course for y(E). 

We expect O"F to be symmetric in e, while o"c has a strong forward diffraction peak. 
However, Carlson (1973) and Schmidt et al. (1973) employed data already collected 
at 0° and 180°. Nevertheless, we can obtain dO"F/dt and dO"e/dt, and extract N for 
both forward and backward scattering. Consistent values of N are obtained, although 
dO"F/dt and dO"e/dt are very different for 0° and 180°. Figs 3a and 3b show cross 
sections for these angles. Note that much greater sensitivity results from using dO"/dt 
rather than O"tOI> since O"tot ~ Im(A(O»), so that Utot,F/Utot,C ~ N-t instead of 
N-1 • 

2 3 4 5 2 3 4 5 6 

(a) (b) 

2 2'5 3 
JOO,J.....L __ ---I. __ ---1 __ ---l,.--_~~ 

1'5 2 2'5 3 3'5 

Ecm (GeV) 

Fig. 3. Elastic n±p differential scattering cross sections in (a) the forward (0°) direction and (b) the 
backward (180°) direction. 

The average level width can be deduced from the observed spacing A of fluctuation 
peaks by means of r ~ A/J8 (Brink and Stephen 1963). For np scattering in the 
2--+3,5 GeV region, we have 

A ~ 0·5 GeV, so that r ~ 0·2 GeV. (28) 

Collecting our previous formulae, we have 

N = (~~)(,::r exp(bm). (29) 

In this analysis (Carlson 1973), a = -3·5 was assumed to account for the fact that 
the compound state does not have a random distribution of z component of spin, 
but rather Sz = 0 (see e.g. Hamer 1972). The value T = l/b = 160 MeV was assumed 
(Hagedorn 1965). Then, with mo = m", we have 

rD/mo = 3·6 for n-p, 

= 0·36 for n+p. 

(30a) 

(30b) 
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With r ~ m o, this implies 

(31) 

which is just as expected from our discussion above. The ratio D_/D+ ~ 10 is 
interesting, but its significance is at the level of I-spin restrictions on statistics, and 
has not been analysed. 

In summary, however, the very reasonable value of 15 seems to leave little doubt 
that Ericson fluctuations have been realized in particle reactions. They indirectly 
confirm the level density formula. They still have not been seen in pp reactions. 
A search was made in pp with limited total counts, which showed suggestive bumps, 
but not at a statistically significant level (Peaslee et at., to be published). 
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