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Abstract 

Breakup reactions may be considered by a quasi-three-body model in which the two-body sub­
systems interact through optical model potentials with imaginary parts describing the excitation of 
unobserved channels. The distorted wave off-shell impulse approximation neglects only gradients 
of the optical model potentials. At sufficiently high energies it factorizes into a quantity describing 
the elementary two-body collision and a distorted wave transform of the bound-state wavefunction, 
which gives a distorted orbital momentum profile. Examples showing the validity of the 
approximation are given. 

Introduction 

A breakup reaction is one in which two particles are detected in coincidence 
emerging from the reaction region. Modern breakup experiments are kinematically 
complete, in that the momenta of the incident particle ko and each outgoing particle 
kA and kB are determined. Of course the energy transferred to the remainder of the 
system is determined by the same measurement, so it is possible to resolve reactions 
in which the remainder of the system is left in a particular bound state, or at least 
one of a set of states with trivial degeneracy such as magnetic substates. If the 
excitation energy of the remaining system is so large that it can decay, then an 
energy-momentum spectral function defining the cross section as a function of 
energy and momentum can be determined. 

We are most interested in breakup experiments in which the residual sy~tem is 
left in a bound or just unbound state. Then the cross section for resolved final 
states is measured as a function of ko, kA and kB. Since many kinematic variables 
are involved, it is usual to hold most of them constant and vary one. Normally 
we are interested in the angular correlation for fixed energies, and two geometries 
are of prim~ry interest: 

coplanar symmetric geometry 

ko fixed, EA = EB = E', 0A = 0B = 0, cPA = 0, cPB = n, ° varied; 

noncopianar symmetric geometry 

ko fixed, EA = EB = E', 0A = 0B fixed, cPB = n, cPA varied. 

From the measured momenta ko, kA and kB it is possible to calculate the momentum 
transfer q to the residual system. The most naive interpretation of the reaction is 
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the plane wave model in which the momentum transfer q is due merely to the removal 
of a particle whose momentum at the collision instant was q. Of course in practice 
momentum is also transferred by elastic interactions of the particles 0, A and B 
with the remainder of the system. 

If the plane wave interpretation were correct, then the reaction would be a tool 
of far-reaching significance in understanding the structure of quantum systems, 
because the momentum transfer distribution would then be related very directly to 
the momentum density of particles in the bound system. In fact, if eigenstates of 
the residual system could be resolved experimentally, we would have a measurement 
of the square of the single-particle wavefunction corresponding to that eigenstate, 
a quantity that is directly related to the structure problem or solution of the many­
body SchrOdinger equation. 

The purpose of this talk is firstly to discuss the reaction mechanism with the 
object of finding out under what circumstances the structure information can be 
validly inferred from the differential cross section, and secondly to show what 
information has in fact been obtained from simple systems. 

For over 20 years the (p, 2p) experiment has been known in nuclear physics. Much 
qualitative information has been obtained from it, but it has been a quantitative 
disappointment. With the advent of new accelerators and detection techniques 
there has been a revival of interest in this reaction, which is shared by several groups 
in Australia. In 1973 and 1974 the Flinders atomic scattering group perfected the 
(e,2e) experiment on atoms and molecules. All the hopes of obtaining quantitative 
structure information about quantum systems have been fulfilled in these experiments. 
We will discuss them as an analogue of the (p,2p) experiment that tells us how to 
obtain the structure information and therefore guides our design of (p, 2p) 
experiments. 

The structure information is contained in the differential cross section. In order to 
extract it, we must have a good theory of the reaction emchanism that can be shown 
to give correct answers for targets whose structure is well known from independent 
information. We must know under what kinematic conditions the cross section is 
sensitive to structure information and less sensitive to other properties of the 
reaction. 

Theory of the Reaction 

The breakup reaction involves essentially a three-body system in which there 
are two light bodies, labelled 1 and 2, with degrees of freedom of translation and spin, 
and a heavy body with internal degrees of freedom denoted by~. We make the 
approximation that the disparity in energy between the unbound and bound particles 
means that unbound particles need not be anti symmetrized with bound particles. 
The two light particles are anti symmetrized with each other in the final state. The 
internal degrees of freedom ~ are regarded as independent ofr1 and r 2, the coordinates 
of the light particles. Spin-orbit coupling is not treated, since polarizations are not 
measured. The corresponding spins (J1 and (J2 are involved only in determining the 
anti symmetric states of particles 1 and 2. For nucleons, isospin plays a similar role. 

For simplicity of the three-body coordinate system we will assume that the third 
body is infinitely heavy. This is not an essential simplification. The equations to be 
derived are valid in the more general case with a slight redefinition of coordinates 
and momenta. 
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The Hamiltonian of the system is 

where the centre-of-mass and relative coordinates are defined by 

r = r1 -r2, 

r2 = R-tr. 
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(1) 

(2a) 

(2b) 

Here we are treating the case in which particles 1 and 2 have equal masses as in 
(p,2p) or (e,2e). The relative and centre-of-mass kinetic energy operators obey the 
relation 

We will now recall the general formulation of scattering theory. The total 
Hamiltonian yt' is partitioned in a convenient way, 

yt' = :f{" + "Y, (4) 

where :f{" contains all the kinetic energy operators. The scattering wavefunctions 
are defined for total energy E by 

(5,6) 

where the ± superscipt indicates that the SchrOdinger equation is solved for a com­
plex energy E ± il: and the limit I: ~ 0 + is taken. The two cases correspond respec­
tively to boundary conditions with outgoing and ingoing spherical waves in the 
open channels. 

The scattering amplitude is 

(7) 

We keep in mind that F must be appropriately antisymmetrized. Since we normally 
choose:f{" so that we can solve equation (6), it is convenient to express the amplitude 
F in a representation in which :f{" is diagonal: 

(8) 
where 

(9) 

If :f{" contains no terms representing interactions between separated bodies, F is 
called the T-matrix element for the whole system. 

We now choose our partitions of the Hamiltonian for breakup reactions. For 
the entrance channel we use an auxiliary potential VO(r1), which causes only elastic 
scattering of the incident particle 1 from the target system, 

with 
:f{"j = [Kl +VO(r1)] + [K2 +VzCr2'~) +H(~)], 

"Y j = v(r)+[vl(rl,~)-VO(rl)]. 

(lOa) 

(lOb) 
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The Schrodinger equation for ff separates as indicated by the square brackets in 
(lOa), so that 

(11) 

The first factor is the entrance channel distorted wave and the second factor is the 
ground state wavefunction of the target. In general a target eigenfunction is 
written as 

([Jir2'~) = Lff=)[c!>i(r2)xt/lp(~)]a. (12) 
iJl 

Equation (12) is a weak coupling expansion in terms of single-particle functions 
c!>;(r2), defined by some central single-particle potential "Y(r2), and eigenstates t/li~) 
of the third body, 

(13) 

For simplicity we will assume that t/li~) is a bound state. If it is a decaying state, 
it can still be treated by appropriate choice of boundary conditions. 

For the exit channel we may define auxiliary potentials V1(rl ) and V2(r2), so 
that ff r is defined and partitioned into separable parts as 

with 
ffr = [KI +VI (rl )]+[K2 +V2(r2)] +H(~), 

"Yr = vCr) + [V1(rl'~) - VI(rl )] + [V2(r2'~) - Vir2)] 

== vCr) +i\(rl'~) + vir2'~). 

The corresponding final state distorted wave is 

where we have indicated the antisymmetrization explicitly. 

(14a) 

(14b) 

In the actual experiment several final eigenstates t/I i~) are detected and resolved. 
Unresolved states have trivial degeneracies due to different magnetic substates or 
spin-orbit coupling. 

Since the final state momenta are measured completely, it will be simpler to 
treat the T(-) matrix element of equation (8), 

This is the exact amplitude for the problem in a distorted wave representation. 
In order to obtain a computable approximation to equation (16) we will make 

two approximations: 

(1) The quasi-three-body approximation. Here we replace the exact potential 
VI(rl'~) by an optical model potential UI(rl ). We thus ignore the possibility of 
inelastic excitations of the initial or final residual system by the small potentials 
VI and V2. These potentials have been treated in first order for (e,2e) by R. T. Janus 
and the author (unpublished results), and shown to have no measurable effect on 
the cross section. 

(2) The optical potentials U1(rl ) and Uir2) are expanded in a Taylor series about 
R and the zeroth order is taken. In this series, for equal final state energies, the 
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first-order term in '\7,. is zero. The approximation depends on the neglect of terms 
of order '\7; over distances comparable with the range of v(r). In both nuclear and 
atomic physics, optical potentials are quite smooth, so that this is an excellent 
approximation to the quasi-three-body problem. This is shown in the equation 

For EA = EB we have U1 = Uz, so that the second term of equation (17) vanishes. 
The second approximation enables us to redefine X'f as 

(18) 

so that the distorted wave is 

(19) 

The point of the approximation is that we can now operate on cP < -) with the 
denominator of the Green's function in equation (16) in such a way as to eliminate 
the coordinate R. 

The separated Schrodinger equation in the approximation (19) is 

[EA +EB-e-(KR + U1 + UZ +H)].X(R) 1jJ,i~) = 0, 

[e-Kr]¢(r) = 0. 

(20a) 

(20b) 

The separation constant e is independent of U1 and Uz. By setting U1 = Uz = 0, 
we may see that it is equal to the separation energy e == ell or the energy eigenvalue 
of 1jJ,i~). Using this result and equations (20), the Green's function is treated as 
follows: 

X<-)(R) ¢(r) 1jJ,i~) v(r){E- [Kr+KR +H + U1(R) + Uz(R) +v(r)]}-l 

= X<-)(R) ¢(r) 1jJ,i~) v(r){ell - Kr- vCr)} -1. (21) 

Reverting to the approximately equivalent definition (15) for cP < -), we have 

(22) 

where the two-body T-matrix in three-body space is 

(23) 

Equations (22) and (23) constitute our basic approximation, which we have named 
the distorted wave off-shell impulse approximation. 

Because of the nonlocal nature of the off-shell T-matrix Tv, this is a 9-dimensional 
integral with the usual problem of the coordinate transformation from the rl' rz 
system to the r, R system. It has never been evaluated for exact partial wave 
expansions of all quantities. Interesting results for 50 MeV (p, 2p) have been obtained 
by r. R. Afnan et al. (to be published) using distorted waves approximated as 
attenuated plane waves with a complex focus. The structure information in equation 
(22) is contained in the factor 

(24) 
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Since we have made the quasi-three-body approximation, Tv is independent of the 
core coordinates';. Therefore (24) can be written as 

(25) 

where the structure information is all contained in the overlap integral between 
the target system and the final system. This factor is a function only of the coordinate 
rz of the struck particle (neglecting spin-orbit coupling in the absence of polarization 
measurements). We will discuss it in detail when we come to describe the structure 
information that can be obtained. At present we will concentrate on the reaction 
mechanism. 

The necessity to make an approximation that enables the integral (22) to be 
evaluated confines this lecture to intermediate energies. For energies so high that the 
distorting potentials U1 and U2 are negligible, the plane wave impulse approximation 
is valid: 

(26) 

Since the coordinates r{, r~, r1 occur linearly in the exponents of the continuum 
wavefunctions (plane waves), the coordinate transformation to the r', R', r, R 
system is trivial, 

Fpw = d(t(kA -kB) 1 TvCt 1 kA -kB 12) 1 ~(ko +q»fJl(q) , (27) 
where 

fJl(q) = J d3rz exp(iq.r2) (1/11' 1 cpo), (28a, b) 

The amplitude in the plane wave impulse approximation depends on the half-off­
shell two-body T-matrix element and the structure factor in momentum space fiq), 
which is the Fourier transform of (1/11'1 cpo). 

Energies at which the approximation (27) is valid are called high energies. 
For lower energies the T-matrix element varies slowly with the momenta ko, kA' 
kB and q so that it can be approximately factored out of the expression (22). This 
is the factorization approximation: 

Frac = d(t(kA -kB) 1 TvCt 1 kA -kB 12) 1 ~(ko +q»<X~-)(kA)x~-)(kB) 1 X<O+l(ko)(1/IJlI cpo»· 
(29) 

The energy range where this is valid is the intermediate energy range. The (e,2e) 
reaction will show that such a range exists. 

Structure Factor 

The structure factor is given by 

(1/11'1 cpo) = L (1/IJllff~)[4>i(r2) x 1/1.]0)' (30) 
iJl 

In general this is written as a linear combination of single-particle functions 4>lr2) 
(called orbitals), where the quantum numbers i are restricted to values that obey 
total angular momentum and parity conservation: 

(31) 
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The factors f~~) are spectroscopic amplitudes describing the probability amplitude 
that the overlap function contains the orbital ¢i. 

It is a little easier to follow if we write the structure factor in terms of the target 
ground state as the core <Po and the final state as a single hole ¢tcr2 ) coupled to a 
target state <Pa in such a way that all terms are members of the same representation 
of the rotation group: 

1/11' = I t~:)[¢T x <paJ· (32) 
ia 

A structure calculation consists of diagonalizing the Hamiltonian in this 
representation and determining the eigenvectors d:) and eigenvalues ell" This is 
easily understood in the case where the target is a closed shell. The only terms in 
(1/11'1 <Po) that do not vanish by orthonormality of the core states are 

i=>/l. (33) 

The angular momentum and parity quantum numbers in the set i are the same as 
those in the set /l. Only the radial quantum numbers are summed over. This is 
equivalent to the idea that there is a best ¢i and a best spectroscopic amplitude 
tIg), defined so that there is only one term in the sum (33). 

(i) An experimental definition of the best function ¢i is the one that best fits 
the coincidence cross section. We would like to know if this corresponds 
to any obvious theoretical definition. 

The closure property of the target eigenstates leads to a sum rule over all states 
1/11' belonging to the same representation of the rotation group, provided we use the 
best function ¢i: 

(34) 

where the spectroscopic factors sfg) are defined by 

(35) 

If the approximation (22) for the coincidence amplitude is correct, the differential 
cross section is proportional to si!;), provided there is only one term in the sum (33), 
i.e. provided we use the best function ¢i. 

(ii) We have an independent check of the single-particle orbital ¢i. If we have 
the best function and the correct reaction theory, the spectroscopic factors 
for all final states belonging to the same representation will sum to 1. 

We therefore have a very specific tool for measuring spectroscopic factors and thus 
checking structure calculations, if we can identify the representation to which a final 
state belongs. With the kinematic detail in the breakup experiment, this is simple. 

(iii) At intermediate energies, where the plane wave approximation (27) is not a 
gross distortion of the truth, the differential cross section has the general 
shape of the square of the half-off-shell two-body T-matrix times the square 
of the Fourier transform of the best orbital ¢i. This shape is strongly 
characteristic of the quantum number I specifying the representation. 
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In some cases it may be possible to excite states whose overlap with the ground 
state is zero in simple structure models, but nonzero if both states are described by 
sums of configurations determined by sophisticated variational procedures. Such 
reactions would give very detailed information. An example is given in the next 
section. 

Example: (e, 2e) Reaction on Atoms 

Most of the reactions to be described are performed with noncoplanar symmetric 
geometry. This geometry has the fortunate advantage that the square of the 
half-off-shell Mott T-matrix (the antisymmetrized Coulomb T-matrix) is independent 
of the angle ¢ that is varied to give the distribution over the momentum q. For this 
reason, one expects the factorization approximation to be an excellent one and the 
intermediate energy region to extend to quite low energies. In this approximation, 
the shape of the angular correlation is the square of the distorted wave transform 
in equation (29) of the structure factor or, for reasonably small distortions, roughly 
the square of the Fourier transform (28a). While the antisymmetrized off-shell 
T-matrix does not exactly have this property in nuclear physics, it is obviously slowly 
varying and noncoplanar symmetric geometry would be excellent for the extraction 
of structure information. 
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Fig. 1. Theoretical curve 
compared with experimental 
(e,2e) angular correlations in 
in noncoplanar symmetric 
geometry for helium at the 
indicated incident energies. 

For extraction of structure information, one could hope that the plane wave 
approximation would be reasonably valid. In fact it has been shown by Furness 
and McCarthy (1974) for atomic distorted waves and by Amos (1966) for nuclear 
distorted waves that the attenuated plane wave approximation is excellent in the 
surface region, to which the reaction is confined if valence shells are observed: 

X(±)(k,r) = exp{i(1±iy)k.r}exp(-ykR). (36) 

In both cases the attenuation parameter is too small to affect the shape of the 
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angular correlation, and hence we expect the plane wave equation (27) to be roughly 
valid for the shape. Its validity is easily tested experimentally, since it requires the 
differential cross section shape to depend only on q, not on the total energy E, 

or the separation energy 81'" 
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Fig. 2. Theoretical curves compared with experimental (e,2e) angular 
correlations in noncoplanar symmetric geometry, with the indicated 
incident energies, for the 3s levels of argon at (a) 29·3 eV and (b) near 
40eV. 

(37) 

Figs I and 2 show that equation (27) is valid for (e,2e) reactions on helium and 
argon over a wide range of energies. These reactions also check our early approxi­
mation (1), the quasi-three-body approximation. Core excitation terms are strongly 
energy-dependent. They are absent in any kinematic region where the breakup 
cross section depends only on q. 

It is possible to fit the (e,2e) angular correlation within experimental error. 
The structure factor used for the calculation is the best theoretical orbital multiplied 
by a spectroscopic factor for each state. The best theoretical orbital is the one obtained 
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by treating a determinant of single-particle orbitals as the trial function in a 
variational calculation. It is the Hartree-Fock orbital. 

The Hartree-Fock calculation is numerically difficult and different numerical 
approximations have been used. As illustrated in Fig. 3, two such computations (A) 
by Herman and Skillman (1963) and (B) by Froese-Fischer (1972) fit the shape of 
the 3p excitation of argon well, while a third (C; Lu et al. 1974) fits it less well. This 
demonstrates the sensitivity of the method to details of the shape of the 
wavefunction. 
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Fig. 3. Fits of bound-state wave­
functions to the 400 eV (e,2e) angular 
correlations for the 3p state of argon 
at 815'76eV: 

A, B, Hartree-Fock computations by 
Herman and Skillman (1963) 
and Froese-Fischer (1972); 

C, Hartree-Fock computation by 
Lu et al. (1974); 

D, best variational Slater-type 
orbital. 

There is only one 3p reaction observed for argon, at the separation energy 
15·7 e V. It contains magnetic and spin-orbit degeneracies. The 3p spectroscopic 
factor for this level is therefore unity. 

Three 3s levels are observed, at separation energies of 29· 3, 38· 6 and 41· 2 eV. 
Their spectroscopic factors can be determined relative to the 3p spectroscopic factor. 
The sum is 0·92 ± 0 . 07, thus checking closely the structure factors A and B above. 

There is a further check on the structure factor: 

(iv) The independent-particle model eigenvalue for the 3s state in argon is defined 
as the expectation value of the Hamiltonian in the independent-particle 
state 4>;, 

This is the centroid of the separation energies Illl, weighted by the spectroscopic 
factors. 

The experimental value for argon is 34 ± 1 eV. The theoretical values for 
computations A and B are respectively 29 and 34·8 e V. The (e, 2e) reaction thus 
selects method B as the only acceptable structure theory. 

What advantage does the breakup reaction have for analysing the structure 
of the residual system over other methods such as pickup or stripping, which also 
measure relative spectroscopic factors? The most important advantage is the 
sensitivity to the shape of the orbital, so that we can find the spectroscopic factor for 
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the best orbital. One can of course also verify structure calculations, based on various 
numerical Hartree-Fock methods, which attempt to correlate single-particle orbitals. 

Brief mention should be made of the use of the breakup reaction in checking 
complicated configuration mixtures as models for many-body systems. The example 
is the helium atom. The ion can be left in an N = 2 state, even though there is 
only an N = 1 state in the Hartree-Fock wavefunction for the atom. A more 
sophisticated model gives nonzero overlap for N = 2 residual states and N = 2 
configurations in the ground state. Using a very large basis, a helium wavefunction 
can be found which fits the (e,2e) angular correlation exactly, while the Hartree-Fock 
prediction is clearly incorrect (McCarthy et at. 1974). This is shown in Table 1. 

Table 1. Comparison of models for helium ion 

The values shown are the differential cross section ratios for excitation of 
N = 2 and N = 1 states of He+, expressed as percentages 

() Hartree-Fock Correlated wavefunctionsB Experimental 
(degrees) predictionA 2s 2s+2p ratio 

45 2'75 0·65 0·67 0'72±0'04 
49 2·07 0'77 0·88 0·97±0·10 
53 1·94 1·42 1·74 1·54±0·30 

A From Froese-Fischer (1972). 
B From loachain and Vanderpoorten (1970). 

Is the breakup reaction so trivial that the plane wave theory is sufficient? This 
would be true at high enough energies, but experiments must be done at low enough 
energies to resolve states of the residual system. The coplanar symmetric geometry 
is one in which the factorized distorted wave off-shell impulse approximation does 
not work well for 400 eV (e,2e) on argon or 100 MeV (p,2p) on 12C. The approxi­
mation does work for 1000 eV (e,2e) on argon. In all these cases final states can be 
resolved. The calculations require distorted waves and an accurate model for the 
two-body T-matrix. In coplanar symmetric geometry, variation of e is roughly 
equivalent to varying the energy in the elementary two-body collision. The T-matrix 
varies quite rapidly with energy in both atomic and nuclear physics in the regions 
where the factorization approximation is inaccurate. By contrast the T-matrix 
varies negligibly with cjJ in noncoplanar symmetric geometry, so that for this 
geometry the factorization method works at lower energies. 

Conclusions 

For this treatment of the breakup reaction, the intermediate energy range is 
defined at the lower end by the requirement that the factorized distorted wave 
T-matrix approximation must be an adequate description of the reaction and at the 
upper end by the experimental requirement that states of the residual system must 
be resolved. 

We have seen that the energy range exists for (e,2e) experiments on atoms. The 
reaction yields a very sensitive test of the shapes of the single-particle orbitals. 
The best numerical Hartree-Fock orbitals fit the data. Spectroscopic factors for the 
best orbitals are determined. In some cases it is possible to investigate ground state 
configuration interaction in the target. 
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For the (p,2p) experiment on nuclei, noncoplanar symmetric geometry extends 
the energy range as low as possible and into the range where final states can be 
resolved. 
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