A Study of
 the ${ }^{42} \mathrm{Ca}(\mathbf{p}, \gamma)^{43} \mathrm{Sc}$ Reaction

G. U. Din ${ }^{\mathrm{A}, \mathrm{B}}$ and B. Heusch ${ }^{\mathrm{A}}$
${ }^{\text {a }}$ Centre de Recherches Nucléaires et Université Louis Pasteur, Strasbourg, France, Laboratoire de Physique Nucléaire et d'Instrumentation Nucléaire.
${ }^{\text {B }}$ Work also carried out at the Accelerator Laboratory, University of Helsinki, Finland, and the Tandem Accelerator Laboratory, McMaster University, Hamilton, Ontario, Canada; present address: Department of Physics, Kuwait University, Kuwait.

Abstract

The ${ }^{42} \mathrm{Ca}(\mathrm{p}, \gamma)^{43} \mathrm{Sc}$ reaction has been studied below 2.75 MeV proton bombarding energy. Approximately 100 resonances have been identified and located in the range $E_{\mathrm{p}}=2 \cdot 00-2 \cdot 75 \mathrm{MeV}$. Nine resonances at $E_{\mathrm{p}}=1045,1201,1299,1319,2038,2471,2523,2643$ and 2714 keV for the ${ }^{42} \mathrm{Ca}(\mathrm{p}, \gamma){ }^{43} \mathrm{Sc}$ reaction were investigated with either a 54 or a $120 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector. Single spectra were obtained at each of these resonances, and these were used to derive consistent γ ray decay schemes and accurate level energies for the resonant and bound levels of ${ }^{43} \mathrm{Sc}$. Fifty-two bound levels up to an excitation energy of 4.47 MeV were observed, out of which seventeen new levels have been identified at $2 \cdot 114,2 \cdot 796,2 \cdot 846,2 \cdot 860,2 \cdot 875,3 \cdot 160,3 \cdot 331,3 \cdot 374,3 \cdot 463,3 \cdot 504,3 \cdot 645$, $3 \cdot 734,3 \cdot 757,3 \cdot 860,4 \cdot 007,4 \cdot 038$ and $4 \cdot 430 \mathrm{MeV}$. In addition, new results or results differing from earlier reports have been obtained for the decay properties of levels below 4.47 MeV in ${ }^{43} \mathrm{Sc}$. The strengths of the nine resonances were measured relative to the reported strength at $E_{\mathrm{p}}=2038 \mathrm{keV}$. The resonance at $E_{\mathrm{p}}=2643 \mathrm{keV}$ was shown for the first time to populate levels of spin $>7 / 2$ via the proton capture reaction. A strong M1 (analogue to anti-analogue) transition from the resonance level to the level at $1.931 \mathrm{MeV}\left(9 / 2^{+}\right)$was observed. From measurements of γ ray angular distributions, the following spin and parity assignments were made: $9 / 2^{+}$at $7 \cdot 514,7 / 2^{+}$at $4 \cdot 371, \geqslant 7 / 2$ at 4.038 and $7 / 2$ at 3.808 MeV . The resonance level at 7.514 MeV has possibly a $T=3 / 2$ character. The low-lying excited states in ${ }^{43} \mathrm{Sc}$ are in reasonable agreement with the theoretical predictions of Johnstone (1968).

1. Introduction

The properties of the excited levels in ${ }^{43} \mathrm{Sc}$ have been investigated by a number of workers. The ${ }^{42} \mathrm{Ca}(\mathrm{p}, \gamma)^{43} \mathrm{Sc}$ reaction was first studied by Dubois and Broman (1963) in the energy range $E_{\mathrm{p}}=780-1420 \mathrm{keV}$. They studied the capture γ ray spectra using NaI detectors. Broman and Dubois (1965) studied the same reaction using both a NaI and a $0.5 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector. Walinga et al. (1969) studied the reaction in the energy range $E_{\mathrm{p}}=1200-2060 \mathrm{keV}$ with a $40 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector. They reported 26 bound levels up to an excitation energy of $4 \cdot 46 \mathrm{MeV}$ in ${ }^{43} \mathrm{Sc}$. The same work was extended by Manthuruthil et al. (1970) to determine the spin and multipolarity ratios of the bound levels in ${ }^{43} \mathrm{Sc}$. The mean lifetimes of excited states of ${ }^{43}$ Sc were reported by Ball et al. (1970) and Poirier et al. (1970). Additional levels in ${ }^{43} \mathrm{Sc}$ have been found by Cujec (1966), Phillips et al. (1967) and Schwartz et al. (1967) using the ${ }^{40} \mathrm{Ca}(\alpha, \mathrm{p})^{43} \mathrm{Sc}$ reaction; by Schwartz and Alford (1966), Broman (1967) and Bommer et al. (1971) using the ${ }^{42} \mathrm{Ca}\left({ }^{3} \mathrm{He}, \mathrm{d}\right)^{43} \mathrm{Sc}$ reaction; by Grandy et al. (1968) and Bommer et al. (1971) using the ${ }^{42} \mathrm{Ca}(\mathrm{d}, \mathrm{n})^{43} \mathrm{Sc}$ reaction; by Plendl et al. (1965) using the ${ }^{46} \mathrm{Ti}(\mathrm{p}, \alpha)^{43} \mathrm{Sc}$ reaction; and by Alford et al. (1971) using the ${ }^{42} \mathrm{Ca}\left({ }^{3} \mathrm{He}, \mathrm{t}\right){ }^{43} \mathrm{Sc}$ reaction. Manthuruthil et al. (1974) studied proton elastic scattering
in the energy regions $E_{\mathrm{p}}=1230-1250,1770-2700,2440-2530,2700-2800$ and $3000-3250 \mathrm{keV}$. For a more complete review of previous work on ${ }^{43} \mathrm{Sc}$, see the article by Endt and Van der Leun (1973).

Fig. 1. Decay schemes and branching ratios (\%) for 9 resonances and 52 bound states studied in the present work. The following spins and parities have been assigned: $9 / 2^{+}$at $7 \cdot 514 \mathrm{MeV}, 7 / 2^{+}$at $4.371 \mathrm{MeV},>7 / 2$ at 4.038 MeV and $7 / 2$ at 3.807 MeV . The remaining spin and parity assignments are taken from other workers.

The purpose of the present study of the ${ }^{42} \mathrm{Ca}(\mathrm{p}, \gamma)^{43} \mathrm{Sc}$ reaction was to verify the existence or otherwise of uncertain levels, to search for new levels, to derive the decay properties of the bound state and to look for resonances having a dominant γ ray de-excitation branch which could correspond to an analogue to anti-analogue M1 transition. It was noticed from the previous results that some of the bound levels in ${ }^{43} \mathrm{Sc}$ were not populated by the (p, γ) reaction, this presumably being due to the
high spin values of these bound levels. It was anticipated that at higher proton bombarding energies it would be possible to form resonance levels of relatively high spin which would subsequently decay to high-spin bound levels.

In the present study, results were obtained for nine resonances at $E_{\mathrm{p}}=1045$, $1201,1299,1319,2038,2471,2523,2643$ and 2714 keV , by means of either a 54 or a $120 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector. The resulting decay schemes and branching ratios of these resonances are summarized in Fig. 1 for convenience of reference throughout the paper.

2. Experimental Procedure

The present study of the ${ }^{42} \mathrm{Ca}(\mathrm{p}, \gamma)^{43} \mathrm{Sc}$ reaction was carried out at three different laboratories. Above 2 MeV , the proton beam was provided by the 4 and 3 MeV Van de Graaff accelerators, at the Centre de Recherches Nucléaires, Strasbourg, France, and at McMaster University, Hamilton, Canada, respectively. The proton beam below 2 MeV was obtained from the 3 MeV Van de Graaff accelerator at the Accelerator Laboratory, University of Helsinki, Finland. The analysis of the data was carried out at Strasbourg and at the Department of Physics, Kuwait University.

Tungsten and gold were chosen as target backings to minimize the contamination. Blanks of tungsten metal were heated with an induction heater to clean the surface and to remove the occluded gases. Targets were prepared using samples of CaCO_{3} (enriched in ${ }^{42} \mathrm{Ca}$) evaporated onto blanks. Two ${ }^{42} \mathrm{Ca}$ targets were used. One target, with a nominal thickness of $10 \mu \mathrm{~g} \mathrm{~cm}^{-2}$, was employed for the measurement of γ ray spectra at 55° and of angular distributions at the $E_{\mathrm{p}}=2643 \mathrm{keV}$ resonance. The other target, with a nominal thickness of $5 \mu \mathrm{gcm}^{-2}$, was used to measure yield curves for the ${ }^{42} \mathrm{Ca}(\mathrm{p}, \gamma){ }^{43} \mathrm{Sc}$ and ${ }^{42} \mathrm{Ca}\left(\mathrm{p}, \mathrm{p}^{\prime} \gamma\right)^{42} \mathrm{Ca}$ reactions. The targets were water cooled. A liquid nitrogen trap was placed in front of each target to remove condensable vapours and to minimize carbon build-up. Also, a thin lead sheet was placed in front of the detector to absorb low energy radiation generated in the target backing for γ ray spectra measured above 2 MeV proton energy.

A $120 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector was used (Helsinki) to locate the resonances and to measure γ ray spectra below 2 MeV proton energy. At low bombarding energies, it was expected that the low energy γ ray peaks below 500 keV would be relatively free from γ rays arising from contamination. The $120 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector had resolutions of 1.93 keV for the $1.33 \mathrm{MeV} \gamma$ ray; 2.64 keV for the 2.614 MeV γ ray; 4.42 keV for the $6.6 \mathrm{MeV} \gamma$ ray; and 5.05 keV for the $7.6 \mathrm{MeV} \gamma$ ray. It had a peak to Compton ratio of 50 to 1 , and an efficiency for the $1.33 \mathrm{MeV} \gamma$ ray of 23%. The other detector ($54 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector) employed for the experimental data above 2 MeV at Strasbourg had a resolution of 2.8 keV for the ${ }^{60} \mathrm{Co}$ lines. The angular distributions were measured with this detector, while the data were normalized with an $86 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector.

A $65 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector placed at an angle of 55° with respect to the beam direction was used to locate the resonances. The resonance γ ray yields were measured with the discrimination level set at $E_{\gamma}>0.700$ and $>2.000 \mathrm{MeV}$. For the resonance at $E_{\mathrm{p}}=2643 \mathrm{keV}$, the output from the amplifier was fed to two single-channel analysers, one to select γ rays of energy greater than 2.6 MeV , the other to monitor the $1.524 \mathrm{MeV} \gamma$ ray from the inelastic proton scattering of the first excited state of ${ }^{42} \mathrm{Ca}$.

The γ ray spectra at each resonance were stored in either a 2048- or a 4096-channel analyser. The decay schemes of the resonances and branching ratios ($\%$) were derived from the γ ray spectra measured at 55° to the beam direction. The relative intensities of the transitions were determined from the relative full energy and double-escape peak intensities in the spectrum. The $\mathrm{Ge}(\mathrm{Li})$ detector efficiencies were determined

Table 1. ${ }^{42} \mathbf{C a}(p, \gamma){ }^{43} \mathrm{Sc}$ resonance and ${ }^{43} \mathrm{Sc}$ excitation energies

$\begin{gathered} E_{\mathrm{p}} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} E_{\mathrm{p}} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} E_{\mathrm{p}} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{MeV}) \end{gathered}$
1.999	$6 \cdot 883$	$2 \cdot 264$	$7 \cdot 142$	2. 540	$7 \cdot 412$
$2 \cdot 019$	$6 \cdot 902$	2. 269	$7 \cdot 147$	$2 \cdot 543$	$7 \cdot 415$
$2 \cdot 024$	6.907	2.277	$7 \cdot 155$	2. 547	$7 \cdot 418$
2.030	6.913	2. 282	$7 \cdot 160$	3. 552	$7 \cdot 423$
2.038	$6 \cdot 922$	2. 294	7-171	2.559	$7 \cdot 430$
2.043	6.926	$2 \cdot 297$	$7 \cdot 174$	$2 \cdot 563$	$7 \cdot 434$
2.053	6.936	$2 \cdot 300$	$7 \cdot 177$	$2 \cdot 573$	$7 \cdot 444$
2.062	6.945	2.304	$7 \cdot 181$	2. 580	$7 \cdot 451$
$2 \cdot 065$	$6 \cdot 948$	2. 307	7-184	$2 \cdot 596$	$7 \cdot 466$
2.079	7.961	2.322	7-199	2.602	$7 \cdot 472$
2.086	7.968	2. 336	$7 \cdot 212$	$2 \cdot 611$	$7 \cdot 481$
2.090	$7 \cdot 972$	2.339	$7 \cdot 215$	$2 \cdot 614$	$7 \cdot 484$
2.098	7.980	2.348	7.224	$2 \cdot 622$	$7 \cdot 492$
2.103	$7 \cdot 986$	2.353	$7 \cdot 229$	$2 \cdot 629$	$7 \cdot 499$
$2 \cdot 110$	$7 \cdot 991$	2.365	7.240	$2 \cdot 632$	$7 \cdot 501$
2.115	7.996	$2 \cdot 375$	$7 \cdot 250$	$2 \cdot 643$	$7 \cdot 512$
$2 \cdot 119$	7.000	2.389	7.264	$2 \cdot 645$	$7 \cdot 514$
2. 123	7.004	2.395	7.270	$2 \cdot 650$	$7 \cdot 519$
$2 \cdot 135$	7.016	$2 \cdot 401$	$7 \cdot 276$	2.654	$7 \cdot 523$
2. 142	$7 \cdot 023$	$2 \cdot 406$	7-281	$2 \cdot 663$	$7 \cdot 532$
$2 \cdot 145$	7.026	$2 \cdot 411$	7.285	2.668	$7 \cdot 537$
2.153	$7 \cdot 033$	$2 \cdot 414$	7-288	2.676	$7 \cdot 544$
2.162	$7 \cdot 042$	$2 \cdot 421$	$7 \cdot 295$	$2 \cdot 683$	$7 \cdot 551$
2-171	$7 \cdot 051$	$2 \cdot 428$	$7 \cdot 302$	$2 \cdot 692$	$7 \cdot 560$
2.179	7.059	$2 \cdot 432$	7-306	$2 \cdot 697$	$7 \cdot 565$
2.184	7.064	$2 \cdot 440$	7-314	2.714	7-581
2-193	$7 \cdot 073$	$2 \cdot 471$	7-344	$2 \cdot 725$	$7 \cdot 592$
2-201	$7 \cdot 080$	$2 \cdot 477$	$7 \cdot 350$	2.734	$7 \cdot 601$
2.212	7.091	$2 \cdot 482$	$7 \cdot 355$	2.737	$7 \cdot 604$
2.217	7.096	2.494	$7 \cdot 367$	$2 \cdot 741$	$7 \cdot 608$
2. 221	7-100	$2 \cdot 501$	$7 \cdot 373$	2.745	$7 \cdot 612$
2.230	7-105	2.510	$7 \cdot 382$	2.752	$7 \cdot 619$
2.240	7-118	$2 \cdot 517$	$7 \cdot 389$	2.758	$7 \cdot 625$
2.249	7-127	$2 \cdot 523$	$7 \cdot 395$		
2.257	7-135	2. 531	$7 \cdot 403$		

from the ${ }^{27} \mathrm{Al}(\mathrm{p}, \gamma){ }^{28} \mathrm{Si}$ resonance at 992 keV and also by means of a ${ }^{56} \mathrm{Co}$ radioactive source. The relative errors for the intensity calibration curve were 8% and 5% below and above 0.511 MeV respectively. For the prominent γ ray peaks the relative intensity error was 8%, increasing to 15% for the smaller peaks.

The decay scheme and branching ratios have also been obtained for the bound levels fed by these resonances. This has been done by using the primary γ ray

Table 2. Branching ratios for decay of nine resonances in ${ }^{42} \mathbf{C a}(p, \gamma){ }^{43} \mathbf{S c}$

$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{keV}) \end{gathered}$	Branching ratios (\%) from resonances at $E_{\mathrm{p}}=$								
	1045	1201	1299	1319	2038	2471	2523	2643	2714 keV
0		3		4	7	10	1	13	2
152	9	63	16	4		17	25		37
472.	9	1		8			2		
844		2	3	50	63		4	2	
855	9	1	15				5		
880			- 25	3	2	31	8		40
1158	3					2	10	3	
1179	21	2				2	4		
1336		5		<1		2	1		
1407		3		1	3		1		
1651	14		12			6	2		
1811	1			3			2		
1884					3			2	
1931								59	
1962	7		3						
2094	2		13	2					
2106		3		1					
2114	1					2	7		
2141	2	8	4	2			1		5
2289	1	.		,	\because				
2336	1		5						
2383							1		
2552								2	
2580	3						1		
2671				5					
2796					2		1		
2811	.							2	
2841		<1						2	
2846		1							
2860				6			2		1
2875					2		2		
2988		1		4					
3160		1				6			
3261					4				
3292	4				-				
3328					4				
3331	13								
3374		\because							2
3452		6		3			3		3
3463							3		
3503									2
3645				3		3			
3683						3			7
3734			4						
3757		\cdots					2		
3807						12		6	
3843		1			2				
3860			..	. 1		4			
4007								2	
4038							7		
4371								7	
4430							5		1
4464					8				

intensities, and consequently the sum of the intensities of the secondary γ rays may add up to less than 100%. The γ ray spectra were recorded at $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90° for the resonance at $E_{\mathrm{p}}=2643 \mathrm{keV}$. The γ ray angular distributions were analysed by a standard χ^{2} program. Because only channel spin $s=\frac{1}{2}$ is possible, no formation parameters are involved.

3. Results

The γ ray yield from the ${ }^{42} \mathrm{Ca}(\mathrm{p}, \gamma)^{43} \mathrm{Sc}$ reaction measured at 55° to the beam direction is shown in Fig. 2. The resonance energies are listed in Table 1. Walinga et al. (1969) measured the resonance γ ray yield in the range $E_{\mathrm{p}}=1200-2060 \mathrm{keV}$ and, in the region of overlap with the present results, there is good agreement for the values of the resonance energies.

Gamma ray spectra were measured with the $120 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector at 55° to the beam direction for the four resonances at $E_{\mathrm{p}}=1045,1201,1299$ and 1319 keV . The 1201,1299 and 1319 keV resonances have been reported previously by Walinga et al. (1969) who, however, did not measure the γ ray spectra. Background γ rays were found at energies of 0.440 MeV from ${ }^{23} \mathrm{Na}\left(\mathrm{p}, \mathrm{p}^{\prime} \gamma\right)^{23} \mathrm{Na}$, at 1.632 MeV from ${ }^{23} \mathrm{Na}(\mathrm{p}, \alpha \gamma)^{20} \mathrm{Ne}$ and at $6 \cdot 129 \mathrm{MeV}$ from ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha \gamma)^{16} \mathrm{O}$, in addition to room background at 1.460 and 2.614 MeV from ${ }^{40} \mathrm{~K}$ and $\mathrm{ThC}^{\prime \prime}$ respectively.

The exceptional features of the four γ ray spectra are the strong γ ray peaks below 500 keV and the separation of the closely spaced γ rays at 0.192 and $0 \cdot 197 ; 0.373$ and $0.383 ; 0.703$ and $0.707 ; 0.910$ and $0.914 ; 1.238,1.249$ and $1.261 ; 1.480$, $1 \cdot 490$ and $1 \cdot 499 ; 2 \cdot 325,2 \cdot 335$ and $2 \cdot 346 ; 2 \cdot 614$ and $2 \cdot 620 ; 5 \cdot 097$ and $5 \cdot 107$; and $5 \cdot 346$ and $5 \cdot 357 \mathrm{MeV}$. With the higher efficiency of the $120 \mathrm{~cm}^{3}$ detector, the γ rays from the weaker transitions were also observable.

Resonance Decay Scheme

The four γ ray spectra below $2 \cdot 0 \mathrm{MeV}$ proton energy were stored in a 4096-channel analyser possessing a dispersion of 1.79 keV per channel. The other five γ ray spectra were stored in a 2048 -channel analyser. Some of the γ ray spectra were repeated, and consistent decay schemes were obtained. The branching ratios ($\%$) of the γ rays from each resonance to the different bound levels are given in Table 2.

1045 keV Resonance ($E_{\mathrm{x}}=5.952 \mathrm{MeV}$)
The γ ray spectrum measured at $E_{\mathrm{p}}=1045 \mathrm{keV}$ is shown in Fig. 3. This energy corresponds to the lowest proton bombarding energy in the present study. The decay scheme resulting from the analysis of the spectrum is included in Fig. 1, where the decay of this resonance to 16 bound levels is shown, including the 1% decay to the bound level at $2 \cdot 114 \mathrm{MeV}$ which has not been reported previously. The relatively stronger transitions to the levels at $1 \cdot 179,1 \cdot 651$ and 1.962 MeV made it possible to determine the branching ratios from the decay of these bound levels with a greater accuracy.

Figs 3-11 (pp. 424-41). Gamma ray spectra for the indicated resonances in the ${ }^{42} \mathrm{Ca}(\mathrm{p}, \gamma){ }^{43} \mathrm{Sc}$ reaction measured at 55° to the beam direction with a $\mathrm{Ge}(\mathrm{Li})$ detector. In Figs 3-6 the detector volume is $120 \mathrm{~cm}^{3}$, and in Figs $7-11$ the volume is $54 \mathrm{~cm}^{3}$. Peaks are labelled with the corresponding γ ray energy, while single and double asterisks denote single- and double-escape peaks respectively.

Fig. 3. $E_{\mathrm{p}}=1045 \mathrm{keV}$. The level at $2 \cdot 114 \mathrm{MeV}$ is found to be populated for the first time.

Fig. 4. $E_{\mathrm{p}}=1201 \mathrm{keV}$. The two closely spaced levels at 2.841 and 2.846 MeV are populated, and the γ rays of these energies arising from transitions to the ground state are well separated.

Fig. 5. $E_{\mathrm{p}}=1299 \mathrm{keV}$. The bound level at 3.734 MeV is found to be populated for the first time.

Fig. 6. $E_{\mathrm{p}}=1319 \mathrm{keV}$. Three bound levels at $2 \cdot 860,3 \cdot 645$ and $3 \cdot 860 \mathrm{MeV}$ are found to be populated for the first item.
Fig. 7. E_{p}

Fig. 8. $E_{\mathrm{p}}=2471 \mathrm{keV}$. Three bound levels at $2 \cdot 796,3 \cdot 645$ and $3 \cdot 860 \mathrm{MeV}$ are found to be populated for the first time.

Fig. 9. $E_{\mathrm{p}}=2523 \mathrm{keV}$. This resonance populates 24 bound levels, and the 12 successive primary transitions are from the ground state up to the excited level at 1.811 MeV .

Fig. 10. $E_{\mathrm{p}}=2643 \mathrm{keV}$. The strong transition $\left(5 \cdot 583 \mathrm{MeV} \gamma\right.$ ray) is to the level at $1.931 \mathrm{MeV}\left(9 / 2^{+}\right)$, which is found to be populated via proton capture for the first time.

Fig. 11. $E_{\mathfrak{p}}=2714 \mathrm{keV}$.

1201 keV Resonance $\left(E_{\mathrm{x}}=6 \cdot 104 \mathrm{MeV}\right)$

The γ ray spectrum for the resonance at $E_{\mathrm{p}}=1201 \mathrm{keV}$ is shown in Fig. 4 and the corresponding decay scheme is included in Fig. 1. There are 15 transitions from the resonance level to the excited levels in ${ }^{43} \mathrm{Sc}$ below 3.85 MeV , but the level decays primarily (63%) to the first excited state. The closely spaced doublet at $2 \cdot 841$ and 2.846 MeV is populated at this resonance, thus confirming the existence of the doublet. The decay properties of the bound levels at $2 \cdot 141$ and 3.452 MeV were determined from the relatively stronger transitions at this resonance, although the results were confirmed from the population of these levels at other resonances.

1299 keV Resonance ($E_{\mathrm{x}}=6 \cdot 200 \mathrm{MeV}$)

The resonance at 1299 keV (Fig. 5) populates 10 bound levels (see Fig. 1) of which the bound level at 3.734 MeV has not been reported previously. The relatively stronger intensities for the primary γ rays leading to the bound levels at $0 \cdot 855,0 \cdot 880$, $1 \cdot 651,2 \cdot 094$ and $2 \cdot 336 \mathrm{MeV}$ improved the accuracy of the branching ratios of these levels. Some of these results differ from those previously reported, and these are discussed in the Section 4.

1319 keV Resonance ($E_{\mathrm{x}}=6.219 \mathrm{MeV}$)

Fig. 6 shows the γ ray spectrum measured at $E_{\mathrm{p}}=1319 \mathrm{keV}$, while the decay scheme for this resonance (derived from the analysis of the spectrum) is included in Fig. 1. This resonance decays to 17 bound levels, and 50% of the decay from the resonance level goes to the bound level at 0.855 MeV . Three bound levels at 2.860 , 3.645 and 3.860 MeV are populated, and these have not been reported previously. Branching ratios from a number of bound levels were established with greater accuracy.

2038 keV Resonance ($E_{\mathrm{x}}=6.922 \mathrm{MeV}$)

This is the only resonance of those considered in the present work which was previously studied by Walinga et al. (1969). The γ ray spectrum for the resonance is shown in Fig. 7. The primary decay (63%) from the resonance is to the bound level at 0.844 MeV . For the stronger primary transitions, there is good agreement with the measurements of Walinga et al. (1969). However, the reported decays from the resonance to the bound levels at $0.472,2.580$ and 4.272 MeV were not confirmed, although four additional primary transitions were found to the bound levels at $2 \cdot 796,2 \cdot 875,3.261$ and 3.843 MeV . The decay properties of a number of bound levels were determined for which no previous information was available.

2471 keV Resonance ($E_{\mathrm{x}}=7 \cdot 344 \mathrm{MeV}$)
Analysis of the γ ray spectrum (Fig. 8) measured at the $E_{\mathrm{p}}=2471 \mathrm{keV}$ resonance leads to the decay scheme for it included in Fig. 1. The resonance level populated 13 bound levels out of which the two levels at 3.645 and 3.860 MeV have not been reported previously. The relatively stronger transitions to the bound levels at $0 \cdot 880$, 1.651 and 3.807 MeV were used either to confirm the decay schemes of these levels which were derived from the other resonances as well, or to obtain the decay schemes of those bound levels which were not populated by other resonances.

2523 keV Resonance ($E_{\mathrm{x}}=7 \cdot 395 \mathrm{MeV}$)

The γ ray spectra measured at the 2523 keV resonance (Fig. 9) shows an interesting decay scheme (see Fig. 1). The resonance level populates 24 bound levels, and there are 12 successive primary transitions from the ground state up to an excited level at 1.811 MeV . The following two bound levels at 3.757 and 4.430 MeV have not been reported previously. The closely spaced bound levels at 3.452 and 3.453 which are populated from the same resonance have their existence confirmed. The decay properties of a number of bound levels were determined at this resonance.

Fig. 12. Relative yields for (a) the ${ }^{42} \mathrm{Ca}(\mathrm{p}, \gamma)^{43} \mathrm{Sc}$ and (b) the ${ }^{42} \mathrm{Ca}\left(\mathrm{p}, \mathrm{p}^{\prime} \gamma\right)^{43} \mathrm{Sc}$ reactions as functions of proton energy E_{p} in the range $2600-2670 \mathrm{keV}$. The inset in (a) shows the $5.580 \mathrm{MeV} \gamma$ ray peak.

2643 keV Resonance $\left(E_{\mathrm{x}}=7.514 \mathrm{MeV}\right.$)

The γ ray yields from the ${ }^{42} \mathrm{Ca}(\mathrm{p}, \gamma){ }^{43} \mathrm{Sc}$ and ${ }^{42} \mathrm{Ca}\left(\mathrm{p}, \mathrm{p}^{\prime} \gamma\right){ }^{42} \mathrm{Ca}$ reactions are shown in Figs $12 a$ and $12 b$ respectively for the range $E_{\mathrm{p}}=2600-2670 \mathrm{keV}$. The strongest peak in the (p, γ) yield curve is at $E_{\mathrm{p}}=2643 \mathrm{keV}$; this peak is reproduced in the inset of Fig. 12a, with a window set on the $5 \cdot 583 \mathrm{MeV} \gamma$ ray which corresponds to the transition from the resonance level to the bound level at 1.931 MeV . A number of peaks in the ($\mathrm{p}, \mathrm{p}^{\prime} \gamma$) yield curve are observed but there is no peak at 2643 keV proton energy.

The γ ray spectrum measured at $E_{\mathrm{p}}=2643 \mathrm{keV}$ resonance is shown in Fig. 10, while the corresponding decay scheme is shown in Fig. 13. This resonance exhibits a strong transition (59%) to the bound level at 1.931 MeV and a 7% transition to the level at 4.371 MeV . These levels have been found to be populated in the proton capture reaction for the first time. The branching ratios of some of the bound levels presented in Fig. 13 were obtained from the other resonances if the primary transitions

Fig. 13. Decay scheme of the resonance at $E_{\mathrm{p}}=2643 \mathrm{keV}$. The γ ray energies and the branching ratios ($\%$) are indicated. The spin and parity assignments for the level at $7 \cdot 514 \mathrm{MeV}$ is $9 / 2^{+}$, at 4.371 MeV is $7 / 2^{+}$, at 4.038 MeV is $7 / 2$ and at 3.807 MeV is $7 / 2$. These have been assigned from the γ ray angular distributions. The 59% transition from $7.514 \rightarrow 1.931 \mathrm{MeV}$ is a $9 / 2^{+} \rightarrow 9 / 2^{+}$, analogue to anti-analogue transition. The population of the levels at $1 \cdot 931,2 \cdot 552,4 \cdot 038$ and $4 \cdot 371$ MeV has been found for the first time via the proton capture reaction.
were of greater intensity than the transitions to these bound levels. Most of the primary transitions are to the positive parity states.

2714 keV Resonance ($E_{\mathrm{x}}=7.581 \mathrm{MeV}$)

Fig. 11 shows the γ ray spectrum measured at $E_{\mathrm{p}}=2714 \mathrm{keV}$, while the decay scheme resulting from the analysis of the spectrum is included in Fig. 1. Two primary transitions (37% and 40%) occur to the first excited state and the level at 0.880 MeV . There are, however, eight other weaker transitions from the resonance to the excited levels below an excitation energy of 4.430 MeV . The level at 4.430 MeV was observed to be populated once more (it was formerly observed at the $E_{\mathrm{p}}=2643 \mathrm{keV}$ resonance).

Table 3. Absolute strengths of resonances in ${ }^{42} \mathbf{C a}(\mathbf{p}, \gamma)^{43} \mathbf{S c}$ Absolute strengths $S=(2 J+1) \Gamma_{\gamma} \Gamma_{\mathrm{p}} / \Gamma$ are normalized to that given by Walinga et al. (1969) for the $E_{\mathrm{p}}=2038 \mathrm{keV}$
resonance

E_{p} (keV)	E_{x} (MeV)	S (eV)	E_{p} (keV)	E_{x} (MeV)	S (eV)
1045	5.952	0.67	2471	7.344	3.59
1201	6.104	0.68	2523	7.395	2.28
1299	6.200	0.74	2643	7.514	4.20
1319	6.219	0.73	2714	7.581	2.93
2038	6.922	3.01			

Resonance strengths

The resonance γ ray yields were measured with the $\mathrm{Ge}(\mathrm{Li})$ detectors placed at an angle of 55° with respect to the beam direction. The relative intensities of the resonances were determined by measuring the area under the yield curve. The resonance strengths

$$
S=(2 J+1) \Gamma_{\gamma} \Gamma_{\mathrm{p}} / \Gamma
$$

reported here were determined from the decay schemes and relative intensities. The absolute strengths were obtained by normalizing the absolute strength given by Walinga et al. (1969) for the $E_{\mathrm{p}}=2038 \mathrm{keV}$ resonance. Table 3 lists the resonance energies, excitation energies and the absolute strengths.

Energy of excited levels

The precise values of the energies of the bound levels of ${ }^{43} \mathrm{Sc}$ were obtained by a $120 \mathrm{~cm}^{3}$ high resolution and high efficiency $\mathrm{Ge}(\mathrm{Li})$ detector. In many cases the energy of the given level could be determined in several ways because the level was involved in several different cascades. In addition, many levels were populated by more than one resonance, which allowed us to make several independent measurements of the level energy. The final energy values, after appropriate averaging (with a few exceptions), are presented in Table 4 where they are compared with previously reported results. The agreement with the values obtained by other authors is good. However, a number of levels have not been observed previously in proton capture, $(\alpha, \mathrm{p} \gamma),\left({ }^{3} \mathrm{He}, \mathrm{d}\right),(\mathrm{d}, \mathrm{n})$ and $\left({ }^{3} \mathrm{He}, \mathrm{t}\right)$ reactions.
Table 4. Comparison of excitation energies for ${ }^{43} \mathrm{Sc}$

Excitation energy (keV) from							
Present* (p, γ)	$\begin{aligned} & \text { Walinga* } \\ & (\mathrm{p}, \gamma) \end{aligned}$	$\begin{aligned} & \text { Ball* }^{(\alpha, p \gamma)} \end{aligned}$	$\begin{aligned} & \text { Broman* } \\ & \left({ }^{3} \mathrm{He}, \mathrm{~d}\right) \end{aligned}$	Schwartz* (${ }^{3} \mathrm{He}, \mathrm{d}$)	Bommer* (${ }^{3} \mathrm{He}, \mathrm{d}$)	$\begin{gathered} \text { Grandy* } \\ (\mathrm{d}, \mathrm{n}) \end{gathered}$	Alford* $\left({ }^{3} \mathrm{He}, \mathrm{t}\right)$
$152 \cdot 2 \pm 0 \cdot 3$	$150 \cdot 9 \pm 0 \cdot 7$	151 ± 2	152	152 ± 8	154	152 ± 11	
$472 \cdot 3 \pm 0 \cdot 4$	$472 \cdot 3 \pm 0 \cdot 6$	472 ± 2	473	475 ± 6	470	475 ± 11	
$844 \cdot 4 \pm 0 \cdot 5$	$845 \cdot 7 \pm 0 \cdot 5$	$844 \cdot 9 \pm 0 \cdot 5$	846				
$855 \cdot 3 \pm 0 \cdot 4$	$855 \cdot 6 \pm 1 \cdot 0$	$855 \cdot 2 \pm 0 \cdot 4$	857	856 ± 10	851	860 ± 10	
$880 \cdot 4 \pm 0 \cdot 5$	$880 \cdot 5 \pm 0 \cdot 4$	$880 \cdot 1 \pm 0 \cdot 6$	876				
$1158 \cdot 3 \pm 0 \cdot 6$	$1158 \cdot 3 \pm 0 \cdot 4$	$1159 \cdot 1 \pm 0 \cdot 5$					
$1179 \cdot 4 \pm 0 \cdot 8$	$1178 \cdot 9 \pm 0 \cdot 5$	$1179 \cdot 5 \pm 0 \cdot 6$	1186	1180 ± 7	1179	1177 ± 9	1178 ± 4
$1336 \cdot 2 \pm 0 \cdot 5$	$1136 \cdot 4 \pm 0 \cdot 5$	$1336 \cdot 5 \pm 0 \cdot 6$					
$1406 \cdot 7 \pm 0 \cdot 4$	$1410 \cdot 0 \pm 0 \cdot 8$	$1407 \cdot 6$				1395 ± 13	1402 ± 4
$1650 \cdot 8 \pm 0 \cdot 6$	$1652 \cdot 0 \pm 0 \cdot 9$	$1650 \cdot 9 \pm 0 \cdot 6$	1655				
$1810 \cdot 6 \pm 0 \cdot 7$	$1809 \cdot 7 \pm 1 \cdot 0$	$1811 \cdot 5 \pm 0 \cdot 8$	1819	1812 ± 6	1809	1817 ± 9	
$1883 \cdot 6 \pm 0 \cdot 9$	$1885 \cdot 0 \pm 0 \cdot 6$	$1883 \cdot 1 \pm 0 \cdot 5$					1881 ± 4
$1931 \cdot 2 \pm 0 \cdot 6$		$1931 \cdot 4 \pm 0 \cdot 6$					
$1962 \cdot 2 \pm 0 \cdot 5$	$1962 \cdot 7 \pm 0 \cdot 5$	$1962 \cdot 5 \pm 1 \cdot 5$	1965	1962 ± 6	1958	1947 ± 13	
$2094 \cdot 2 \pm 0 \cdot 6$	$2094 \cdot 3 \pm 0 \cdot 3$	$2094 \cdot 0 \pm 1 \cdot 0$					
$2106 \cdot 4 \pm 0 \cdot 7$		$2106 \cdot 1 \pm 0 \cdot 7$	2103	2100 ± 9	2097	2117 ± 9	
$2114 \cdot 3 \pm 0 \cdot 9$			(2120)				
$2140 \cdot 6 \pm 0 \cdot 5$	$2143 \cdot 2 \pm 0 \cdot 5$	$2142 \cdot 5 \pm 1 \cdot 5$					
$2289 \cdot 3 \pm 0 \cdot 8$		$2288 \cdot 7 \pm 1 \cdot 0$	2296	2294 ± 5	2291	2310 ± 10	2284 ± 4
$2335 \cdot 8 \pm 0.9$		$2336 \cdot 5 \pm 1 \cdot 1$	2339				
$2383 \pm 1 \cdot 5$	$2382 \cdot 8 \pm 0 \cdot 5$		(2395)				
$2552 \pm 1 \cdot 5$		$2552 \cdot 3 \pm 0 \cdot 7$					
$2580 \cdot 4 \pm 0 \cdot 8$	$2580 \cdot 4 \pm 1 \cdot 0$	2579 ± 2					
$2670 \cdot 6 \pm 0 \cdot 6$	2669.6土				2657		
$\underline{2796 \pm 2}$							

Table 4 (Continued)
$\left.\begin{array}{ccccc}\begin{array}{c}\text { Present* } \\ (\mathrm{p}, \gamma)\end{array} & \begin{array}{c}\text { Walinga* } \\ (\mathrm{p}, \gamma)\end{array} & \begin{array}{c}\text { Ball* } \\ (\alpha, \mathrm{p} \gamma)\end{array} & \begin{array}{c}\text { Excitation energy (keV) from } \\ \text { Broman* } \\ \left({ }^{3} \mathrm{He}, \mathrm{d}\right)\end{array} & \begin{array}{c}\begin{array}{c}\text { Schwartz* } \\ \left({ }^{3} \mathrm{He}, \mathrm{d}\right)\end{array}\end{array}\end{array} \begin{array}{c}\text { Bommer* } \\ \left({ }^{3} \mathrm{He}, \mathrm{d}\right)\end{array}\right)$

[^0]Table 5. Branching ratios in ${ }^{43} \mathrm{Sc}$

Initial level (keV)	0	152472		844	855	880	Branching ratio (\%) for transition to final level at				1651	1811	1931	1962	2106	2289 keV	
				1158			1179	1336	1407								
152	100																
472	96 ± 2	4 ± 1															
844	100																
855		80 ± 4	20 ± 2														
880	2 ± 1	98 ± 2															
1158		57 ± 2	2 ± 1		21 ± 3	20 ± 3											
1179	16 ± 2		71 ± 6	12 ± 2		1											
1336	18 ± 3	65 ± 2				17 ± 2											
1407	80 ± 3		7 ± 2	13 ± 2													
1651	12 ± 2	60 ± 3			3 ± 1	7 ± 2	18 ± 2										
1811		10 ± 3	35 ± 4		16 ± 4			39 ± 5									
1884	100																
1931	1					83 ± 3			16 ± 2								
1962			84 ± 2				3 ± 1	13 ± 2									
2094		17 ± 3	11 ± 3	11 ± 2	18 ± 2	10 ± 2		33 ± 3									
2106						77 ± 5	23 ± 3										
2114		56 ± 7					44 ± 5										
2141		25 ± 2	17 ± 2		4 ± 2	34 ± 3	5 ± 2	2 ± 1			13 ± 2						
2289	100																
2336	100																
2383											100						
2552									40 ± 4				60 ± 5				
2580		52 ± 7				21 ± 4	27 ± 5										
2671			22 ± 3		49 ± 2	21 ± 4		8 ± 2									
2796		25 ± 4		75 ± 7													

Table 5 (Continued)

Initial level (keV)	Branching ratio (\%) for transition to final level at															
	0	152	472	844	855	880	1158	1179	1336	1407	1651	1811	1931	1962	2106	2289 keV
2811	50 ± 5								50 ± 5							
2841	70 ± 5					30 ± 6										
2846	100															
2860		33 ± 3				44 ± 2	10 ± 3	7 ± 2			6 ± 2					
2875		80														
2988		38 ± 3		22 ± 3		27 ± 2		13 ± 3								
3160						25										
3261	60															
3292				39 ± 4		9 ± 3		43 ± 5				9 ± 2				
3328	70															
3331			9 ± 2	14 ± 3			21 ± 2	48 ± 2				6 ± 2		2 ± 1		
3374	50															
3452	12 ± 4	24 ± 3		20 ± 3		44 ± 3										
3463		73 ± 5				27 ± 3										
3503	50 ± 5			50 ± 5												
3645						24 ± 5		38 ± 6			25 ± 5			13 ± 4		
3683		55 ± 6		31 ± 3		14 ± 2										
3734				29						24						9
3757	30 ± 5	70 ± 7														
3807			22 ± 5			63 ± 3			15 ± 4							
3843				40												
3860		80														
4007		30 ± 5	15 ± 4		30 ± 6	25 ± 6										
4038			40 ± 9										60 ± 8			
4371						11 ± 3			41 ± 4	20 ± 5	13 ± 4				15 ± 3	
4430						30 ± 4	30 ± 5	40 ± 6								
4464	100															

4. Decay Schemes of Bound Levels

In the present investigation most of the bound levels were populated at more than one resonance with different intensities (see Table 2). This made it possible to determine with improved accuracy the γ ray branching ratio of a bound level by considering the resonances which populated it with relatively stronger intensity. The decay schemes of the bound levels were found to be consistent from one resonance to another and are shown in Fig. 1, while the γ ray branching ratios of all observed bound levels are listed in Table 5. Most values for branching ratios are averages of results obtained at several different resonances. The results obtained for the bound levels are discussed briefly below.

$0 \cdot 472 \mathrm{MeV}$ Level

The 0.472 MeV level decays primarily to the ground state (96%). Only a 4% decay to the first excited state ($0.320 \mathrm{MeV} \gamma$ ray) is found, which is in agreement with the γ ray transition observed by Ball et al. (1972).

0•844 MeV Level

Two resonances at $E_{\mathrm{p}}=1319$ and 2038 keV populate (50% and 63% respectively) the level at 0.844 MeV . The level decays completely to the ground state, which is in agreement with previously reported results. The upper limit of $<4 \%$ for the $844 \rightarrow 152 \mathrm{keV}$ transition obtained by Ball et al. (1972) does not agree with the present results. The $0.372 \mathrm{MeV} \gamma$ ray for this transition (shown in the spectra) belongs to the decay of the first excited state of ${ }^{43} \mathrm{Ca}$.
0.855 MeV Level

The transition from the 0.855 MeV level to the ground state is not observed. The 0.703 and $0.383 \mathrm{MeV} \gamma$ rays shown in the γ ray spectrum (Fig. 5) correspond to transitions to the first excited state and the level at 0.472 MeV . The high resolution of the $\mathrm{Ge}(\mathrm{Li})$ detector separates the $0.703 \mathrm{MeV} \gamma$ ray from the $0.707 \mathrm{MeV} \gamma$ ray, which is from the $1.179 \rightarrow 0.472 \mathrm{MeV}$ transition. The branching ratios are 80% to the 0.152 and 20% to the 0.472 MeV levels. This agrees with the results of Walinga et al. (1969) but not with those of Ball et al. (1970).

$0 \cdot 880 \mathrm{MeV}$ Level

The $0 \cdot 880 \mathrm{MeV}$ level decays 2% to the ground state and 98% to the first excited state. The transition to the ground state reported by Ball et al. (1972) is confirmed.

1. 158 MeV Level

The $1.007,0.687,0.304$ and $0.279 \mathrm{MeV} \gamma$ rays (Fig. 3) arise from the four transitions, $1.158 \rightarrow 0.152,0.472,0.855$ and 0.880 MeV . The branching ratios to these levels are $57 \%, 2 \%, 21 \%$ and 20% respectively. These results differ from previously reported ones with regard to the number of transitions as well as to the branching ratios.

1.179 MeV Level

The strongest (21%) primary transition to the bound level at $1 \cdot 179 \mathrm{MeV}$ is found at the $E_{\mathrm{p}}=1045 \mathrm{keV}$ resonance. The four γ rays of $1 \cdot 179,0 \cdot 707,0.335$ and
0.299 MeV (Fig. 3) are for the transitions from the level at 1.179 to the $0,0.472$, 0.844 and 0.880 MeV levels. The branching ratios to these levels are $16 \%, 71 \%$, 12% and 1% respectively. The $0.707 \mathrm{MeV} \gamma$ ray is well separated from the γ ray at 0.703 MeV , which is for the $0.855 \rightarrow 0.152 \mathrm{MeV}$ transition. The 1% transition to the level at 0.880 MeV has not been reported previously. The other three branching ratios differ from the results of Walinga et al. (1969) and Ball et al. (1970).

1.336 MeV Level

The strongest primary transition to the bound level at 1.336 MeV is found at the $E_{\mathrm{p}}=1201 \mathrm{keV}$ resonance, and the strongest cascade feed to this level is from the level at 1.931 MeV , which is populated at $E_{\mathrm{p}}=2643 \mathrm{keV}$ (Fig. 10). The three γ rays of $1.336,1 \cdot 184$ and 0.456 MeV (Figs 1 and 13) are for the three transitions $1.336 \rightarrow 0,0.152$ and 0.880 MeV . The branching ratios to these levels are 18%, 65% and 17% respectively. These findings are different from the results of Walinga et al. (1969) who reported only two transitions, and also from the branching ratios reported by Ball et al. (1970).

1.407 MeV Level

The three γ rays of $1.407,0.935$ and 0.563 MeV (Fig. 4) correspond to three transitions from the level at 1.407 MeV to the levels at $0,0.472$ and 0.844 MeV . The branching ratios to these levels are $80 \%, 7 \%$ and 13% respectively. The 7% decay to the 0.472 MeV level was not observed either by Walinga et al. (1969) or by Ball et al. (1970).

1.651 MeV Level

The 1.651 MeV level is found to decay to five levels at $0,0 \cdot 152,0 \cdot 855,0 \cdot 880$ and 1.158 MeV with $1.651,1.499,0.796,0.771$ and $0.493 \mathrm{MeV} \gamma$ rays. The branching ratios to these levels are $12 \%, 60 \%, 3 \%, 7 \%$ and 18% respectively. It was possible only by means of a high resolution and high efficiency $\mathrm{Ge}(\mathrm{Li})$ detector to observe the weaker transitions and the well-separated $1.499 \mathrm{MeV} \gamma$ ray from the γ ray at 1.490 MeV (Fig. 3), the latter γ ray being for the $1.962 \rightarrow 0.472 \mathrm{MeV}$ transition. These results are in serious disagreement with the results of Walinga et al. (1969). Ball et al. (1972) did not report the 7% decay to the level at 0.880 MeV .

$1 \cdot 811 \mathrm{MeV}$ Level

The 1.811 MeV level decays to four levels at $0.152,0.472,0.855$ and 1.179 MeV , and the branching ratios are $10 \%, 35 \%, 16 \%$ and 39% respectively. These results are in disagreement with the previously reported two transitions to levels at 0.472 and 1.179 MeV and with the branching ratios as well.

1.884 MeV Level

The 1.884 level decays completely to the ground state, which is in agreement with the results of Ball et al. (1970) but in disagreement with those of Walinga et al. (1969) who reported decays of 40% and 60% to the levels at 0.472 and 1.179 MeV respectively.

1.931 MeV Level

The 1.931 MeV level is populated (59%) from only one resonance, that at $E_{\mathrm{p}}=2643 \mathrm{keV}$. The three γ rays at $1.931,1.052$ and 0.595 MeV (Fig. 10) are for the three transitions from the 1.931 MeV level to the ground state and the levels at 0.880 and 1.336 MeV (Fig. 13). The branching ratios to the three levels are 1%, 83% and 16% respectively. These results are different from those of Ball et al. (1970) who reported 69% and 31% decays to the levels at 0.880 and 1.336 MeV respectively.

1.962 MeV Level

This level is found to decay primarily (84%) to the level at 0.472 MeV and 13% to the level at $1 \cdot 179 \mathrm{MeV}$, while a 3% decay to the level at $1 \cdot 158 \mathrm{MeV}$ is observed which had not been reported previously. The three γ rays of $0.783,0.804$ and 1.490 MeV (Fig. 3) for the three transitions are well separated from the closely spaced γ rays in the γ ray spectra, and the γ ray for the weaker transition is clearly observable. This has been achieved by means of the high resolution and high efficiency detector.

2.094 MeV Level

The 2.094 MeV level decays to six levels at $0 \cdot 152,0.472,0 \cdot 844,0.855,0.880$ and $1 \cdot 179 \mathrm{MeV}$ with branching ratios of $17 \%, 11 \%, 11 \%, 18 \%, 10 \%$ and 33% respectively. The γ rays for the six transitions (Fig. 5) are $1 \cdot 942,1 \cdot 622,1 \cdot 249,1 \cdot 238$, 1.214 and 0.914 MeV respectively. These γ rays, especially those of $1 \cdot 214,1 \cdot 238$ and 1.249 MeV , are well separated from the group of closely spaced γ rays. The present results differ from previous measurements in respect of the number of transitions as well as the branching ratios.

2•106 MeV Level

The $2 \cdot 106 \mathrm{MeV}$ level is found to decay 77% to the level at $0 \cdot 880 \mathrm{MeV}$ and 23% to the level at 1.158 MeV . These branching ratios are different from those reported by Ball et al. (1970).

2.114 MeV Level

The $2 \cdot 114 \mathrm{MeV}$ level has not been reported previously. The level decays 56% to the level at $0 \cdot 152 \mathrm{MeV}$ and 44% to the level at $1 \cdot 158 \mathrm{MeV}$.

2•141 MeV Level

Though populated at a number of resonances, the $2 \cdot 141 \mathrm{MeV}$ level is populated relatively strongest at $E_{\mathrm{p}}=1201 \mathrm{keV}$. The level cascades to seven levels at $0 \cdot 152$, $0.472,0.855,0.880,1.158,1.179$ and 1.651 MeV with branching ratios of 25%, $17 \%, 34 \%, 5 \%, 2 \%, 13 \%$ and 4% respectively. These results are different from those of Walinga et al. (1969) and Ball et al. $(1970,1972)$.

$2 \cdot 289,2 \cdot 336$ and $2 \cdot 383 \mathrm{MeV}$ Levels

The two levels at $2 \cdot 289$ and $2 \cdot 336 \mathrm{MeV}$ decay completely to the ground, while the third level at 2.383 MeV decays completely to the level at 1.651 MeV . These results are in agreement with previous measurements.

2.552 MeV Level

The level at $2 \cdot 552 \mathrm{MeV}$ is populated only from the resonance at $E_{\mathrm{p}}=2643 \mathrm{keV}$. The level decays 40% to the level at 1.336 MeV and 60% to the level at 1.931 MeV (Fig. 13). This agrees with the results of Ball et al. (1970).

2.580 MeV Level

The $2 \cdot 580 \mathrm{MeV}$ level cascades to three levels at $0 \cdot 152,0.880$ and $1 \cdot 158 \mathrm{MeV}$ with branching ratios of $52 \%, 21 \%$ and 27% respectively. These results are completely different from the previous measurements.

2.671 MeV Level

The 2.671 MeV level is found to have four transitions to the levels at 0.472 , $0.855,0.880$ and 1.179 MeV with branching ratios of $22 \%, 49 \%, 21 \%$ and 8% respectively, as compared with the previously reported results of two transitions of 75% and 25% to the levels at $1 \cdot 179$ and 1.407 MeV (Walinga et al. 1969).

2.796 MeV Level

The 2.796 MeV level has not been reported previously. It is populated from two resonances at $E_{\mathrm{p}}=2038$ and 2523 keV . The level decays 25% to the level at $0 \cdot 152 \mathrm{MeV}$ and 75% to the level at 0.844 MeV .

2.811 MeV Level

The $2 \cdot 811 \mathrm{MeV}$ level is populated from only one resonance at $E_{\mathrm{p}}=2643 \mathrm{keV}$. It decays (Fig. 13) to the ground state as well as to the 1.336 MeV level with equal intensity. These results are in disagreement with those of Ball et al. (1970).

2•84 MeV Doublet

The two closely spaced levels at 2.841 and 2.846 MeV are populated from the resonance at $E_{\mathrm{p}}=1201 \mathrm{keV}$, though the former level is also populated from the resonance at $E_{\mathrm{p}}=2643 \mathrm{keV}$. The 3.261 and $3.267 \mathrm{MeV} \gamma$ ray energies are well separated (Fig. 3). These γ rays arise from primary transitions from the resonance level to the levels at 2.841 and $2 \cdot 846 \mathrm{MeV}$. The two levels of this doublet have different decay schemes, the transition to the ground state being common to both though with different branching ratios. The 2.841 and $2.846 \mathrm{MeV} \gamma$ rays are also well separated in the γ ray spectra. The 2.841 MeV level (Figs 1 and 13) decays 70% to the ground state and 30% to the 0.880 MeV level, whereas the 2.846 MeV level goes completely to the ground state. The present results show for the first time the existence of the doublet.
$2 \cdot 860 \mathrm{MeV}$ Level
The 2.860 MeV level has not been reported previously and is populated at three resonances in the present study. It decays to five levels at $0 \cdot 152,0 \cdot 880,1 \cdot 158$, 1.179 and 1.651 MeV with branching ratios of $33 \%, 44 \%, 10 \% .7 \%$ and 6% respectively.

$2 \cdot 875 \mathrm{MeV}$ Level

The 2.875 MeV level is populated from two resonances at $E_{\mathrm{p}}=2038$ and 2523 keV . The level is reported for the first time. Only 80% decay to the first excited state could be placed in the decay scheme.

2.988 MeV Level

The 2.988 MeV level is also reported here for the first time and is populated from two resonances at $E_{\mathrm{p}}=1201$ and 1319 keV . The level decays 38% to the $0 \cdot 152$, 22% to the $0 \cdot 844,27 \%$ to the $0 \cdot 880$ and 13% to the $1 \cdot 179 \mathrm{MeV}$ level.

$3 \cdot 160$ and $3 \cdot 261 \mathrm{MeV}$ Levels

The $3 \cdot 160 \mathrm{MeV}$ level is populated from two resonances at $E_{\mathrm{p}}=1201$ and 2471 keV , while the 3.261 MeV level is populated from one resonance at $E_{\mathrm{p}}=2038 \mathrm{keV}$. Only a part of the decay of these levels could be placed.

3.292 MeV Level

The $3 \cdot 292 \mathrm{MeV}$ is populated level from the resonance at $E_{\mathrm{p}}=1045 \mathrm{keV}$ only. The level decays 39% to the $0 \cdot 844,9 \%$ to the $0 \cdot 880,43 \%$ to the $1 \cdot 179$ and 9% to the 1.811 MeV level. This is completely different from the previously reported 100% transition to the ground state (Walinga et al. 1969).

$3 \cdot 33 \mathrm{MeV}$ Doublet

The level at 3.328 MeV is populated from the 2038 keV resonance, while the $3 \cdot 331 \mathrm{MeV}$ level is populated from the 1045 keV resonance. The decay schemes of the two levels are different. The 3.328 MeV level decays 70% to the ground state, while 30% of the decay could not be placed. The $2 \cdot 859,2 \cdot 487,2 \cdot 173,2 \cdot 151,1 \cdot 520$ and $1.369 \mathrm{MeV} \gamma$ rays are the results of six transitions from the level at 3.331 MeV . The branching ratios are 9% to the $0 \cdot 472,14 \%$ to the $0 \cdot 844,21 \%$ to the $1 \cdot 158$, 48% to the $1 \cdot 179,6 \%$ to the 1.811 and 2% to the 1.962 MeV level. A level at 3.327 MeV was, however, reported by Walinga et al. (1969) but no decay scheme was given.

3•374 MeV Level

The 3.374 MeV level, not reported previously, is populated from only one resonance at $E_{\mathrm{p}}=2714 \mathrm{keV} ; 50 \%$ of the decay from the level goes to the ground state and the other 50% of the decay could not be determined.

3.45 MeV Doublet

The 3.452 MeV level is populated from four resonances, while the level at 3.463 MeV is populated from the resonance at $E_{\mathrm{p}}=2523 \mathrm{keV}$ only. The 3.452 , $3 \cdot 300,2 \cdot 608$ and $2 \cdot 572 \mathrm{MeV} \gamma$ rays are for the four transitions from the decay of the 3.452 MeV level to the levels at $0,0.152,0.844$ and 0.880 MeV . The respective branching ratios are $12 \%, 24 \%, 20 \%$ and 44%. The high resolution γ ray spectrum (Fig. 3) separates very well two closely spaced γ rays of $2 \cdot 608$ and $2 \cdot 614 \mathrm{MeV}$, the latter γ ray being from the $\mathrm{ThC}^{\prime \prime}$ activity. These results are in serious disagreement with the previous measurement (Walinga et al. 1969) who reported a 100% decay to the ground state. The other level of the doublet at 3.463 MeV has not been reported previously. It decays 73% to the first excited state and 27% to the 0.880 MeV state.

3.504 MeV Level

The $3 \cdot 504 \mathrm{MeV}$ level, not reported previously, is excited only at the $E_{\mathrm{p}}=2714 \mathrm{keV}$ resonance. The level decays with equal intensity to the ground state and the level at 0.844 MeV .

3.645 MeV Level

Two resonances at $E_{\mathrm{p}}=1319$ and 2471 keV populate the level at 3.645 MeV . Four γ rays, $2.765,2.466,1.991$ and 1.683 MeV belong to the decay of the level to the four levels at $0 \cdot 880,1 \cdot 179,1 \cdot 651$ and $1 \cdot 962 \mathrm{MeV}$. The respective branching ratios are $24 \%, 38 \%, 25 \%$ and 13% to the four levels. The level is reported for the first time.

3•683 MeV Level

The 3.683 MeV level is populated at two resonances and it decays 55% to the $0 \cdot 152,31 \%$ to the $0 \cdot 844$ and 14% to the 0.880 MeV level.

3.734 MeV Level

Only the resonance at $E_{\mathrm{p}}=1299 \mathrm{keV}$ populates the bound level at 3.734 MeV . The level decays 29% to the $0 \cdot 844,24 \%$ to the $1 \cdot 407$ and 9% to the $2 \cdot 289 \mathrm{MeV}$ level, while 38% of the decay from the level could not be discovered. The level has not been previously reported.

3.757 MeV Level

The resonance at $E_{\mathrm{p}}=2523 \mathrm{keV}$ excites the level at 3.757 MeV . The level decays 30% to the ground state and 70% to the first excited state. The level is reported here for the first time.

3•807 MeV Level

Two resonances at $E_{\mathrm{p}}=2471$ and 2643 keV populate the level at 3.807 MeV . The level decays (Fig. 13) 22% to the $0.472,63 \%$ to the 0.880 and 15% to the 1.336 MeV level. These results are completely different from the reported 100% transition to the ground state (Walinga et al. 1969).

3.843 and 3.860 MeV Levels

The level at 3.843 MeV is populated from two resonances at $E_{\mathrm{p}}=1201$ and 2038 keV , and the level at 3.860 MeV is also populated from two resonances at $E_{\mathrm{p}}=1319$ and 2471 keV . Not all of the transitions from the two bound levels could be determined. Only a 40% transition from the level at 3.843 MeV to that at $0 \cdot 844 \mathrm{MeV}$ was found. The 3.860 MeV level decays 80% to the first excited state. The remaining 20% of the decay could not be established. The $3 \cdot 860 \mathrm{MeV}$ level has not been reported previously.

4.007 MeV Level

Only one resonance, that at $E_{\mathrm{p}}=2471 \mathrm{keV}$, populates the level at 4.007 MeV . The level decays to four bound levels at $0 \cdot 152,0.472,0.855$ and 0.880 MeV with branching ratios of $30 \%, 15 \%, 30 \%$ and 25% respectively. The level has not been reported previously.

$4 \cdot 038 \mathrm{MeV}$ Level

Two resonances at $E_{\mathrm{p}}=2523$ and 2643 keV populate the level at 4.038 MeV , which has not been reported previously. It decays (Fig. 13) 40% to the 0.472 and 60% to the 1.931 MeV level.

4.371 MeV Level

The 4.371 MeV level is populated from one resonance only, that at $E_{\mathrm{p}}=2643 \mathrm{keV}$. It has five transitions (Fig. 1) of $11 \%, 41 \%, 20 \%, 13 \%$ and 15% to the levels at $0 \cdot 880,1 \cdot 336,1 \cdot 407,1 \cdot 651$ and $2 \cdot 106 \mathrm{MeV}$ respectively. The level was found to be populated for the first time via the proton capture reaction.

4.430 MeV Level

The 4.430 MeV level, which has not been reported previously, is populated from two resonances at $E_{\mathrm{p}}=2523$ and 2714 keV . It decays 30% to the $0 \cdot 880,30 \%$ to the $1 \cdot 158$ and 40% to the $1 \cdot 179 \mathrm{MeV}$ level respectively.

Table 6. Angular distribution data
Energies are in keV

Initial state		Final state		A_{2}	A_{4}	δ
Energy	Spin	Energy	Spin			(E2/M1)
7514	9/2	1931	9/2	$0 \cdot 38 \pm 0.04$	$-0 \cdot 14 \pm 0 \cdot 04$	$\left\{\begin{array}{r}-0 \cdot 87 \pm 0 \cdot 12^{\text {A }} \\ 0 \cdot 19 \pm 0 \cdot 05^{\text {a }}\end{array}\right.$
1931	9/2	880	5/2	$0 \cdot 38 \pm 0.06$	$-0 \cdot 30 \pm 0.06$	pure E2
7514	9/2	1931	9/2	$0 \cdot 38 \pm 0.04$	$-0 \cdot 14 \pm 0 \cdot 04$	$\left\{\begin{array}{r}-0 \cdot 90 \pm 0 \cdot 14^{\mathrm{B}} \\ 0 \cdot 20 \pm 0 \cdot 07^{\mathrm{B}}\end{array}\right.$
1931	9/2	1336	7/2	$-0.63 \pm 0 \cdot 11$	-0.01 ± 0.12	$0 \cdot 14 \pm 0 \cdot 06^{\text {c }}$
7514	9/2	0	7/2	-0.20 ± 0.09	$0 \cdot 01 \pm 0.09$	-0.05 ± 0.07
7514	9/2	4371	7/2	$0 \cdot 28 \pm 0.05$	-0.02 ± 0.05	-0.31 ± 0.06
7514	9/2	3807	7/2	-0.31 ± 0.10	$-0 \cdot 18 \pm 0 \cdot 10$	0.05 ± 0.06
3807	7/2	880	5/2	-0.36 ± 0.09	$0 \cdot 11 \pm 0 \cdot 10$	$0 \cdot 00 \pm 0 \cdot 10^{\text {D }}$
7514	9/2	4038	$\left\{\begin{array}{r}7 / 2 \\ 9 / 2 \\ 11 / 2\end{array}\right\}$	$-0 \cdot 22 \pm 0 \cdot 12$	$0 \cdot 04 \pm 0 \cdot 13$	$\left\{\begin{array}{r}-0 \cdot 05 \pm 0 \cdot 08 \\ 0 \cdot 70 \pm 0 \cdot 22 \\ -0 \cdot 02 \pm 0 \cdot 11\end{array}\right.$

${ }^{\text {A }}$ Values obtained by simultaneously considering in the χ^{2} analysis, the pure E2 transition $1931 \rightarrow 880 \mathrm{keV}(9 / 2 \rightarrow 5 / 2)$.
${ }^{\text {B }}$ Same as remark A, but taking into account the $1931 \rightarrow 1336 \mathrm{keV}$ transition ($9 / 2 \rightarrow 7 / 2$) with $\delta=0 \cdot 14$.
c Value taken from Ball et al. (1970).
${ }^{\mathrm{D}}$ Same as remark A, but taking into account the $7514 \rightarrow 3807 \mathrm{keV}$ transition $(9 / 2 \rightarrow 7 / 2)$ with $\delta=0 \cdot 05$.

4.464 MeV Level

The resonance at $E_{\mathrm{p}}=2038 \mathrm{keV}$ populates the level at 4.464 MeV and it decays completely to the ground state. This agrees with the results of Walinga et al. (1969) except for the excitation energy.

5. Angular Distribution Measurements

The angular distributions have been measured at the $E_{\mathrm{p}}=2643 \mathrm{keV}$ resonance. Table 6 lists the corresponding A_{2} and A_{4} coefficients. A standard χ^{2} program was used in the analysis of the angular distributions, together with the sign convention of Rose and Brink (1967) for the mixing ratio δ. Because only channel spin $s=\frac{1}{2}$ is possible, no formation parameters are involved. The 0.1% probability limit has been adopted to accept or reject a given solution.

If we consider the χ^{2} analysis for the $7.514 \rightarrow 1.931$ and $7.514 \rightarrow 0 \mathrm{MeV}$ transitions independently then the spin of the resonance can only be limited to the range from $J=3 / 2$ to $9 / 2$. However, if we consider also the cascade $7 \cdot 514 \rightarrow 1 \cdot 931$ $\left(9 / 2^{+}\right) \rightarrow 0 \cdot 880\left(5 / 2^{+}\right) \mathrm{MeV}$, it is possible to assign a $J=9 / 2$ value to the $7 \cdot 514 \mathrm{MeV}$ level (Fig. 14). This has been done knowing that the $1.931 \rightarrow 0.880 \mathrm{MeV}$ is a pure E2 transition and neglecting, after estimation, the very small contribution in the corresponding angular distribution of the third γ ray of the cascades via the 2.552 and 4.038 MeV levels (Fig. 13). Two mixing ratio values are possible for the $7.514 \rightarrow 1.931 \mathrm{MeV}$ transition, as indicated in Table 6. It has been verified that the same δ values are obtained by considering the $7.514 \rightarrow 1.931 \rightarrow 1.336 \mathrm{MeV}$ cascade, using $\delta=+0.14$ for the $1.931 \rightarrow 1.336 \mathrm{MeV}$ transition as measured by Ball et al. (1970) (see Table 5).

Fig. 14. Simultaneous χ^{2} analysis of the $7.514 \rightarrow 1.931$ and $1.931 \rightarrow 0.880 \mathrm{MeV}$ cascade transitions, which correspond to the main γ ray decay of the $7 \cdot 514 \mathrm{MeV}$ level of ${ }^{43} \mathrm{Sc}$. The curves obtained by considering the cascade $7 \cdot 514 \rightarrow 1 \cdot 931 \rightarrow 1.336 \mathrm{MeV}$ are very similar. The $0 \cdot 1 \%$ probability limit is indicated by the dashed line.

By taking then the spin value $J=9 / 2$ for the $7 \cdot 514 \mathrm{MeV}$ level, it is possible to assign the spin values of the 4.371 and 3.807 MeV levels as $J=7 / 2$, and to assign that for the 4.038 MeV level as $J \geqslant 7 / 2$. The corresponding mixing ratio values are indicated in Table 6.

6. Discussion

From the study of nine resonances, new information has been obtained on the energy levels and decay properties of the bound levels of ${ }^{43} \mathrm{Sc}$. A summary of all results achieved in the present work is found in Tables 1-6, while the energies of excited levels in ${ }^{43} \mathrm{Sc}$ and the γ ray branching of all levels observed in the present investigation are presented in Fig. 1. All 52 bound levels up to an excitation energy of 4.47 MeV are populated from the nine resonances; 17 of these levels have been identified for the first time, namely those at $2 \cdot 114,2 \cdot 796,2 \cdot 846,2 \cdot 860,2 \cdot 875$,
$3 \cdot 160,3 \cdot 331,3 \cdot 374,3 \cdot 463,3 \cdot 503,3 \cdot 645,3 \cdot 734,3 \cdot 757,3 \cdot 860,4 \cdot 007,4 \cdot 038$ and 4.430 MeV . Only two levels in the vicinity of 2.8 MeV have been reported previously, whereas in the present study four more excited levels have been established at 2.796 , $2 \cdot 846,2.860$ and 2.875 MeV . The level at 2.84 MeV was found to consist of two levels at 2.841 and 2.846 MeV when measured with better resolution. Similarly the closely spaced doublets at 3.328 and 3.331 MeV , and at 3.452 and 3.463 MeV have been determined.

The decay properties of most of the bound levels have been revised, either for the percentage branching ratios of transitions or for the number of transitions from the level. In some cases, both the number of transitions as well as the branching ratios have been revised. For the excited states above 2.8 MeV , the decay properties of most of the levels have been presented for the first time, except for a few levels whose previously reported decay properties have been subjected to revision. The significant changes in the decay schemes of most of the levels have been made possible by means of the $120 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector which had both high resolution and high efficiency. Also, the selection of the resonances which populated the levels with greater intensity, either from the primary or the primary and the cascades, contributed to the greater accuracy.

The measurement of the γ ray yield from the ${ }^{42} \mathrm{Ca}(\mathrm{p}, \gamma)^{43} \mathrm{Sc}$ reaction has been extended to 2.75 MeV from the previously reported range of $800-2060 \mathrm{keV}$. The present results were obtained with a ${ }^{42} \mathrm{Ca}$ target which was less than 1 keV thick. The excitation curve presented was from measurements repeated three times, each time the resonance peaks being reproduced at the same proton energy. Out of over 100 resonances, the stronger ones are well separated.

The experimental data in the case of eight resonances have shown that the bound levels populated from these resonances all have spin values of $<9 / 2$. It is only the resonance at 2643 keV which populates bound levels of spin from $5 / 2$ to (11/2). The analysis from the angular distribution data leads to a $J=9 / 2$ assignment for the $7 \cdot 514 \mathrm{MeV}$ level. The spin of the $1 \cdot 158 \mathrm{MeV}$ level was proposed as $3 / 2$ or $5 / 2$ by Ball et al. (1970). However, if we look at the 3% branch $7 \cdot 514 \rightarrow 1 \cdot 158 \mathrm{MeV}$ (Fig. 13), we see that an assignment of $5 / 2$ for the $1 \cdot 158 \mathrm{MeV}$ level is more probable, as spin $3 / 2$ corresponds to an octopole transition. For the two bound levels at $2 \cdot 811$ and 2.841 MeV , whose spin could not be determined because of poor intensities of the primary γ rays from the resonance, their spins can be limited to $>5 / 2$.

For the 7.514 MeV level, parity assignment can be made by considering the measured mixing ratio (Table 6). The value of $\delta \approx 0 \cdot 2$, obtained for the transition to the positive parity level at 1.931 MeV , and the value of $\delta \approx 0$, obtained for the transition to the negative parity ground state, strongly indicate a positive parity assignment for the resonance state. Consequently, the 4.371 MeV level will have positive parity and the 3.807 MeV level could have negative parity, even if the two corresponding mixing ratios (nearly zero, see Table 6) in the $7 \cdot 514 \rightarrow 3 \cdot 807 \rightarrow 0.880$ MeV cascade do not allow us to reject a pure M1 transition.

The 59% branch $7 \cdot 514 \rightarrow 1.931 \mathrm{MeV}$ (between these two levels we have $9 / 2^{+} \rightarrow 9 / 2^{+}$) is most likely an analogue to anti-analogue transition. The $T=3 / 2$ assumption for this resonance is supported by the fact that the decay scheme is quite simple (Fig. 13). The $7 \cdot 514 \mathrm{MeV}$ level should be the analogue of the ${ }^{43} \mathrm{Ca}$ level at 3.280 MeV based on Coulomb energy considerations. A state at 3.916 MeV in ${ }^{43} \mathrm{Ca}$ is assigned $l=4$ and $J^{\pi}=9 / 2^{+}$from (d, p) work by Dorenbusch et al. (1966).

Manthuruthil et al. (1974), from proton elastic scattering data, found a resonance at $E_{\mathrm{p}}=3220 \mathrm{keV}$ which had $l=4$, and they identified this resonance as the IAS of the 3.916 MeV state in ${ }^{43} \mathrm{Ca}$. On the other hand, the same authors did not survey the proton bombarding the energy region from 2.52 to 2.70 MeV for the (p, p) reaction to verify if another resonance at $E_{\mathrm{p}}=2643 \mathrm{keV}$ had $l=4$. In the present investigation for the (p, γ) reaction, it is possible that the resonance at $E_{\mathrm{p}}=2643 \mathrm{keV}$ may be the split analogue of the resonance at 3220 keV found by Manthuruthil et al. (1974). It will be of interest to measure the decay scheme and the angular distributions of the (p, γ) resonance at $E_{\mathrm{p}}=3220 \mathrm{keV}$ to compare the results with the resonance at $E_{\mathrm{p}}=2643 \mathrm{keV}$. It has been observed in the ${ }^{58} \mathrm{Ni}(\mathrm{p}, \gamma){ }^{59} \mathrm{Cu}$ reaction that two resonances at $E_{\mathrm{p}}=2840$ and 3556 keV are possibly the split analogue (paper to be published).

The lowest mixing ratio value for the $7.514 \rightarrow 1.931 \mathrm{MeV}$ transition reported in Table 6, that is, $\delta=0 \cdot 19 \pm 0 \cdot 05$, can be considered as the most probable solution, and is consistent with a strong M1 transition of the order of one Weisskopf unit. Johnstone (1968) and Johnstone and Payne (1969) explained the large δ values also observed, especially for the $0.880 \rightarrow 0.151$ and $1.158 \rightarrow 0.151 \mathrm{MeV}$ transitions, mainly in terms of M1 retardations rather than by E2 enhancement.

A summary of spin-parity assignments, the electromagnetic decay properties of all bound levels in ${ }^{43} \mathrm{Sc}$, and the rotational band classification (if available) is presented in Fig. 1. The summary contains all results obtained in the present investigation as well as results for the spin-orbit assignments made by other investigators.

A large number of theoretical calculations with varying degrees of sophistication have attempted to describe the properties of the low-lying excited levels in ${ }^{43} \mathrm{Sc}$. The spherical shell model calculations based on a closed ${ }^{40} \mathrm{Ca} \cdot$ core made by McCullen et al. (1964) allow particles only in the $\mathrm{f}_{7 / 2}$ shell. Dieperink and Brussaard (1967) extended their calculations to include positive parity states by including a $1 \mathrm{~d}_{3 / 2}$ hole state. Malik and Scholz $(1966,1967)$ and Scholz and Malik (1967) used a strongcoupling symmetric rotator model which included Coriolis coupling between bands. However, the most successful calculations are those of Johnstone (1968) and Johnstone and Payne (1969), which assumed that the low-lying negative parity levels arise from mixing pure (pf) ${ }^{3}$ states with a $5 p-2 h, K^{\pi}=3 / 2^{-}$rotational band, and that the positive parity levels result from two $2 p-1 h, K^{\pi}=1 / 2^{+}$and $3 / 2^{+}$bands.

Manthuruthil et al. (1970) made a detailed comparison of the theoretical predictions for all models with the experimental data available at that time. The pure (pf) ${ }^{3}$ states and the members of the unperturbed $5 p-2 h, K^{\pi}=3 / 2^{-}$rotational band predicted from the calculations by Johnstone (1968) are in reasonable agreement with the experimental results for the low-energy excited states in ${ }^{43} \mathrm{Sc}$. In order to account for the measured positive parity spectrum, however, it is necessary to reduce the theoretical gap between the $K^{\pi}=3 / 2^{+}$and $K^{\pi}=1 / 2^{+}$bands by decreasing the $\mathrm{d}_{3 / 2}-\mathrm{s}_{1 / 2}$ single-hole gap by approximately 1 MeV less than half the value deduced from the experimental ${ }^{39} \mathrm{~K}$ and ${ }^{39} \mathrm{Ca}$ spectra.

Although most of the low-lying levels observed in ${ }^{43} \mathrm{Sc}$ can be associated with a given theoretical level, it is important to notice that a number of the levels observed above 2 MeV excitation (primarily with spin $\leqslant 7 / 2$) may result from core excitation configurations which are not included in Johnstone's (1968) calculations. The additional information obtained in the present study on the number of levels, the revised and new electromagnetic decay properties and the analogue to anti-analogue transition
found at the $E_{\mathrm{p}}=2643 \mathrm{keV}$ resonance may stimulate additional theoretical calculations so as to completely determine the nature of these states.

Acknowledgments

One of the authors (G.U.D.) would like to thank Professor André Gallmann, for providing research facilities at his laboratory, financial assistance and the encouragement to carry out the research work during the summer of 1973. He would also like to thank Dr Asko Antilla and Dr Folke Stenman for kindly providing facilities at the Accelerator Laboratory, University of Helsinki, Finland, to carry out research work during the summer of 1975. Professor R. G. Summers-Gill and Professor J. A. Cameron are also thanked for providing research facilities at the Tandem Accelerator Laboratory, McMaster University, Hamilton, Canada, during the summer of 1976.

References

Alford, W. P., Schulz, N., and Jamshidi, A. (1971). Nucl. Phys. A 174, 148.
Ball, G. C., Forster, J. S., and Ingebretsen, F. (1972). Nucl. Phys. A 180, 517.
Ball, G. C., Forster, J. S., Ingebretsen, F., and Monahan, C. F. (1970). Can. J. Phys. 48, 2735.
Bommer, J., et al. (1971). Nucl. Phys. A 160, 577.
Broman, L., and Dubois, J. (1965). Nucl. Phys. 72, 529.
Broman, L. (1967). Ark. Fys. 35, 371.
Cujec, B. (1966). Nucl. Phys. 81, 523.
Dieperink, A. E. L., and Brussaard, P. J. (1967). Nucl. Phys. A 106, 177.
Dorenbusch, W. E., Belote, T. A., and Hansen, Ole (1966). Phys. Rev. 146, 734.
Dubois, J., and Broman, L. (1963). Chalmers Univ. Technol. Internal Rep. No. 268.
Endt, P. M., and Van den Leun, C. (1973). Nucl. Phys. A 214, 1.
Grandy, T. B., McDonald, W. J., Dawson, W. K., and Neilson, G. C. (1968). Nucl. Phys. A 111, 469.
Johnstone, I. P. (1968). Nucl. Phys. A 110, 429.
Johnstone, I. P., and Payne, G. L. (1969). Nucl. Phys. A 124, 217.
McCullen, J. D., Bayman, B. F., and Zamick, Larry (1964). Phys. Rev. B 134, 515.
Malik, F., and Scholz, W. (1966). Phys. Rev. 150, 919.
Malik, F., and Scholz, W. (1967). In 'Nuclear Structure' (Eds Anwar Hossain, Harun-ar. Rashid and Mizanul Islam), p. 34 (North-Holland: Amsterdam).
Manthuruthil, J. C., Poirier, C. P., Maripuu, S., and Anderson, W. A. (1974). Phys. Rev. C 10, 1678.
Manthuruthil, J. C., Poirier, C. P., and Walinga, J. (1970). Phys. Rev. C 1, 507.
Phillips, W. R., De La Pena, R., and Critchley, T. A. (1967). Nucl. Phys. A 90, 379.
Plendl, H. S., Defelice, L. H., and Sheline, R. K. (1965). Nucl. Phys. 73, 131.
Poirier, C. P., Tveter, A., Manthuruthil, J. C., Walinga, J., Storizhko, V. E., and Kern, B. D. (1974). Phys. Rev. C 3, 1939.
Rose, H. J., and Brink, D. M. (1967). Rev. Mod. Phys. 39, 306.
Scholz, W., and Malik, F. (1967). Phys. Rev. 153, 1071.
Schwartz, J. J., and Alford, W. P. (1966). Phys. Rev. 149, 820.
Schwartz, J. J., Alford, W. P., Braid, T. H., and Meyer-Schutzmeister, L. (1967). Phys. Rev. 155, 1191.
Walinga, J., Manthuruthil, J. C., and Poirier, C. P. (1969). Phys. Rev. 185, 1439.

[^0]: * Data are from the present work, Walinga et al. (1969), Ball et al. (1970), Broman (1967), Schwartz and Alford (1966), Bommer et al. (1971), Grandy et al.

