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Abstract 

Based on an inversion formula for the energy-weighted sum rules, a study is made of the properties 
of the inelastic form factors of the nucleus. The inversion formula is derived by using a simple repre­
sentation of the identity operator for a restricted set of non-orthogonal states and it is applicable to 
both isoscalar and isovector transitions. As a result, it is shown that the longitudinal form factor for a 
particular multipolarity cannot be explicitly factorized into a product of a function of momentum 
transfer and a function of excitation energy over the entire range of momentum transfer. Further, 
the ambiguity arising out of the use of the hydrodynamical model to assign spins of giant resonances 
is illustrated, taking the isovector electric dipole form factor as an example. 

1. Introduction 

For many years a simple hydrodynamical model (Tassie 1956) has been extensively 
used for the analysis of electron scattering data (UberallI971; Fukuda and Torizuka 
1972, 1976; Nagao and Torizuka 1973). The work of Deal and Fallieros (1973) on 
the energy-weighted sum rules (EWSR) has given an understanding of the success of 
the hydrodynamical model by establishing that the result from this model is a con­
sequence of the assumption that a single state, called the doorway state, completely 
dominates the EWSR. However, Deal (1973) has also shown that the single doorway­
state dominance of the EWSR is inadequate to describe experimental data at large 
momentum transfer and the use of two doorway states improves the description of 
the data considerably. Thus there is a need for corrections to the simple hydro­
dynamical model. More formally, for isoscalar transitions, Tassie (1975) inverted 
the EWSR to obtain the transition charge densities and transition form factors as 
infinite sums of the EWSR, so that the first term of the sum is the result of the hydro­
dynamical model while the subsequent terms, which become more important as the 
momentum transfer is increased, correspond to the double doorway correction, triple 
doorway correction and so on. 

In this paper, a rigorous basis for the inversion formula used by Tassie (1975) is 
established through the use of an identity operator representation for a restricted set 
of non-orthogonal states, and the formalism is extended to apply also to isovector 
transitions. Various relations are obtained among the coefficients in the expansion of 
the form factors, and, as the coefficients can in principle be determined from experi­
ment, these relations can be tested. A proof is then given that the longitudinal form 
factor for a particular multipolarity cannot be factorized into a product of a function 
of excitation energy and a function of momentum transfer. Thus the dependence of 
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the form factor on momentum transfer cannot be described by the hydrodynamical 
model at all excitation energies. The possibility of such a failure of the hydrodynamical 
model was previously discussed by Ui and Tsukamoto (1974). 

The tacit assumption of the validity of the hydrodynamical model at various ranges 
of momentum transfers has been used in the past to assign spins of giant resonances 
(Fukuda and Torizuka 1972; Nagao and Torizuka 1973). In Section 7 here it is 
shown that this is not a satisfactory method of assigning spins because of an ambiguity 
arising from the similarity in dependence on momentum transfer between the higher 
order terms in the form factor for the excitation of a state with spin I and the first 
terms of the states of higher spin 1+2, 1+4,.... A well-known case is the similarity 
between electric monopole and electric quadrupole transitions. 

2. Useful Representation of Identity Operator 

Suppose a set of states In) is a basis for the Hilbert space L of the many-body 
system (in general the states In) are not orthogonal). Then any arbitrary state la) 
in L can be written as 

la) = L an In) . (1) 
n 

We choose basis states satisfying 

<ml Win) = 0 for m =1= n, (2) 

where W is a positive definite hermitian operator defined over the space L. Since 
<a I WI b) for la), Ib) E L has all the properties of an inner product, then from any 
given arbitrary basis it is always possible to construct a basis satisfying equation (2) 
by Schmidt orthogonalization (Greub 1975). 

Taking the inner product of equation (1) with WI m), we have 

am = <ml Wla)/<ml Wlm). (3) 

Substituting this result into equation (1) we then obtain 

la) = L In)<nl W 
n <nIWln) la) 

(4) 

and, since la) is an arbitrary state in L, 

L In)<nl W _ 
n <nIWln) -1, (5) 

where 1 is the identity operator. Equation (5) is the completeness relation for a set 
of non-orthogonal states satisfying the condition (2). Taking the hermitian adjoint 
of equation (5), 

Wln)<nl = 1. 
~<nIWln) (6) 

We note in passing that for a basis of non-orthogonal states In) it is always possible 
to find (Rowe 1975) another set of states In), called the biorthogonal states, such that 

< n 1m) = kf>nm· (7) 
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The states have the property 

I In) (iii -
n (n I ii) - 1. (8) 

The set of states Iii) is also a basis. Comparing equations (8) and (7) with (5) and (2) 
we can identify 

Iii) = Win). (9) 

Using the expansion (5), we can write the matrix element of an operator F 
between a state 10) and a state If) as 

(IIFIO) =I(lln)(nIWFjO)/(nIWln). (10) 
n 

For a complicated many-body system such as a nucleus, it is impossible to do any 
practical calculation in the whole Hilbert space L. Instead it is usual to work with 
some subspace which we shall call L M • We decompose the whole Hilbert space into 
the subspace LM and a complementary subspace Le, 

L = LM(JJLe , (11) 

and try to choose LM and Le so that LM is spanned by simple states and Le can be 
ignored. 

Any state la) E L can be written as 

la) = II/Ia) + l1>a) , (12) 

where II/Ia) ELM and l1>a) E Le. We note that, given Land LM, Le is not uniquely 
specified and we complete the specification of Le by choosing it such that 

(1/11 WI 1» = 0 for all 11/1) ELM' 11» ELe· (13) 

Since (a I WI b) has all the properties of an inner product, the condition (13) uniquely 
specifies Le which is the orthogonal complement of LM with respect to the inner 
product (a I WI b) (Greub 1975). 

We divide the basis states 1m) of L into two sets, IIX) and IIX'), and let LM be the 
space spanned by the set 10::). Then the set IIX') is a basis for Le. Equation (5) thus 
becomes 

1= P+Q, (14) 
with 

P = I IIX)(IXI W 
a (o::IWIIX)' 

Q = I 10::') (IX'I W 
a' 

(15) 

We note that 
p2 = P, Q2 = Q and PQ = QP = O. (16) 

Equation (10) can be written as 

(IIFIO) = I(IIIX)(IXIWFIO)/(IXIWIIX) 
<X 

+ I (I 10::') (0::' 1 W FlO) I (IX' 1 W 1 IX') . (17) 
<x' 
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If (IX' I WF 10) = 0, that is, if FlO) lies in L M , the second term in equation (17) is 
zero and the states IIX') can be effectively ignored. 

3. Electroexcitation of Nuclei 

(a) Longitudinal Form Factor 

In electron scattering,' under the one-photon exchange approximation, the differ­
ential cross section is given by (de Forest and Walecka 1966) 

dO' 4nO'M {q4 ( 2 
dQ = 1 + (2Eo sin2!-8)/Mt q~Fi(q, w) + 2q;2 +tan2!-8 ) Fi(q, W)}, (18) 

where Eo is the incident electron energy, 8 is the scattered angle, M t is the target 
mass and O'M is the Mott cross section defined by 

O'M = {(lXcost8)/(2Eosin2t8)Y, (19) 

with IX the fine structure constant. Also in equation (18), q", = (q,iw) is the four­
momentum transfer, w being the energy loss, and FL(q, w) and FT(q,.w) are respectively 
the longitudinal and transverse form factors which summarize all the nuclear structure 
information. 

We consider now only the longitudinal form factor FL(q, w), which is defined as 

Fi(q, w) = f I(J f II FI (q) II J i)1 2 

1=0 (2J i +l) , 
(20) 

where 

F~(q) = f jzCqr) Ylm(Q) per) d 3r (21) 

is the 21 pole form-factor operator and the reduced matrix element is defined by 

(JfMf I F~(q) I JiM) = (- )JrMr I (Jf II FI (q) II J). ( J f 1 J.) 
-Mf m Mi 

It is convenient to consider separately the isoscalar form factor with operator 

A 

F~(q) = L j/(qri) Y1m(Qi) (22a) 
i=l 

and the isovector form factor with operator 

A 

F~(q) = L '"eli) jzCqri) Y1m(Qi)' (22b) 
i= 1 

These form factors can also be used in the description of the scattering of hadrons 
by nuclei, as in the calculations of Alexander and Rinat (1974) and Boridy and 
Feshbach (1974). 

We define the generalized electric multipole operators for the isoscalar case as 

A 

Qla = L Qla( i) (23a) 
i= 1 



Inelastic Form Factors of Nucleus 13 

and for the isovector case as 
A 

Qla = L "3(i) Qla(i) , (23b) 
;= 1 

where 
Qla(i) = r!+ 2a Y 1m(Q;)· (24) 

To avoid unnecessary subscripts, we omit the subscript m from the Qla operators 
and also from F~. In practice, physical quantities such as cross sections are given 
using the Wigner-Eckart theorem in terms of reduced matrix elements, as the m 
dependence is only geometrical. Since 

Fl(q) = L ka(q) Qla, (25) 
a=O 

where 
kaCq) = (- )a ql+ 2aI2aoc! (21+2oc+ I)!! , (26) 

the operators Qla operating on the ground state 10) give all the states excited by 
electron scattering. These states Qla 10) can be used as a set of basis states spanning 
a subspace LM of L. The treatment is now confined to even nuclei with zero spin in 
the ground state; extension of this treatment to nuclei with nonzero spin in the ground 
state is possible, but is more complicated. In order to use the expansion (17) we 
choose a basis 

where 

such that 

loc) = Mia 10) , 

Mia = I Aap QIP 
P 

<OIMI~ WMlpIO) = ° for oc #- f3. 

We take W as a scalar under rotations, and then 

<OIMl~ WMI'pIO) = ° for I #- I' 

(27) 

(28) 

(29) 

and each value of I can be treated separately, i.e. we now take L to be the space of 
states with spin I. For convenience we usually will omit the subscript I. 

From equations (25) and (28) 

. Fl(q) = I baCq)Ma• (30) 
IX 

The subspace Lc is spanned by the states loc'), which from equations (2) and (27) 
satisfy 

and so from equation (30) 
<oc'l WMaIO) = 0, 

<oc'l WF1(q)10) = 0, 

(31) 

(32), 

which is the condition for only the first terms in equation (17) to be needed. Thus 

<I I Fl(q) I 0) = I <I I Ma I 0)<0 I M; W Fl(q) I 0) 1<01 M; W MaiO). (33) 
a 

The expansion for the form factor as given previously by Tassie (1975) is a special case 
of equation (33). 
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A particular construction of the Mrx satisfying equation (29) is given by 

rx-l 
Mo = Qo, Mrx = Qrx+ L ArxpQp, (34) 

p=o 

where the CI( unknowns Arxp are the solutions of the CI( equations 

<OIQl WMrxIO) = 0 for f3 < C1(. (35) 
Then 

<0 I M! W Fl(q) I 0) = (0 I M! W p!;o kp(q)QfJ 10) = fJ!;rx kP(q) <0 I M! W QfJ I 0) 

= krx(q) <0 I M! W Qrx I 0)+ L kfJ(q) <0 I M! W QfJ I 0). (36) 
P=rx+l 

From equation (26) it is seen that the first term in (36) predominates at small q, so 
that 

<0 I MJ W Fl(q) I 0) ex: ql+2rx as q -+ O. (37) 

(b) Choice of W 

For the isoscalar form factors and multipole operators, <01 QlrxHQ1PI0) and 
<0 I QlrxH pl(q) I 0) can be evaluated (Ui and Tsukamoto 1974; Tassie 1975) using 
the standard double commutator technique for EWSR (Ferreira and Sesma 1967). 
The quantity J( is the nuclear Hamiltonian and the energy of the ground state is 
taken as zero, 

HIO) = O. (38) 

For isovector transitions, however, the sum rules are complicated by the effects of 
the exchange currents. These effects have been tackled by Mekjian (1974), de 
Shalit and Feshbach (1974), Bohr and Mottelson (1975) and Noble (1977) but all 
their attempts invariably would involve model-dependent assumptions for practical 
explicit evaluation of the exchange current contributions. Such complications, 
however, do not hinder the formal development of the inversion technique for both 
types of transitions; only the final results will be different when the EWSR results 
are explicitly used. 

The results for <0 I Qirx H QlfJ I 0) and <0 I Qirx H pl(q) I 0) cannot be used directly 
by taking W = H because W must be positive definite, but these results can be used 
by suitably defining W, as is shown in the Appendix. 

4. Limits of Single-particle Excitation 

We now copsider some of the consequences that the state If) of the system can be 
written as 

where 

and 

If) = It/!) + I¢), 

It/!) ELM, I¢) ELc 

It/!) = L ICI()<CI(I Wlf)/<CI(I WICI()· 
(% 

(39) 

(40) 

(41) 
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We define 
p~ = <al Wlf)<fla)/<al Wla). 

Then, for any other choice of states lal ) spanning LM such that 

<all WIPl) = 0 for al"l= PI, 
we have 

Ip" = Ip~, = p, 
a a, 

since 
<flljJ) = L<fla)<al Wlf)/<al Wla) = p. 

a 

Although p is an invariant, it does depend on the choice of Wand of L M • Since 

<f I WI f) = <ljJ I WlljJ) +<cf> I WI cf» 

and W is positive definite, we have 

<ljJ I WlljJ) ~ <fl Wlf) 

and on substituting equation (41) 

L<l1 Wla)<al Wlf)/<al Wla) ~ <II Wlf)· 
a 

15 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

In addition to the basis (27) of L M , it is convenient to introduce a basis of orthonormal 
states Na 10), which span LM and which can be chosen so that the operator W is 
diagonal within L M , by constructing operators 

such that 

Na = I DapQp 
p 

<0 I N! Np I 0) = J~p and <0 I N! W Np I 0) = Jap Wa . 

Then the expansions (39) and (41) for the state If) can be written 

If) = L a~Na 10) + Icf», 
a 

where 
a~ = <0 I N! WI f)/wa. 

Then we have 
p = I <0 I N! W If)<fl Na 10)/wa· 

a 

(49) 

(50) 

(51) 

(52) 

(53) 

As well as the decomposition (11) of the Hilbert space, we introduce the more 
usual decomposition 

L = LMEBLo , (54) 

where Lo is the orthogonal complement of L M • Then we can write 

If) = IljJl) + Icf>l) , (55) 



16 W. K. Koo and L. J. Tassie 

where 1"'1) ELM, l<Pl) E La and 

We have 

where 

Then 

and so 

<"'11 <PI) = o. 

1"'1) = I a~N~ 10), 
" 

a~ = <0 I N~ I f) . 

<"'11"'1) = <fl"'l) =Lla~12 
" 

I I a~12 ~ 1. 
" 

Using the basis (27) of L M , we have 

I"') = I b~M~ 10), 
" with 

b~ = <0 I MJ Wlf) / <0 I MJ W M~ I 0). 
Then 

P = L <fIM~IO)<OIM~ W If) I<OIM~ w M~ 10). 
~ 

We can also expand 1"'1) using this non-orthogonal basis, 

and, defining T~p such that 

that is, 

we have 

Then 

1"'1) = I b~M~IO), 
" 

I T~p<OIMlMyIO) = b~y, 
p 

(T-l)~p = <0 I MJ Mp I 0), 

b~ = L T~p <0 I Mll f) • 
p 

<fl"'l) = I<fIMyIO)Ty~<OIM~lf). 
Y" 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

Taking W = H, it is possible to calculate <0 I MJ H M~ I 0) and <0 I MJ H Fl(q) I 0), 
at least for !IT = 0 transitions (Tassie 1975), in terms of the ground state density 
distribution, which can be determined from elastic electron scattering, and then, by 
fitting equation (33) to the experimental inelastic form factor, to eventually determine 
p without making any assumptions about the nuclear structure. However, the 
quantity of more direct physical significance is <f I "'I), which is the fraction to which 
the state If) is a single-particle excitation of the ground state, and in order to deter­
mine this from an analysis of inelastic scattering Ty~ must be known. Unfortunately 
to calculate <0 I MJ Mp I 0) it is necessary to know the two-body correlation function 
of the ground state. Thus, although p can in principle be determined by a model­
independent analysis of experimental data, it is not possible to determine <fl "'I) in 
a model-independent manner. 
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We now restrict the treatment to eigenstates of W, namely 

Wlf) = OJf If), (69) 

as in practice W will usually be the Hamiltonian or the operator defined by equation 
(A3) in the Appendix. Then 

Pa = OJf I (ct If)1 2/(ct I Wlct), (70) 

and thus Pa :;:: O. From equation (39) 

OJf = OJf(fl t/!) +(¢ I WI ¢) (71) 
and from equation (45) 

P = 1-(¢1 WI¢)/OJf · (72) 
Since 

(¢IWI¢):;::O, (73) 
it follows that 

0::::;; P ::::;; l. (74) 

Comparing equations (58) and (52), we have 

a~ = OJfaa/OJa. (75) 

While bothp and (t/!11 t/!1) lie between 0 and 1, there is no general relation between 
them. But if P = 1 then (t/!1 I t/!1) = 1, since from equation (72) for P = 1 

(¢IWI¢)=O 

and so I¢) = 0 since W is positive definite. Then 

If) = It/!) = 1t/!1) and (t/!1 I t/!1) = l. 

With W = H, Pa is the fraction of the ctth EWSR contributed by the state If) and P 
is the total fraction the state contributes to all the sum rules. The relation between 
P and (t/!1 I t/!1), the amount of single-particle excitation in If), is complicated. 
However, from equations (53) and (58) 

P = L Ef laal 2 jEa 
a 

and if If) is the state of lowest energy with a particular set of quantum numbers, 
such as spin and isospin, then 

Ef ::::;; Ea for all ct 
and thus 

(t/!11 t/!1) :;:: p. 

5. Sum Rules and Inequalities 

It has been shown in Section 4 that Pa is the fraction of the ctth EWSR contributed 
by a state If) and P = :l:a Pa is the total fraction the state If) contributes to all the 
sum rules. In this section a few pertinent relations for these fractions are derived. 

From equation (42) we have 

LPa = 1, (76) 
f 
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which can be written more generally as 

I<IXI Wlf)<fIP) = <\p<1X1 WIIX). 
j 

For eigenstates of W, we define 

C~(Wj) = wJ<fllX)/<1X1 WIIX)t. 
Then 

I ciWj) 12 = piwj) 

and the expansion for the form factor, given by equation (33), takes the form 

<fIF1(q)10) = Iciwj)witF~(q), 
~ 

where 
F~(q) = <IX I W Fl(q) I 0) I <IX I WIIX)t . 

From equations (77) and (78), 

I c:(wj)cp(wj ) = b~p. 
j 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

This relation has interesting consequences for the analysis of experimental inelastic 
form factors. The coefficients ciwj) can be determined by fitting equation (80) to 
experiment, and indications of missing strength of a particular multipole .should be 
given by the extent to which the experimentally determined ciwj) obey equation (82). 
At present such analysis is confined to determining the extent of exhaustion of the 
EWSR of the multipole operator, and this corresponds to using equation (82) with 
IX = P = O. 

Another relation (shown in the previous section, e.g. equation (74)) which gives 
the totality of these fractions over all the order of a particular multi pole is 

I Ici wj )1 2 ~ 1. 
~ 

For the orthogonal states defined by equations (49) and (50), we define 

and note that 

and 

C~(Wj) = wj<fl Na I O)/wt = wJa:lw~ 

I I c~(Wj) 12 = I I C~(Wf) 12 = P ~ 1 
a a 

I <*(wf)cp(Wj) = b~p. 
j 

From the completeness of the eigenstates If) of W, we have 

I <01 N~ If)<fl Np 10) = bap 
f 

and so using equation (84) 

" -1 '*( ) 1 () - 1 ~ L. W j Ca W j Cp W f = W~ uap· 
j 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 
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Similarly from equations (60) and (84) 

I Wa I C~(Wj) 12 :::; Wj. (89) 
a 

From equations (51), (55), (57), (75) and (84), we have 

14>1) = 14» + I (a~- aa)Na 10) 
a 

= 14» + I C~*(Wj)(WaWj)-t(Wj-wa)Na 10) (90) 
a 

and so 
<4>11 w 14>1) = <4> I w 14» + I I C~(Wj) l\wj -wa)2IWj . (91) 

a 

From equations (72) and (85), 

< 4> I W I 4» = W j ( 1 - ~ I C~( W j) 12 ) 
(92) 

and so 
<4>11 w 14>1) = Wf- I wi2 - walwf) I C~(Wf) 12. (93) 

a 

Since W is positive definite, we then have 

I wa(2Wf - Wa) I C~(Wf) 12 :::; w}. (94) 
a 

Another sum of I C~(Wf) 12 is provided by using equation (90): 

< 4> 14» = <4>1 14>1) + I I C~(W f) 12(w f- Wa)2 IWa W f' (95) 
a 

Since 
<4>114>1) = 1-<l/I1Il/11) = 1-Ilc~(wj)12walwj' (96) 

a 
we have 

<4> 14» = 1- I (2- wj lwa) I C~(Wj) 12 (97) 
a 

and so 
L (2- wj lwa) I C~(Wj) 12 :::; 1. (98) 
a 

For a fixed multipolarity, equation (82) provides limits for the fraction of the 
EWSR over all the excited states and an illustration of the consequences of it is given 
in Section 7. The set of relations, i.e. (83), (89), (94) and (98), similarly provides 
limits to the sum of the fractions of EWSR over all orders of excitations for a particular 
state If). Equations (94) and (89) are more stringent limits than equation (83). 
However, the operators Na are not readily calculable and hence equations (94) and 
(89) are not so easily tested. 

6. Non-factorization of Form Factor 

In the analyses of giant resonances, for simplicity it is usually assumed that 
Fl(q, E j ), the longitudinal form factor for a particular multipole, factorizes into a 
product of two independent functions of excitation energy E/ and momentum transfer 
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q (Geramb et al. 1975; Torizuka et al. 1975; Fukuda and Torizuka 1976; Sasao 
and Torizuka 1977). However, if one assumes 

then 
F1(q,Ef ) = k(Ef)g(q) 

<0 1 M~ W Fl(q) 1 0) = L <0 1 M~ W 11)<11 FI(q) 1 0) 
f 

= (t <01 M! WI 1) k(Ef))g(q) , 

(99) 

(100) 

and so there is a q dependence independent of ()(, which contradicts equation (37). 
Thus equation (99) cannot hold for all q and all Ef . 

Since as q ~ 0 the form factor is dominated by the ()( = 0 term in equation (33), 
the factorization assumption, as indicated by equation (99), may be a good approxim­
ation. It follows that it is possible to construct a single state which will exhaust the 
EWSR for Q10 and, since QIO is the static limit of the form factor operator as q ~ 0, 
this state exhausts the form factor at small q. This conclusion led to the idea of a 
single doorway state dominating the form factor (Deal 1973), which gives results 
agreeing with experiments at moderate momentum transfers. On the other hand, 
there cannot be a single giant state Ig) dominating the form factor for all q (Koo and 
Tassie 1976), i.e. for which 

<n 1 FI(q) 1 0) = 0 for <nlg) = 0 for all q, 

as the longitudinal form factor for the 21 pole Fl(q, Ef ) would then factorize. 
It is possible that the form factor has the form (99) over a limited range of Ef , 

in which case there must be more scattering strength outside that range of Ef in 
order to satisfy the sum rule (82). 

7. Consequences for Analysis of Experiments 

In addition to the well-known isovector E1 giant resonances, the existence of other 
mUltipole giant resonances appears conceptually reasonable (Bohr and Mottelson 
1975), and there are experimental indications that such multipole giant resonances 
are indeed possible (Hanna 1976). In this section we show, through the use of the 
results of the previous sections, that one has to be very careful in making multipole 
assignments on the basis of some model to the giant resonances observed by inelastic 
scattering. We want to point out that, on the basis of angular distributions of inelastic 
scattering, it is not possible to distinguish between, on the one hand, a genuine higher 
multipole resonance corresponding to a resonance in the strength of QIO and, on the 
other hand, a higher order excitation of a lower multipole resonance corresponding 
to a resonance in the strength of some M1,!X for l' < I. 

As an illustration we consider an isovector EI transition, making sufficient approx­
imations and assumptions to obtain a simple answer. We neglect the contribution 
of exchange forces to the EWSR, so that the isovector sum rules can be obtained in 
the same way as the isoscalar sum rules. The centre-of-mass (c.m.) corrections to the 
EWSR are expected to be small for heavy nuclei because, although the corrections 
involve two-particle operators, they are weighted by a factor of A -1 (see Deal 1973). 
For example, the first-order c.m.-corrected isovector sum rule SEw(El)c.m. and the 
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uncorrected sum rule SEw(El)u are in the ratio 

SEw(El)c.m,/SEw(El)u = 4NZjA2. (101) 

The difference is small for most nuclei, the correction amounting to 5 % at most. 
For higher order EWSR, however, the correction terms are complicated and cannot 

be calculated model independently, and to ensure consistency with equation (101) 
we substitute 4NZjA in place of A in the uncorrected sum rules to allow for the c.m. 
correction. This procedure could cause errors in the calculation of form factors at 
large q, but it suffices for our illustration, especially since the accuracy of our descrip­
tion at large q will be limited by our use of the form factors for a uniform charge 
distribution. 

In the first Born approximation, for a particular multipole, the differential cross 
section for longitudinal electric excitation to a state II) is given by 

dajdQ = (dajdQ)pt 4n(21 + 1) 1(/1 FI(q) I 0)1 2 , (102) 

where (dajdQ)Pt is the point nuclear cross section and (I I FI(q) I 0) is the 21 pole form 
factor. Using the inversion technique, we can write the form factor, for a uniform 
charge distribution, as (Tassie 1975) 

(II FI(q) 10) = {3Ej1(h2j2m)(4NZjA)(4n)-1}tR-1 

x (Co(Ef)i"!jlqR)+ ,,2;1 (-)"ClEf )(21+4OC+l)tjl+2lqR)). (103) 

This expression differs from that of Tassie (1975) because of a difference in definition 
of the 21 pole form factor. Applying equation (103) to El isovector transitions, we 
obtain 

1(/1 F 1(q) 10)1 2 = {3Er-1(h2j2m)(4NZjA)(4nr1 }R- 2 

x {cMEf ) (j1(qR))2 -2.J7 cO(Ef) c1(Ef ) MqR) j3(qR) + ... 

+ci(Ef ) 7(j3(qR))2 - 2.J77 c1(Ef ) c2(Ef ) j3(qR) js(qR) + ... 
+d(Ef ) 11 (js(qR))2 - ... }. (104) 

The first term is the same as the result of the Goldhaber and Teller (1948) model or 
the hydro dynamical model while the terms with coefficients cO(Ef) C1 (Ef ), ci(Ef ) 
and d(Ef ) have similar q dependences (for qR not too large) to the first terms of 
the quadrupole, octupole and E5 transitions respectively. 

A method frequently used in the analysis of electron scattering experiments for 
higher multi pole resonances is to subtract the giant isovector dipole resonance contri­
bution according to a model, e.g. the Goldhaber-Teller model or the hydrodynamical 
model (Hotta et al. 1974; Torizuka et al. 1975). In our illustration, this would 
correspond to the subtraction of the first term of equation (104), leaving a contribution 
having q dependences similar to E2, E3 or higher multipole contributions, even though 
here all the transitions are electric dipole. This shows that such a method of analysis 
is unreliable. 
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More realistically, one expects that some of the observed strength in inelastic 
scattering will be due to higher multipole transitions as well as that due to higher 
order contributions from dipole transitions. The observed strength of a particular 
multi pole is frequently stated in terms of the fraction it contributes to the multi pole 
EWSR, and so we now show how the higher order terms can cause confusion in such 
an analysis. Substituting equation (103) in (102), we can obtain, using the 
orthogonality relation (82), 

"EtCda/dQ) = 3h2(21+ 1) 4NZ ~ L L I c~(EJ) 12a;(j/+2iqR)Y, 7 (da/dQ)pt 2m A R ~ J 
(l05) 

where ao = It and a~*o = (-Y(21 +41X + l)t. As an example, for El transitions 

L EJ(da/dQ) 3h2 4NZ 3. . 
J (da/dQ)pt = 2m ""/1 R2 {(h(qR»)2 + 7(JiqR»2 + 11 (jS(qR»)2 + ... }. (106) 

We see that subtraction of the dipole resonance according to the Goldhaber-Teller 
model can lead to considerable error in determining the contribution to the E3, E5, 
E7, ... EWSR. However, because of the effect of the orthogonality relation (82) there 
is no spurious contribution to the E2, E4, ... EWSR due to the incorrect treatment of 
dipole transitions, although from equation (104) we see that there would be errors in 
the determination of how the E2, E4, ... strength was distributed in excitation energy. 

It should be noted that the possible error due to incorrect subtraction of the dipole 
strength is large. If the second-order isovector dipole transitions are completely 
excited, it would give a spurious contribution of 100 % to the E3 EWSR. Similarly, 
the nth term in equation (106) corresponds to 3/1 of the EI EWSR with I = 2n-1. 
Previous warnings (Tassie 1976, 1977) about the possibility of such errors gave no 
estimate of how serious the errors can be. 

In the same way as the subtraction of El strength according to the Goldhaber­
Teller model can lead to error in assigning higher multipole strength, so also can the 
subtraction of E/' strength according to the hydrodynamical model lead to incorrect 
identification of EI strength with I' < l. The extent of the spurious contribution to 
the first-order EI EWSR will be (2/' + 1)//, where I = I' +2y (y = 1,2, ... ). 

The total of all the spurious contributions from all the lower multi polarity tran­
sitions I' < I can be obtained by explicitly summing over l' in equation (l05). For 
zero-order (IX = 0) EI transitions, 

"EJ(da/dQ) = 3h2 4NZ 1(21+ 1) (. ( R»)2 
7 (da/dQ)pt 2m A R2 J, q . 

(107) 

The lower multipolarities that can contribute spurious components are those where 
[' +21X = I. Then the total of the spurious contributions is 

'i2 EtCda/dQ) 3h24NZ 1-2 
I' ~ (da/dQ)pt = 2m AR2 ~ ~ b"I'+2~a;(21' + 1) (j1'+2iqR»)2 

3h2 4NZ 
= 2m AR21(21+ 1)1(1-1) (j,(qR)Y· (108) 
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Comparing equations (l07) and (108), we see that the total spurious contribution is 
t(l-l) of the first-order (a = 0) EI EWSR. Therefore, to identify giant resonances 
of high multipolarity I, care must be exercised to untangle the large spurious contribu­
tions resulting from transitions of lower multipolarities. For instance, for the E3 and 
E4 transitions the total spurious contributions coming from the higher order excitation 
of the EI and E2 transitions are respectively 100% and 150% of the a=O E3 and E4 
sum rules. The spurious contribution becomes alarmingly larger when the multi­
polarity of interest is large. 

We thus conclude that the multipolarity of transitions cannot be determined unam­
biguously from measurements of angular distributions of inelastic scattering, and the 
assignment of spins and parities to giant resonances needs confirmation from other 
reactions such as (a, ')I) or from angular correlation measurements. 
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Appendix 

As noted in Section 3b, the results for <0IQT~HQ1PI0> and <0IQT~HF1(q)10) 
cannot be used directly by taking W = H and some complication is necessary, in 
particular for the monopole case (l = 0), because H is not positive definite. 

Let the eigenstates of H be designated by Ik), and introduce projection operators 
Po and P1 such that 

I=PO+P1 , 

where 
Po = 10)<01, P 1 = L Ik)<kl· 

b'O 

We now take 
W= PO+HP1 

(AI) 

(A2) 

(A3) 

and then choose the set of states which satisfy the condition (2) of Section 2 to include 
the ground state 10), as is the case for the states chosen in Section 3a, since the states 
for I = 0 include 

Moo 10) = const.IO). (A4) 

Then, for m #- 0, we have 

<01 Wlm) = <Olm) = o. (A5) 

Although the states 1m) are in general not orthogonal to each 
orthogonal to the ground state. Then 

other, they are 

Po 1m) = 10)<0Im) = 0 for m #- O. 
Since 

(PO+P1) 1m) = 1m), 

from equation (A6) we have 

Pllm) = 1m) for m #- O. 

The expansion (5) can be written as 

I = 10)<01 (PO+HP1) + I Im)<ml (PO+HP1) 

<01 (PO+HP1) 10) m;"O <ml (PO+HP1) 1m) 

= 10)<01+ L Im)<mIH 
m <mIHlm)' 

(A6) 

(A7) 

(A8) 

(A9) 

using equation (A8) and taking the normalization of the ground state as <0 I 0) = 1. 
For inelastic scattering with excitation of the nucleus to the final eigenstate If), 

equation (33) for the form factor with the choice (A3) for W yields, using <f I 0) = 0, 

For I#- 0, 

<II Fl(q) I 0) = I 
Ml~IO>;" 10> 

<I I Ml~ I 0)<0 I Mi~H Fl(q) I 0) 

<0 I MJ~H Ml~ I 0) 

<0 I Ml~ I 0) = 0, 

(AIO) 

(All) 

all the states Ml~ 10) are orthogonal to the ground state and equation (29) becomes 

<01 MtHM1PI0) = 0 for ex #- f3 (AI2) 
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(the A"p are real). The form factor then is 

(fl FI(q) I 0) = L (fIMI"IO)(OIMi"HFI(q)IO) 
,,=0 (OIMl"H MI"IO) 

(A13) 

For monopoles (I = 0) there is a slight complication, since 

(OIMooIO) #- 0 (A14) 

(except for the isovector case in self-conjugate nuclei discussed below), and equation 
(29) becomes 

(01 M60 M o" I 0) == (OIMo"IO) = 0 

(0IM6"HMop I0) = 0 

The form factor then is 

for IX #- 0, 

for IX #- f3. 

(A15a) 

(A15b) 

(fIFO(q)IO) = L <fIMo"IO)(OIMi;"HFO(q)IO) 
,,=1 (0 I Mi;"H Mo" I 0) (A16) 

In the analysis by Tassie (1975), the treatment implied for the monopole case is to take 

MOl = (4n)-t L r; (AI7) 
i 

and 
(OIM~~HM~pIO) = 0 for 1X#-f3,1X~1,f3~1. (A18) 

However, we have 

Mo" = M~"-(OIM~,,IO), IX ~ I, (AI9) 

and substituting this relation into equation (A16) and using (38) we obtain 

(fIFO(q) 10) = L (fiMo"IO)(OIMo~HFO(q)IO) 
,,=1 (OIMo~HMo"IO) , (A20) 

which agrees with the result given by Tassie (1975). 
Giant resonances are frequently taken to be the appropriate multi pole operator 

acting on the ground state, but we note that the giant isoscalar monopole state is not 
M~110) but 

MOllO) = (M~l -(0 I M~ll 0» I 0), (A2l) 

as given by Kirson (1976). 
Equation (A16) holds also for the isovector case in self-conjugate nuclei (T3 = 0) 

because, although the inequality (A14) does not apply, we have 

MOO 10) = 2T3 10) = O. (A22) 

Manuscript received 15 August 1977 






