
Mode Coupling in the Solar Corona. 111* 
Alfven and Magnetoacoustic Waves 

D. B. Melrose 

Department of Theoretical Physics, Faculty of Science, 

Aust. J. Phys., 1977,30,495-507 

Australian National University, P.O. Box 4, Canberra, A.C.T. 2600. 

Abstract 

Coupling between Alfven waves and fast mode waves obliquely incident on a stratified medium 
is treated using the method of Clemmow and Heading (1954) within the framework of the cold 
plasma approximation. A result due to Frisch (1964) is rederived in the special case of vertical 
incidence. The coupling is strongest for nearly parallel (to the magnetic field lines) propagation, 
and the coupling ratio may be approximated by Q = (00 /0)" where 0 is the angle between the wave 
vector and the magnetic field lines, while og = A/L, with A the wavelength and L the scalelength 
of the inhomogeneity. This result may be of significance in connection with the heating of the solar 
corona by the dissipation of waves generated initially as acoustic waves in the photosphere, and per­
haps with the propagation of hydromagnetic waves in the interplanetary medium. 

1. Introduction 

In Parts I and II (Melrose 1974a, 1974b) the method of Clemmow and Heading 
(1954) was used to treat coupling between magnetoionic waves in a stratified medium, 
and the results were applied to the interpretation of the polarization of solar radio 
bursts (Melrose 1973, 1975a). In the present paper and in a forthcoming Part IV 
of this series (Melrose and Simpson 1977) the same method is used to treat coupling 
between hydromagnetic waves in a stratified medium, with the waves regarded as 
cold plasma waves in the present paper and as MHO (magnetohydrodynamic) 
waves in the following part. (Magnetohydrodynamics here implies an approach 
based on fluid equations, as opposed to the cold plasma approach which is based 
on the use of a dielectric tensor; cf. Melrose 1975b). The results are applied to a 
particular proposed mechanism for the heating of the solar corona, and may also 
be of interest in connection with hydromagnetic waves in the solar wind. 

The generalization of the theory of Parts I and II (for the magnetoionic modes) 
to any modes in a cold plasma is straightforward and is carried out explicitly in the 
Appendix. The two cold plasma modes for Q) ~ Qi' where Q i is the ion gyrofrequency, 
are identified as the Alfven mode and the magneto acoustic mode. Consequently, 
the theory developed in Parts I and II may be applied with only minor modification 
to treat coupling between Alfven and magnetoacoustic waves. This coupling is 
treated in detail in the present paper, while it will be shown in Part IV (Melrose and 
Simpson 1977) that the MHO theory leads to the same results in detail in the limit 
cs2 Iv;' --+ 0, where Cs is the sound speed and v A is the Alfven speed. 

* Part II, Ausl. J. Phys., 1974, 27, 43-52. 
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The calculations are relevant to one model for the heating of the solar corona. 
It should be emphasized at the outset that the heating of the corona is not understood. 
There is wide agreement that the heating is due to mechanical energy generated in 
some form of wave motion in the lower atmosphere, e.g. in the photospheric regions, 
and that these waves propagate to the chromosphere-corona transition region where 
they dissipate into heat. However, the generation mechanism, the frequency and mode 
of the waves generated, the details of the propagation and the nature of the dissipation 
mechanism remain poorly understood and the subjects of controversy (see e.g. the 
reviews by Lighthill 1967; Schatzman and Souffrin 1967; Kuperus 1969; Stein and 
Leibacher 1974). One detailed model, which was the first proposed (Biermann 1948; 
Schwarzschild 1948), involves generation of acoustic waves in the photosphere, 
where VA ~ Cs implies that the waves are in the fast mode, and their propagation 
through a transition region with V A ~ Cs before dissipation in the corona with v A ~ Cs 

(see e.g. the detailed discussion by Osterbrock 1961). One outstanding problem with 
this model is that fast mode waves propagating into a direction where VA is increasing 
(for VA > cs) tend to refract away from that direction. As a result one expects only 
a small fraction of the initial energy flux to reach the corona. One suggestion for 
overcoming this has been emphasized by E. Schatzman and was explored quanti­
tatively by Frisch (1964): if the fast mode is coupled to the Alfven mode then part 
of the energy flux is converted into the Alfven mode which is unaffected by refraction. 

A semantic difficulty arises in discussing refraction of Alfven waves. The semantic 
point is that it is not clear whether 'refraction' refers to a change in the direction of 
the ray or of the wave normal. For Alfven waves, the wave normal direction changes, 
e.g. in accord with Snell's law, but the ray direction is independent of the wave 
normal direction. The ray direction, i.e. the direction of the energy flux, is always 
along the magnetic field lines. 

Frisch (1964) treated coupling between the MHD waves in a stratified medium 
with the foregoing application in mind. The method he used is closely related to that 
used here, but he restricted his discussion to the case of vertical incidence, i.e. for 
K and n parallel (where the notation is defined in the next paragraph), and this vir­
tually precludes consideration of what turns out to be the most effective coupling. 
In particular, for oblique incidence and nearly parallel propagation, coupling between 
magnetoacoustic and Alfven waves is much stronger than one would infer on the 
basis of Frisch's results. 

The notation used here for the various directions and angles is: 

n is the 'vertical' (defined below), K is the 'wave-normal' direction or the direction 
of 'wave propagation', b is the direction of the ambient magnetic field, e is the 
angle between K and b, p is the angle between K and n, while t/I and <p are the polar 
and the azimuthal angles of b relative to n. 

'Vertical incidence' implies K parallel (or antiparallel) to n, that is, p = ° and 
e = t/I. 'Parallel propagation' implies K parallel (or antiparallel) to b, that is, 
e = 0, t/I = p and <p = 0. Further, when solving for the properties of any 
specific mode in the stratified medium t/I, <p, band n are fixed by the choice of 
independent variabiles, and then e, p, K and numerous other variables are each 
described by different functions (of the independent variables) for different modes. 
To indicate this, where it is relevant, a subscript i is used to label the relevant 
mode (for example, ej , Pj, Kj, ••. ). 
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The use here of 'vertical', meaning normal to the strata, arises from ionospheric 
applications where the only quantity which varies significantly is the electron density, 
whose gradient is in the vertical direction. For hydromagnetic waves, gradients 
associated with the ambient magnetic induction B tend to have a dominant effect 
in causing mode coupling, and the definition of the 'vertical' is then not an 
obvious one. Let B be described by its magnitude B and by the angles t/I and t/>. By 
hypothesis, the only variation is along n, and div B = 0 implies B. n = const., 
that is, Bcos t/I = const. Consequently, Band t/I cannot vary independently of each 
other. Let the B variations be separated into two classes: t/> variations and (B, t/I) 
variations. The t/> variations correspond to 'twists', e.g. to a helical magnetic field, 
and the vertical may be identified as the average (over many twists) direction of B. 
The (B, t/I) variations include the two opposite limiting cases of pure B variations 
and pure t/I variations. In pure B variations the field lines are parallel with a gradient 
in B across the field lines, that is, n is orthogonal to b and one has t/I = tn. In pure 
t/I variations the field lines are bent and the flux tubes have constant cross section, 
and then n is parallel to b and one has t/I = O. In general, for (B, t/I) variation~ the 
'vertical' direction n is at some intermediate angle, that is, 0 < t/I < tn. (To be 
specific t/I is equal to arctanB'/Bt/J'.) Finally, it is possible for coupling to occur due 
to a gradient in VA (where vA/vA = B'/B -n'/2n, with n the number density of ions), 
and if this gradient is due entirely to the gradient in the plasma density (B' = 0) then 
the vertical is in the direction of the gradient in the plasma density, as for the 
ionospheric application. 

2. Mode Coupling for Hydromagnetic Waves 

To use the theory of Parts I and II we start from the wave properties of the 
particular wave modes of interest. From the Appendix, or from Stix (1962), the 
relevant wave properties in the case where ro and e are the independent variables are: 
Alfven mode, 

Jli = c2/vi cos2 e , 
Magnetoacoustic mode, 

Jl;'" = c2/vi, 

TA = 00, KA/TA = tan e . (1) 

TM = 0, KM = o. (2) 

(The notation is as in Parts I and II.) In using the method of Clemmow and Heading 
(1954), one requires the w;ve properties not as functions of ro and e, but rather 
in terms of ro, r (= c I k x n I fro), t/I and t/> as the independent variables. In principle 
the wave properties can be found by firstly solving a quartic equation (for 
q = ck. n/ro). The quartic is a generalization of the Booker quartic (e.g. Budden 
1961, Section 8.17) which applies only to magnetoionic waves. Now it was pointed 
out in Part II that implicit solutions to the quartic could be written down directly 
from the known solutions for Jl2 as a function of ro and e. In th~ present case these 
implicit solutions are sufficiently simple to be used to find explicit solutions. 

The implicit solutions follow from equations (1) and (2) by writing 

with 
qAt = ± (}.ti _r2)t , qM± = ±(}.t~-r2)t, 

cos ei = qi cos t/I + r sin t/I cos t/> 
(q~+r2)' 

(3a, b) 

(4) 
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Here the four modes are labelled A +, M +, A - and M - (corresponding to 
i = 1, ... , 4 below), while-in the equations (3a, b) J.li and J.I?r. are to be regarded as func­
tionsof(w and) ()A± and ()M± respectively, with (}A± and (}M± given by (4) in terms of 
the new independent variables. For both the Alfven and magnetoacoustic modes, 
the implicit solution may be reduced to quadratic equations for the q i' In other 
words, the quartic factorizes into two quadratic equations. The relevant solutions are 

qA± = (l/cos t{!)( ± elvA -r sin t{! cos cfJ), qM± = ± (e2lvi - r2)t , (Sa b,) 

with 

COS(}A± = ±(elvA)(ql± +r2)-t, COS(}M± = (elvA)(qM±cost{! +rsint{!coscfJ). (6) 

The four modes are upgoing Alfven (A + or 1), upgoing magnetoacoustic (M + 
or 2), downgoing Alfven (A - or 3) and downgoing magnetoacoustic (M - or 4). 
Here 'upgoing' and 'downgoing' do not necessarily refer to the sign of -q, but rather 
to the angle between the group velocity and n (acute for upgoing and obtuse for 
downgoing). For the Alfven modes the group velocity is along b or -b and for the 
magnetoacoustic modes it is along K. 

A 'reflection point' is a point at which the upgoing and downgoing solutions for 
q are equal (qA+ = qA- or qM+ = qM-), and then the vertical component of the group 
velocity vanishes. For the Alfven modes the reflection points must satisfy cos t{! = 0, 
and this is not possible in general for B variations. In other words, there are no 
reflection points for the Alfven mode in general. (A gradient in v A with B = const. 
would allow reflection points when the magnetic field is in the horizontal plane.) 
The reflection points for the magnetoacoustic modes are for horizontal propagation 
(K. n = 0). Reflection is of no interest in the following discussion because these 
reflection points do not coincide with 'coupling points' in cases of interest. A 
coupling point is a point at which the upgoing (or downgoing) solutions for q are 
equal for the two different modes, e.g. for qA+ = qM+' The coupling points in the 
present case occur for parallel propagation «(} = 0 or n). 

Coupling Ratio 

Only coupling between modes 1 and 2 need be considered (the 'upgoing' and 
'downgoing' labels are arbitrary). Following the approach used in Parts I and II, 
the coupling may be described by a coupling ratio 

Q = /_.1/~_~2,~211~ I' (7) 

with the coupling coefficients r i} given by 

r 12 = -(R- 1)1i R:2, r 21 = -(R- 1h;R:1 , 

where summation over i from 1 to 4 is implied. The matrix R may be written 

al a2 a3 a4 

-1 -1 -1 -1 
R= 

-ql -q2 -q3 -q4 

hl h2 h3 h4 

(8) 

(9) 
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with 
aj = (qjRj +rPj)/J.Lj' 

R j = «(Xi Tj -ifJ)/(ftTj +i(Xj) , 

where i = .v-I, and with 

b j = J.LiRi' 

Pi = -Kj sin 9J(ftTi +i(Xj) , 
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(lOa, b) 

(tOc,d) 

J.Li = (qf +r2)t , (Xi = (qjsim/lcosq, -rcosl/l)/Jii' fJ = sinl/lsinq,. (lla, b,c) 

After some algebraic manipulation, the following explicit expressions for the aj 
and b i may be derived for the hydromagnetic waves: 

+= 9l + sin l/I cos q, 
aA ± = .. , 

sml/lsmq, 

(1 - 9l2)t sin l/I sin q, 
aM ± = ; ± 9l cos l/I - (1 - 9l2)t sin l/I cos q, 

b = ~ +sinl/lcosq, _~(cos2l/1 +sin2l/1cos2q,) 
A± VA cos l/I sin l/I sin q, , 

b _ C sin l/I sin q, . 
M± - VA 9l cos l/I += (1- ~2)t sin l/I cos 9 ' 

with 
9l = rVA/c, 

Explicit formulae for the coupling coefficients follow from 

with 

'r ( ,a ,a b' o)d R 12 = - a20al +Q2 oQl + 2ob1 et , 

J' (' a . ,iJ b' O)d 21 = :- al oa2 +Ql OQ2 + 1 ob2 etR, 

detR = -(al-a2)(q3b4 -q4b3) +(al-a3)(q2b4 -q4b2) 

-Cal -a4)(q2 b3 -q3 b2) -(a2 -a3)(ql b4 -q4 bl) 

(12a, b) 

(13a) 

(13b) 

(14) 

(lSa) 

(lSb) 

+(a2- a4)(ql b3 -q3 bl) -(a3- a4)(ql b2 -q2bl)' (16) 

3. Vertical Incidence 

The special case of vertical incidence is particularly simple, and it is relevant to 
consider this case first in order to compare the results of the present method with 
Frisch's (1964) results. In particular, Frisch found that, for vertical incidence, 
coupling between Alfven and fast mode waves results only from twists in, the 
magnetic field, i.e. from q,' ::p 0, and that the coupling ratio is given (roughly) by 
Q ~ (VA/W) 1 q,' I. The fact that Q vanishes for q,' = 0 is also consistent with the 
work of Poeverlein (1964), who assumed q, = const. and vertical incidence, and 
found that the Alfven mode was decoupled from the other two MHD modes. 

V~rtical incidence corresponds to r = 0, and then the equations (3) become 

qA+ = -qA- = c/vAI cosl/ll , 

the equations (12) become 

qM+ = -qM-= C/VA; 

al = a3 = cot q, , a2 = a4 = -tanq,; 

(17a, b) 

(ISa, b) 
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and the equations (13) become 

b1 = -b3 = (c/vAI cost/l Dcotif> , b2 = -b4 = -(c/vA)tanif>. (19a,b) 

The coupling coefficients (15a) and (15b) reduce to 

a' r I2 = ___ 2_ q1 +q2 
a1-a2~ 

a' r 21 ___ 1_ q1 +q2 
a2- a1 2q2 

(20a, b) 

and the coupling ratio (7) becomes 

VA 1 + I cos 0 I I cos 0 I t I if>' I. 
Q = OJ l-lcosOI 

(21) 

(The angles 0 and t/! coincide for vertical incidence.) 
Frisch's (1964) result differs from equation (21) only in the dependence on 0, and 

this difference is important only for I cos 0 I ~ 1. However, I cos 0 I ~ 1 corresponds 
to parallel propagation, which is the coupling point for the Alfven and magneto­
acoustic modes. For nearly parallel propagation, equation (21) implies Q oc 0- 2 , 

and the fact that Q diverges for 0 -+ 0 may be attributed to the fact that I q1 - q21 
in the denominator in equation (7) becomes proportional to 02 for small O. Thus 
the dependence on 0 in equation (21) is associated with an important qualitative 
effect which was overlooked by Frisch. 

It should be noted that the coupling described by equation (21) (for I cos 0 I not,...., 1) 
is rather ineffective. Specifically, the coupling ratio is of the order of the ratio of the 
wavelength A (= 2nvA/OJ) of the hydromagnetic waves to the scalelength L", 
(= I if>' 1-1) of the twists in the magnetic field. Consequently, moderately strong 
coupling (Q ~ 1) occurs only at the very limit of applicability of geometric optics. 
One could speculate that, in the limit A ~ L"" one could replace the slowly varying 
stratified medium by a set of discrete strata and interpret the mode coupling in terms 
of the transmission and reflection characteristics at each boundary (e.g. Simon 
(1958) and Stein (1971) found that, in general, waves in one MHD mode incident 
on a boundary lead to transmitted components and reflected components in all 
three MHD modes). Strictly, mode-coupling theory is valid only for A ~ I if>' 1- 1 or 
It/!' 1-1, .... 

Nearly Vertical Incidence 

The result (21) has been derived for strictly vertical incidence, and it is of interest 
to determine the range of parameters over which Q may be approximated by (21). 
Now, vertical incidence corresponds to r = 0 (or f!Il = 0) in equations (3), (12) and 
(13), and it is evident that the corrections to the qi' ai and bi for finite f!Il remain small 
for 

f!Il ~ sin t/! cos if> . (22) 

The range of parameters (22) may be said to define 'nearly vertical incidence'. It 
then follows that the coupling ratio may be approximated by equation (21) for nearly 
vertical incidence. 

The range (22) excludes the important case of nearly parallel propagation 
(f!Il ~ sin t/! and if> = 0) which is discussed in Section 5. The range (22) also 
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excludes both propagation nearly normal to the plane containing nand b (that is, 
cos 4> ~ 0) and the case of a nearly vertical magnetic field (sin t/I ~ 0). It is straight­
forward to treat these two as special cases, and this is done in Section 4. Finally, 
the range (22) also excludes nearly horizontal propagation, but this case is of no 
conceivable interest. 

4. Special Cases (91 ~ sin t/I cos 4» 
The case 91 ~ sin t/I cos 4> corresponds to nearly vertical incidence, and it is of 

interest to evaluate the coupling ratio when the opposite inequality, namely 

Bt ~ sin t/I cos 4> , (23) 
obtains. 

Case cos 4> ~ 0 
One way in which the condition (23) can be satisfied is for cos 4> to be small. 

All quantities including the coupling coefficients and the coupling ratio approach 
finite values as cos 4> approaches zero and, consequently, it is reasonable to approxi­
mate them by their values for cos 4> = 0 provided the condition (23) applies. 

For cos 4> = 0 one finds 

e 1 
q1 -q3 = VA cos t/I' 

-91 
a1 -a3 = sint/l' 

b1 = b3 = _~ 91cost/l 
VA sin t/I ' 

It is then straightforward to find 

e 
q2 = -q4 = -;-<1-912)t; (24a,b) 

A 

(1,.- 912)t sin t/I . . (2Sa, b) - ./,' a2 = -a4 - 91 cos 'I' 

b2 = b4 =~ sint/l 
VA 91 cos t/I' (26a, b) 

r = sint/l ,. 
12 2(sin2 t/1 +912cos2t/1)o[ -2(VAlvA)smt/l + {sect/l +(1-912)t}t/I'J, (27a) 

r21 = 912cott/l [ 2(' I \. . 2(1-912)t(sin2t/1 +912 cos2 t/I) - VA VA/smt/l + {sect/l +(l-91i!)t}t/I'J, (27b) 

and hence 

Q = VA 91 (Icost/ll )tI2(V~/VA)Sint/l-{sect/l+(1-912)t}t/I'I. (28) 
Q) sin2 t/I +Bt2 cos2 t/I (l_Bt2)t I sect/l -(1-Bt2)t I 

Case t/I ~ 0 

In the limit t/I = 0, some quantities become infinite and others vanish. Con­
sequently, it is necessary to allow t/I to be finite. For arbitrarily small t/I one finds 

q1 = -q3 = elvA' q2 = -q4 = (elv~(l-912)t; (29a,b) 

91 
at = -a3 = t/lsin4>' 

(1-Bt2)t 
a2 = -a4 = - ",. t/I sin 4>; (30a, b) 
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C fY/ 
b1 = b;3 = ---.­

VA l/ISlDrjJ' 
b2 = b4 = ~ I/IsinrjJ 

VA g,f . (31a, b) 

One then finds 

r l2 = 1/1 sin rjJ[2(VA/V~I/I sin rjJ - {I +(1- g,f2)t}(1/1 sin rjJ),]/2g,f2 , (32a) 

r 21 = -[2(vA/v~I/IsinrjJ -{I +(1-g,f2)t}(I/IsinrjJ)']/2(1-g,f2)tl/lsinrjJ. (32b) 

Hence one finds 

Q = VA 1 12(vA/v~I/IsinrjJ -{1 +(1-fY/2)t}(I/IsinrjJYI (33) 
Q) fY/(1- g,f2)! 1-(1- g,f2)t 

which is clearly compatible with equation (28). 
Comparing equations (21), (28) and (33), one, concludes that in each case 

Q is of order A.jL, where A. is the wavelength of the, hydromagnetic wave and L is a 
characteristic distance associated with the inhomogeneity. Qualitatively, different 
types of inhomogeneity (twists or bends in the magnetic field lines or changes in 
VA) are important in the different cases. However, in~ll cases the coupling is 
weak except for A. ;5 L, when geometric optics starts to break down. Thus, no 
important new features are introduced when inequality (22) is replaced by its opposite 
(23). 

5. Nearly Parallel Propagation 

The coupling points for Alfven waves with magnetoacoustic waves correspond to 
parallel propagation. In the neighbourhood of a coupling point, coupling is 
necessarily strong (Q ~ 1), and consequently there must be a range for nearly parallel 
propagation for which coupling is strong. This range can be estimated by expanding 
in powers of 0 (and other small quantities) when deriving' an expr~ssioil for Q for 
nearly parallel propagation. 

For strictly parallel propagation one must have g,f = sin 1/1 and rjJ = O. For 
nearly parallel propagation one may set g,f = sin p and rjJ ~ 1, and expand in 1/1 - p 
and rjJ. (It is n<;>t necessary to distinguish between Pl and P2' and 01 and O2, because 
the differences P1-P2 and 01-02 are of higher order in I/I-p and rjJ.) One finds, 
to lowest order in small quantities, 

q1 = (C/VA)COSI/l = q2' q3 = -(c/vA)(2secl/l -cosl/l), q4 = -(C/VA)COSl/l; 

(34a-34c) 

a1 = {(I/I-p)/rjJ}cotl/l, a2 = -{rjJ/(I/I-p)}sinl/lcosl/l, a3 = 2/rjJ, a4 = -trjJ; 

c I/I-p C rjJsinl/l C 1 
b1 =--- b2 = ---- b3 = -2---

, VA rjJ sin 1/1 ' VA 1/1 - P , VA rjJ cos 1/1 ' 

One ,also requires 

(35a-35d) 

C rjJ 
b4 =---· 

VA 2cos 1/1 

(36a-36d) 

02 = (1/1 - p)2 +(rjJ sin 1/1)2 and Iql-q21 = c02/2vAlcosl/ll. (37a,b) 
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With the approximations (34)-(36), the coupling coefficients reduce to 

r l2 = -{(C/VA)a2}' 
(c/VA)(a l -a2)' 

r21 = -{(c/v~ad' 
(c/VA)(a2 -a1)' 

To lowest order in the small quantities one has 

503 

(38a, b) 

{(c/vA)ad' ~ (c!vA)sint/icost/l{(t/I'-p')4> -(t/I-p)4>'}(t/I_p)-2 (39a) 
and 

{(cjvA)a2}' ~ (CjVA)cott/l{(t/I'-p')4> -(t/I-p)4>'}4>-2. (39b) 

Hence the coupling ratio becomes 

Q. = 4 VA sin t/I\ cos t/I\\ (t/I' - p')4> -(t/I- p)4>' \. 
OJ 84 

(40) 

An unexpected feature of equation (40) is that it implies that Q diverges as 8- 3 

for small 8 (where 4> and t/I- p are taken to be of order 8). By contrast equation (21) 
implies Q oc 8- 2 for small 8. In other words, on the basis of the result for vertical 
incidence one would predict Q oc 8- 2 , whereas the actual result for oblique incidence 
corresponds to Q oc 8- 3 . There is no incompatibility, because vertical incidence 
and parallel propagation require t/I = 8 and 4> = 0, and equation (40) also predicts 
Q oc 8 - 2 in this special case. Thus, the assumption of vertical incidence is too 
restrictive to allow adequate treatment of nearly parallel propagation. 

Elliptical Polarization 

There is a minor inconsistency in the foregoing discussion: one cannot assume 
that the wave properties are given by equations (1) and (2) for very small 8. 
Amongst the approximations made in deriving those equations i.s OJ ~ Q i (see 
the Appendix) and, for 

o ;$ (2OJjQ i)t, (41) 

the corrections due to the finiteness of OJjQ; are more important than the corrections 
due to the finiteness of 8. The waves are significantly elliptically polarized in the 
range (41), and for 0 ~ (2OJjQ;)t the polarization approaches circular, that is, 
I TA'I ~ 1 ~ I TM I· 

It may be shown that, when the inequality (41) is a strong one, the coupling ratio 
may be approximated by, in place of equation (40), 

V (Q)2 Q ~ ; I cos t/ll ~ 00' . 

Thus Q actually tends to zero as 0 tends to zero. From a semiquantitative viewpoint, 
the significant result is that Q cannot exceed the value given by setting 0 ~ (OJjQ;}! 
in equation (40). 

The circular polarization in the limit 0 ~ 0, which is absent in the MHD theory, 
may be attributed to the effect of the spiralling motion of the ions. In a collision­
dominated plasma, to which the MHD theory may be applied, ions experience many 
collisions per gyroperiod, and spiralling motion cannot be said to occur. 
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6. Discussion 

The main result of this paper is that coupling between Alfven waves and 
magnetoacoustic waves can be much stronger than Frisch's (1964) results imply. 
Specifically, Frisch found the coupling ratio to be roughly Q ~ AIL, where A is the 
wavelength of the wave and L is the characteristic distance over which the magnetic 
field is twisted. The present investigation confirms Frisch's result and shows that the 
same semiquantitative expression applies when Frisch's assumption of vertical 
incidence is relaxed (with L now interpreted as the characteristic distance over which 
any relevant plasma parameter changes). However, the important exception is that 
for nearly parallel propagation the coupling ratio can be greatly enhanced: 

Q ~ «()ol()3 , ()~ ~ AIL. (42) 

Consequently, for waves propagating at sufficiently small () the coupling is necessarily 
strong. The result (40) may be of significance in connection with the heating of the 
solar corona, and with the propagation of hydromagnetic waves in the interplanetary 
medium. 

The implications of this result on the heating of the solar corona are discussed 
only briefly here. One implication concerns the frequency (or wavelength) of the 
waves involved. In recent years there has been a tendency to favour heating by 
l()nger period waves, with peri()ds up to five minutes. However, to some extent this 
is based on no more than ()bservational evidence that such longer period waves are 
present (see e.g. the review by Stein and Leibacher 1974). There is no evidence 
against shorter period (for example, ~ 1 s) waves being important, and there is radio 
evidence for their presence (see e.g. the review by Wild and Smerd 1972). Frisch's 
(1964) coupling ratio for waves with a period of around a second (implying A of order 
several hundred kilometres) would require a very inhomogeneous corona for the 
coupling to be effective. In fact, the corona may be inhomogeneous on a relative 
fine scale (Melrose 1975a), and the more effective coupling found in the present 
investigation may well allow a substantial transfer of an energy flux (in relatively 
short period waves) from the fast mode to the Alfven mode. 

The original suggestion that the corona might be heated by acoustically generated 
waves (Biermann 1948; Schwarzschild 1948; Osterbrock 1961) should be kept in 
mind as a possible alternative to more recent suggestions for the heating of the 
corona (Zhugzhda 1972; Piddington 1973). The point made by E. Schatzman (Frisch 
1964) and Pikel'ner (1961, p. 209) that refraction would prevent the waves from 
reaching the corona can be overcome by mode coupling to the Alfven mode. The 
important contribution of the present paper to the discussion of this point is that the 
mode coupling can be much more effective than earlier calculations might indicate. 
In particular, the restriction of the earlier calculations (Frisch 1964; Poeverlein 
1964) to 'vertical incidence' excludes the most effective case: that of propagation 
nearly along the magnetic field lines. Such coupling is particularly effective because 
it is 'in the neighbourhood of the coupling point'. 

The propagation of hydromagnetic waves in the interplanetary medium has been 
reviewed recently by Hollweg (1975). Mode coupling is of significance in connection 
with the partial conversion of the flux, known to be predominantly in the Alfven 
mode, into fast mode waves. Indeed Belcher and Davis (1971) appealed to such 
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coupling to explain one feature of their observations, namely the fact that the power 
spectrum of the magnetic fluctuations did not coincide with that expected for pure 
Alfven waves. Barnes and Hollweg (1974) proposed an alternative explanation of 
this observation in terms of finite amplitude disturbances propagating nearly along 
the field lines. 

The strong mode coupling for nearly parallel propagation implies that mixed-mode 
disturbances can exist. In other words, any disturbance composed of components 
in the two modes can propagate without significant decomposition into its two 
components. Thus, for 0 ~ 00 one could have a circularly polarized disturbance 
despite the fact that formally the two modes are linearly polarized. This allows a 
further possible explanation of the observations of Belcher and Davis (1971). As 
in the mechanism proposed by Barnes and Hollweg (1974), the waves are partially 
circularly polarized but, unlike their mechanism, it is not necessary to appeal to a 
detailed finite amplitude structure. This alternative mechanism could be effective 
for waves with, say, A ~ 10-2 L (corresponding to 00 ;:5 10°). Even withL ~ 0·1 A.U., 
this range corresponds to periods longer than about an hour, and most of the observed 
power is in such waves. 
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Appendix 

The generalization of the results of Parts I and II to apply to any waves in a cold 
plasma involves simply inserting the relevant wave properties. We consider a cold 
plasma consisting of various species IX of particle, with plasma frequency l/Ip", 
gyrofrequency a" and sign of charge B". Following Stix (1962, Sections land 2) we 
may write the dielectric tensor in the cold plasma approximation in terms of three 
quantities S, D and P defined by 

S = t(R+ +R_), D = t(R+-R_), (Ala, b) 
with 

ai ( co ) 
R± ~ 1 - ~ ;; CO±Baa" (Alc) 

and 
" 2 2 P = I - L... cop,,/CO , (AId) 
" 

where the sums are over all species. The properties of the two modes are usually 
found by choosing co and () as dependent variables and solving for the refractive 
index J.l. We can either solve 

P{J.l4-2SJ.l2+S2_D2} -J.l2 sin 2()(P-S)J.l2 +S2_D2_,PS = 0 (A2) 

for J.l2, or we can solve 

2 (PS-S2+D2)sin2()T_l = 0 
T - PDcos() ( A3) 

for the axial ratios (T = T ±, say) for the two modes, and then substitute for Tin 

2 peS -T-1Dcos()) S2_D2 
J.l = Pcos2() +Ssin2() = ';::;S---:T=D=--co-s-=e· (A4) 

The other quantity K used to describe the polarization (cf. equation 10 of Part II) 
is given by substituting for T in 

K = sin () {(P-S)T cos () - D} = sin() (PS-S2+D2)Tcos () -PD. 
Pcos2 () +S sin2 () P S - TDcos () 

(AS) 

In principle, solutions for q (and T, K, ... ) are required in terms of the independent 
variables r, l/I and ljJ. The quartic equation (which is the appropriate generalization 
of the Booker quartic) for q is given by making the substitution 

J.l2 = q2 +r2, J.l2sin2() = q2+r2 -(qcosl/l +rsinl/lcosljJ)2 (A6) 

in equation (A2). 
For a charge neutral plasma consisting of electrons and various positively charged 

ionic species, the low frequency limit corresponds to 

c2 
S ~ 1+'2 

VA 
and 

co2. co " p,­D ~ - L,.. n~ ai' , ~", 

(A7a, b) 
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where 
c2 W 2. 

'" '" PI 
V2 '" 4- ra2 

A I ~iij 
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(AS) 

has been used, and where the correction terms are of order w21Df smaller than 
the terms retained. The approximation used in the text corresponds to setting 
p = - 00, S = c21vi and D = 0, and the effect discussed at the end of Section 5 
(cf. the equations 3S) emerges where the finiteness of D (~ -(c2Ivi)wjQj for a 
plasma with only one ionic species) is taken into account. 
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