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Abstract 

The distribution of radiant energy in media which are not only dispersive but also anisotropic is 
derived. The distribution is found to depend on the phase velocity 1'., the group velocity V •• and 
the angle oc. between them for each mode s. Planck's law is a limiting case when V. = Vas = c and 
oc. = 0 and applies strictly only to a vacuum. 

Consider momentum space with usual coordinates (p, e, </1). The volume element 
in momentum space between p and p +dp, e and e +de, and </1 and </1 +d</1 is given by 

p2 sin e de d</1 dp . (1) 

We express this element in terms of the wave propagation speeds and frequency. 
In a general medium the phase speed V. of mode s is anisotropic and a function of 

frequency v and also temperature T, that is, 

V. = V.(T, e, </1, Y) = w/k., (2) 

where w is the angular frequency (2n:y) and k the wave number. Likewise for the 
group velocity Vg• 

(3) 

where k. is a unit vector in the direction of the wave normal. 
The energy E and momentum p of a photon are given respectively by 

E = hw and p = hk (4) 

and it follows that p2 = h2y2/V.2 for waves of mode s. Further, the directional 
derivative of v with respect to p for mode s is given by 

dv dp ay 1 dp aw 
dp = 1 dp I' ap = Ii 1 dp I' ak: 
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Since the volume element (1) is constructed with dp in the direction of p (i.e. the same 
direction as the phase velocity V.), it is given by 

h3 2 . 8 
2 V sm d8d¢dv, 

V. Vg.1 cos IX. I 
(5) 

where IXs is the angle between the phase velocity and the group velocity, i.e. the angle 
between k. and 8wj8k., so that 

The absolute value sign is put around cos IX. in the expression (5) to allow for situations 
in which Vgs may be in negative directions with regard to V. and because the volume 
element is a positive quantity. 

The number of cells in the same momentum space given by the volume element 
(1), each of size h3 for mode s of oscillations, is represented by Cs(8, d8, d¢). The 
number of photons N. of mode s is related to the number of cells C. by (e.g. Joos 1958) 

N. = C.(ePhv _1)-1, (6) 

where f3 = (kBT) -1. It follows that the density of photons of mode s in volume V 
in the frequency range v to v +dv is 

N.W = (ePhv _1)-1 I" 12
" 2 v2 sin8 d8d¢dv. 

o 0 V Yg. I cos IX. I 
(7) 

To find the total density of photons in volume V we must make the summation 
N = ~. N.. The energy density of photons in the frequency range v to v +dv is then 
given by 

U(v)dv = (ePhV _1)-1 L I" 12
" 2 hv3 sin8 d8d¢dv. 

• 0 0 V. Vg.1 cos IX. I 
(8) 

In the special case in which the medium is dispersive but isotropic, IX. = 0 and 

U(v) = (ePhv _1)-1 L (4nhv3/v.2 Vgs)· (9) 
• 

An expression equivalent to (9) was found earlier by van Roosbroech and Shockley 
(1954) who discussed dispersive isotropic media. The generalization given by equation 
(8) is apparently new. Planck's law follows for the special case where V. = c = Vg• 

and isotropy exists. 
The above theory is of general interest since anisotropic media occur widespread 

in nature. Expression (8) provides the basic thermal radiation distribution in such 
media. This expression could also be written as 

U(v) = (ePhV _l)-1 L v sm d8d¢. I" 12" h 3 . 8 
• 0 0 V/ I 8w/81 k.1I 

Applications of the foregoing theory will be presented in future publications. 



Short Communications 673 

Acknowledgment 

I am indebted to Professor R. J. Hosking, University of Waikato, for drawing my 
attention to an error in the original mathematical presentation of the physical ideas 
expressed in this paper. 

References 
Joos, G. J. (1958). 'Theoretical Physics' (Blackie: London). 
van Roosbroech, W., and Shockley, W. (1954). Phys. Rev. 94, 1558. 

Manuscript received 28 February 1977, revised 16 May 1977 






