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Abstract 

A melting equation closely resembling the differential form of Lindemann's melting law, which 
relates the melting point to the pressure in terms of the thermal Griineisen parameter and incom
pressibility, is derived from the Clausius-Clapeyron relation with the assumption that the Mie
Griineisen equation can be adapted directly to describe the pressure change associated with melting 
at constant volume. This assumption implies that melting is only a minor perturbation of the crystal 
structure, such that the atomic coordination is almost unaffected and that atomic bonds are merely 
stretched or compressed. It appears that 'normal' melting complies with this assumption reasonably 
closely but that departures from Lindemann's law occur when materials undergo major changes in 
coordination during melting. A particular merit of Lindemann's law is that it allows the extrapolation 
of melting points to the pressures of the Earth's deep interior. Extrapolation of data on the iron
sulphur eutectic suggests a temperature of 4160 K at the boundary of the Earth's inner (solid) and 
outer (liquid) cores. Adiabatic extrapolation to the core-mantle boundary gives 2940 K at the 
base of the mantle. 

1. Introduction 

The basic, thermodynamically rigorous equation for the dependence of the melting 
point T M on the pressure P is the Clausius-Clapeyron relationship, the derivation 
of which appears in standard thermodynamic texts (e.g. Morse 1969): 

(1) 

where AV and L are the volume increment and latent heat of melting (for convenience 
both referred to unit mass). This equation is essentially a statement that the Gibbs 
free energies of the solid and liquid states are equal at the melting point at any 
pressure. However, it contributes little to our understanding of the physics of the 
melting process and is not suitable for extrapolation beyond the range of laboratory 
data. This is because we do not have independent constraints on the pressure 
dependences of AV and L, although the assumption that the entropy of melting 
AS = L/TM is independent of pressure for any particular solid phase appears to be 
a reasonably good one (Gschneider 1964; Stishov 1969). Extrapolation of melting 
curves of iron and its alloys and of silicates is basic to theoretical studies of the 
Earth's deep interior and several essentially empirical extrapolations (reviewed by 
Hamano 1974) have been used, but there is an urgent need for a better physical 
understanding of melting at high pressure. 

The equation to which we now give strong support was first derived by Lindemann 
(1910) from the hypothesis that melting occurred when the amplitudes of thermal 
vibrations of atoms became large enough to cause atomic 'collisions', This criterion 
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was reformulated by Gilvarry (1956) in terms of the r.m.s. amplitude of atomic 
vibration <u2)t relative to the equilibrium atomic spacing fe: 

(2) 

b being a constant fraction at the melting point. The Lindemann approach was 
inspired by the knowledge, dating from the last century, that for many materials the 
expansion coefficients oc and melting points T M are approximately related by 

ocT M ~ 8 (const.) . (3) 

For most metals 8 ~ 0·07 if oc is the volume coefficient (Gschneider 1964), which 
simply means that (allowing for diminution of the expansion coefficient at low 
temperatures) a metal melts when the density of the solid has decreased by about 6 % 
relative to its value at absolute zero. For tetrahedrally bonded covalent materials, 
such as elemental silicon, which have strong intrinsic bond-angle rigidity and hence 
'anomalously' low thermal Grlineisen parameters (Irvine and Stacey 1975), 8 is 
correspondingly lower. This indicates that the amplitude of thermal vibration is 
not itself relevant, but that the anharmonic force law between neighbouring atoms 
(which relates thermal expansion to vibration amplitude) controls the melting process 
more directly. The relevance of the Grlineisen parameter y is apparent in the 
differential form of Lindemann's melting equation, which is the useful form for our 
purpose: 

(4) 

where K is the incompressibility (along the melting curve) and y is defined by 

y = ocK/pC, (5) 

p being the density and C the specific heat at constant volume or constant pressure if 
K is the isothermal or adiabatic modulus respectively. Extensions and refinements of 
Lindemann's law have been reported many times (e.g. Gilvarry 1956; Ross 1969; 
Shapiro 1970; Boschi 1 974a, 1974b) but generally without any indication of the 
basic reason why it happens to be so good for many materials but so poor for others. 

In the following sections we derive the form of Lindemann's equation (4) from a 
simple adaptation of the Mie-Grlineisen equation, which has a sounder physical 
basis than the vibration amplitude assumption. It allows us to see the physical 
distinction between materials which follow the Lindemann equation and those 
which do not. 

2. First-order Thermodynamic Approach to Melting 

The definition of Grlineisen's ratio (equation 5) allows us to write a thermodynamic 
identity in terms of it: 

(ap/aT)y = ocK = ypCy, (6) 

which refers to any material in constant phase, for which y and Cy are unambiguous 
quantities. The Mie-Grlineisen equation is an integrated form of the result (6), 
namely 

AP = f ypCv dT ~ yp(AE /m), (7) 
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where AE is the thermal energy applied to a mass m of material maintained at constant 
density p, causing an increase in pressure AP, and the approximate equality appeals 
to the assumption that, at constant volume, y is independent of T over the range 
considered. This is an excellent approximation at temperatures which are not low 
with respect to the Debye temperature. The quantity AE is the normal thermal 
energy increment of the solid, i.e. the energy of atomic vibration, and, as the validity 
of the classical (Dulong-Petit) specific heat (3R mol- 1) for normal materials at high 
temperatures demonstrates, AE is closely equipartitioned between the atomic kinetic 
energy and the potential energy AEp associated with vibrations of atoms in their 
mutual force fields. Thus AE = 2 AEp and we can rewrite equation (7) as 

(8) 

Now let us consider melting as a process in which thermal energy mL (for mass 
m) is applied, causing atomic rearrangement such that all of the added energy appears 
as atomic potential energy and no temperature rise occurs. Then if we were to melt 
the material at constant volume we would observe an increase in pressure given by 
equation (8): 

AP = 2ypL. (9) 

(Of course if the pressure is not held constant then neither is the melting point, but 
this is a refinement which we consider in the following section.) However, AP is 
related to the incompressibility (bulk modulus) K and to the volume increase AV 
on melting at constant pressure by 

AP = K(AV/V) = KpAV, (10) 

if AVrefers to unit mass. Combining equations (9) and (10) and using (1), we obtain 

(11) 

This result closely resembles Lindemann's law (4) and demonstrates the role of y 
from a thermodynamic viewpoint, with the assumption (considered in Section 4) 
that it is a physically meaningful parameter for material in the process of melting. 

3. An Improved Thermodynamic Approach 

The calculation in the previous section is made more rigorous by considering a 
thermodynamic cycle involving both melting (or solidification) at constant pressure 
and at constant volume, as illustrated in Fig. 1. Limb AB represents normal melting 
at pressure P, with a volume increase from V to V + AV and a heat input L; limb BC 
represents resolidification at constant volume V + AV, as a result of which the pressure 
decreases from P to P-AP and heat Q is released; CD is a cooling at constant 
pressure P-AP to the original solid volume V; DA completes the cycle by heating at 
constant volume V. Limbs CD and DA relate the melting process to the properties 
of the solid phase. An alternative cycle (dashed) can be used to express melting 
parameters in terms of the liquid properties (and avoid possible reference to negative 
pressures). 
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With temperatures TM on AB, TM-I1TM at C and Tl at D, the heat inputs and 
outputs are as shown in Fig. 1 and the net heat input balances the net mechanical 
work done by the material in the cycle. Thus 
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Fig. 1. Thermodynamic cycle involving melting at 
constant pressure and resolidification at constant 
volume. In detail the cycle ABCD represents: 
AB, melting at constant pressure P; 

BC, resolidification at constant volume V + Ll V; 

CD, cooling at constant pressure P- LlP; 

DA, heating at constant volume V. 

which gives the heat required to melt the material at constant volume V + 11 V, namely 

(13) 

where Cv is treated as a constant but C p is a function of P and T such that 

(14) 

ex being the volume expansion coefficient. In terms of the Mie-Grtineisen equation (7) 
and its modification (8), Q is related to the pressure increment on melting at volume 
V +I1V. We note that Q includes a contribution CV I1TM associated with the temper
ature change I1T M and that the balance (Q - Cv I1T M) is the atomic potential energy 
of the melting process at constant volume, so that 

I1P = 2y'(Q- CV I1TM) y'Cv I1TM = y' (2Q- C 11T.) 
V+I1V + V+I1V V+I1V v M, 

(15) 

where y' is the Grtineisen ratio appropriate to describe the melting process. 
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From limb DA of the cycle in Fig. 1 we also have 

(16) 
and from limb CD 

(17) 

where ii and y indicate mean values over the range CD and Kl is the incompressibility 
of the solid phase at pressure P - AP, which is related to the value K at pressure P 
by the Murnaghan (1951) relationship 

Kl = K- K' AP, (18) 

K' being the pressure derivative of K. We are entitled to assume equation (18) over a 
limit pressure range AP. 

Noting that the integral in equation (13) represents a small correction term since 
Cp - Cy is small, we can solve it by using average values of CI. and y as in equation (17): 

(19) 

the final simplification being a substitution for ii from equation (17). 
Equations (16) and (17) allow us to write TM- Tl and ATM in terms of AV and 

AP as 

(20) 

which are used to eliminate T M - Tl and AT M from equations (13) and (15). Substituting 
also for the integral in equation (13) by (19), from equations (15) and (13) respectively 
we then obtain two expressions for Q: 

Q = t VAP (! +~) + AVAP _ Kl~V, (21) 
y y' 2y' 2y 

Q =L-yCyTMAV +(f-l)AVAP+ VAP _Kl_AV _Kl(AV)2 (22) 
V y y y 2V 

Now equations (21) and (22) may be equated to obtain the following expression for 
Lj A V which is needed in the Clausius-Clapeyron equation (1), 

~ = K! +tKl(AV)+tv(~_!)AP +AP(l-f+~)+ YCyTM. (23) 
A V 2y V y' y A V y 2y' V 

This is an equation with the form (11), plus a series of correction terms which depend 
on the volume dependence of y and on y', the effective melting Griineisen ratio. 
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The largest correction term is the last one. The pressure increment AP is related to 
AV by the incompressibility along the melting curve, K M , which differs from K only 
by a small factor, similar to but slightly larger than the factor distinguishing adiabatic 
and isothermal moduli: 

rV+,dV 
AP = - Jv (KMIV) dV, (24) 

where 

(25) 

KT being the isothermal modulus, which is assumed to be pressure-dependent as in 
equation (1S). 

We now have all of the equations necessary for a numerical integration of the 
melting point curve as a function of pressure for a material for which we have a 
knowledge of y and the solid density~pressure equation of state. In materials whose 
atomic forces are approximately central, the equation of state also gives the value of 
y at any density by the Vashchenko~Zubarev relationship (Irvine and Stacey 1975). 
However, some of the correction terms in equation (23) are clearly smaller than 
the uncertainties in the equation of state for any material, and it is more instructive 
to make approximations which introduce only small percentage errors by neglecting 
terms of second order in small quantities. First we neglect the second term in the 
denominator of equation (25) and then we can relate AP and A V via the integrated 
form of Murnaghan's equation (1S): 

K{ ( AV)-K'} {AV (AV)2} AP = K' 1- 1+-y = K -V-!(K'+l) -y + ... , (26) 

and, since AP itself only enters as a correction term, we can simply put 

AP ~ KAVjV. (27) 

Now we may consider alternative extreme assumptions about the behaviour of y, 
bracketing the properties of real materials. First we suppose y to be independent 
of Vand that y' = y. Then equation (23) reduces to 

~_=K(l (Y+l)AV) yCVTM 
AV 2y + V + V . (2S) 

In connection with the Earth's core we are especially interested in values for iron. 
At atmospheric pressure these give (y + I)AV IV = 0·1 while at core pressures, by 
our estimate, the corresponding value is O· 06. We therefore introduce an error of 
less than 10 % by ignoring this term. To put equation (2S) into a form more directly 
comparable with the Lindemann law (4) we then substitute for y in the second term 
of equation (2S) by (5), so that 

r,-1 dTM = ~V = 2y ~ 2(y-2y2aTM) 
M dP L K(1+2yaTM) K 

(29) 

The term 2y2aTM has a very limited range for 'normal' metals and may be regarded 
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as a constant for the purpose of an approximate melting law; for iron at atmospheric 
pressure, 2y2exT M = 0·4. Allowing also for the 10 % correction for the AVIV term in 
equation (28) we obtain 

(30) 

Substitution of numerical values at core pressures gives the same result exactly. 
Clearly these equations are very close indeed to the differential form of the Lindemann 
relationship (4). 

Alternatively, let us suppose that y is proportional to volume but that y' has the 
value of y at volume V + A V, so that 

y = y(I +-!AVIV) and y' = y(l +AV/V). 

Then to first order in AVIV equation (23) becomes 

-.!::....=K(l_AV(K'-!-y») YCV TM(1 AV) 
AV 2y V + V + 2V . (31) 

This does not differ significantly from the y = const. result (28). Thus we have a 
thermodynamic justification for the Lindemann-based melting law, subject to the 
validity of the assumption implicit in equations (8), (9) or (15). 

4. Discussion of Assumptions, Difficulties and Exceptions 

Section 3 is an elaboration of Section 2 which avoids certain simplifying approxi
mations and so gives a more rigorous justification of Lindemann's law, but does not 
add anything to the physical understanding of melting. The essential novelty in the 
present approach is conveyed in Section 2 in the steps between equations (7) and (9). 
Equation (7) is a standard relationship which falls short of a thermodynamic identity 
only to the extent that y may not be perfectly independent of temperature at constant 
volume, as both theory and observation agree that it is at temperatures which are 
not low with respect to the Debye temperature. The representation of (oPloT)v in 
terms of y emphasizes the fact that normal thermal expansion is an anharmonic 
effect, resulting from asymmetry of the potential wells in which solid atoms are held. 
Since it is easier to pull neighbouring atoms apart than to push them together, thermal 
vibration causes an average increase in atomic spacing at constant pressure, or an 
increase in pressure on heating at constant volume. At any instant some atoms are 
closer than their equilibrium spacing and others further apart, but at constant pressure 
the forces are balanced and y (or ex) expresses the net dilation resulting from the 
balance of forces between compressed and extended bonds. 

If melting may be regarded as a process in which atomic rearrangement causes 
some bonds to be extended and others compressed, but neither breaking of bonds nor 
formation of new ones, then precisely the same asymmetry operates as in normal 
thermal expansion; the volume and energy changes result from a balance between 
compressed and extended bonds and y relates the pressure and thermal energy 
increments, as in heating at constant phase. In this circumstance equation (9) is 
justified. Thus the validity of Lindemann's law is restricted to those materials that 
undergo no dramatic changes in coordination on melting. Obvious exceptions 
include water and bismuth, which have negative volume changes on melting and 
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negative dT M/dP, but clearly have more dramatic structural rearrangements, including 
coordination changes, which therefore invalidate the assumption made here. 

We may also anticipate difficulty with materials, such as both elemental silicon 
and silica, in which intrinsic rigidity of bond angles restricts thermal vibrations, giving 
anomalously low y (Irvine and Stacey 1975), and also low Poisson's ratio. The 
development of a physically sound melting law for such materials may be possible 
in terms of the dislocation theory of melting. If so, it may then be related to a generaliz
ation of the Vashchenko-Zubarev (1963) relationship, giving Griineisen's ratio in 
terms of elastic constants for materials which cannot be described by a central atomic 
force law. 

'Anomalous' melting curves, that is, those which do not follow a steady trend of 
increasing TM with compression, were explained by Stishov (1969) in terms of phase 
changes in the liquid and solid states. In particular, maxima in TM versus P curves 
occur when the liquid phase undergoes transformation to a denser atomic arrangement 
at a lower pressure than the solid phase. When the pressure is high enough to ensure 
that both phases are approximately close-packed, melting must become 'normal', by 
which we mean that it obeys equation (4). Thus we believe that exceptions to 
Lindemann's law become progressively fewer with increasing pressure and that it 
may be applied reliably to simple materials (such as iron) in the Earth's deep interior. 

5. Application to Earth's Core 

The conventional assumption that both the inner (solid) and outer (fluid) regions 
of the Earth's core are composed largely of iron, and may plausibly have identical 
composition, has led numerous authors to identify the temperature at the boundary 
as the melting point of iron or of an iron alloy at the appropriate pressure (3· 2 Mbar, 
i.e. 3·2 x 1011 Pa). If a reliable extrapolation of melting point can be made, this 'fixed' 
point provides the best calibration available for the temperature profile of the whole 
of the Earth's interior. In this connection the melting law advocated by Kennedy and 
co-workers (Kraut and Kennedy 1966; Higgins and Kennedy 1971) has stirred a 
vigorous debate about melting laws (Ross and Alder 1966; Gilvarry 1966; McLachlan 
and Ehlers 1971; Leppaluoto 1972; Boschi 1974a, 1974b; Hamano 1974). In principle 
the Lindemann relationship (4) can accommodate any pressure dependence of T M 

if suitable variations of y and K are permitted, but a particular feature of the Kennedy 
approach which aroused so much interest was the assertion that the melting point 
gradient in the core was less steep than the adiabatic gradient (the 'core paradox' 
of Higgins and Kennedy 1971; see also Kennedy and Higgins 1973). Since we have 
the thermodynamic identity 

(32) 

Ks being the adiabatic bulk modulus, in terms of Lindemann's law the Higgins
Kennedy paradox means simply that y < 1, compared with the value for laboratory 
iron of y = 1· 6. Such a strong decrease in y with pressure is completely inconsistent 
with the Vashchenko-Zubarev (1963) formulation for y, which we strongly support 
(Irvine and Stacey 1975), so that we agree with those authors who have rejected the 
core paradox. 

The main problem in estimating core temperatures is now in guessing the composi
tion. Certainly the core is less dense than pure iron and a substantial admixture of 
lighter components is required to explain it (see e.g. Stacey 1977). The favoured 
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alternative is a eutectic of iron and sulphur, for which relevant data are given by 
Us selman (1975), who found that at pressures up to about 55 kbar the eutectic 
temperature is almost constant at about 1265 K, as the eutectic composition tends 
toward Fe2S, but that at this point there is a clear break. Above 55 kbar the eutectic 
composition remains virtually constant and the temperature follows a Lindemann 
relationship. We therefore estimate the melting point TM of core material at megabar 
pressures P by extrapolating from Usselman's 55 kbar (Pi) datum (TM ) by 
Lindemann's equation: 

(33) 

We do not have a continuous profile for y over the relevant pressure range, but the 
variation is small; y = 1·6 at laboratory pressures and the average over the core 
range is y ~ 1·4 (Irvine and Stacey 1975), so that as a sufficient approximation for 
the present purpose we can put y = 1·5 = const., that is, 2(y-t) = 2·33, in equation 
(33) and then make use of the fact that 

Thus 

from which we obtain at 3·29 Mbar (the pressure at the boundary of the solid inner 
core) a value for TM of 4160 K, to which an uncertainty of several hundred degrees 
must be understood. This is an improvement upon the estimate given by Stacey 
(1977). Assuming an adiabatic regime throughout the outer core, by integrating 
equation (32) over the outer core we obtain the temperature at the core-mantle 
boundary (P = 1·35 Mbar) as T = 2940 K. 

6. Conclusions 

Lindemann's melting law, equation (4), has a sound theoretical basis in thermo
dynamics with the proviso that it is not appropriate for any material which undergoes 
a major change in coordination on melting. At laboratory pressures it is most 
satisfactory for close-packed materials in which the volume change on melting is 
small, indicating a good approximation to close packing in the liquid state as well 
as in the solid. We expect all materials to adopt close-packed structures at pressures 
exceeding about 0·25 Mbar, so that for extrapolation to the pressures of the Earth's 
deep interior (up to 3·6 Mbar) Lindemann's law is particularly appropriate. 

Extrapolation of melting temperatures to pressures at which there are first-order 
changes in density relies upon knowledge of the volume dependence of Grtineisen's 
ratio y, which is quite variable in different types of material (Irvine and Stacey 1975) 
and is even quite different for different metals, e.g. sodium and iron. However, the 
Vashchenko-Zubarev (1963) formulation for y allows us to estimate its value for 
any material for which the pressure-dependence of elasticity is known. This is so 
for the deep interior of the Earth. 

Extrapolation of the iron-sulphur eutectic data of Usselmann (1975) gives a 
melting point of 4160 K at the boundary of the Earth's solid inner core and, by 
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adiabatic extrapolation upward, a temperature of 2940 K at the core-mantle boundary. 
Within the limitation of the assumption that the inner core boundary marks the solid
liquid equilibrium of iron-sulphur eutectic, these temperatures provide fixed points 
on the Earth's temperature profile which appear to be valid to within a few hundred 
degrees. 
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