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Abstract 

After presenting a simple derivation of the covariant derivative of the Dirac spinor functions, the 
Dirac equation in the space of constant torsion, Minkowski metric and straight line geodesics is 
considered. Solutions of the equation are given, showing the particular way in which the energy 
degeneracy of the states with different spin projections is removed in the presence of torsion. 

1. Introduction 

While the idea of considering torsion as a physical property of space and time 
dates back to the work of Cartan (1922), the demonstrated reliability of Einstein's 
torsion-free theory made any discussion of torsion of rather an academic nature. 
Recently, however, there has been some renewed interest in torsion (Hehl 1973a, 
1973b) partly caused by the gauge field formulation of the relativity theory, in which 
the consideration of the tetrad field as gauge potentials leads naturally to connections 
with torsion. 

In the present article we discuss neither the physical nor the mathematical origin 
of torsion, only the behaviour of spin t particles in a torsion field. This can help in 
understanding interaction between torsion and spin, as well as establishing upper 
limits on the strength of the torsion field if it exists in nature. We consider only 
connections with a constant 'pure' torsion that lead to the Minkowski metric and 
straight line geodesics. 

In Section 2 we present a direct derivation of the covariant differentiation of spinors, 
in Section 3 we give the form of the Dirac equation in the space with pure torsion, 
and in Section 4 we discuss plane wave solutions of that equation. 

2. Covariant Differentiation of Dirac Spinors 

While there exist several derivations of covariant differentiation of spinors in the 
literature (e.g. Majumdar 1962; Brill and Cohen 1966; Heh11973a, 1973b), we feel 
that it is worth while to describe the following method because of its direct relation­
ship to differentiation of vectors. 

The usual covariant derivative of a vector is written as 

AI';v = OvAI' -r~I'Au' (1) 

where the r~1' are components of a connection with respect to a general system of 
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coordinates. If h~ are tetrad fields connecting general coordinates with the unholo­
nomic Minkowski coordinates, we define Ai by 

AI' = h~Ai or Ai = hfAI' , 
where 

hi h'! = (j" 
1" I' and h~h~ = (j~. 

The covariant derivative of A i can be written as 

Ai;v = hf AI';v = OVAi --reiAk' (2) 

where the relation 

rei = r~l'h~hf -hWJ.h~) (3) 

follows from comparison of equations (1) and (2). As we assume that the connection 
is metric, we have 

o"gl'v -r~l'gpv -r~vgl'p = 0 
or 

O"gik -r~iglk -r~kgil = 0, 

where gik is the Minkowski metric: gik = 0 if i i' k and goo = -gll 
-g33 = 1. Equation (4) yields 

r~ig lk - r~kg il or F"ik -r"ki' 

(4) 

-g22 = 

Now consider Ako k = 0,1,2,3, as a column vector d and write equation (2) in 
the form 

d;v = ovd -1;FvikBik d, (5) 

where the Bik are 4 x 4 matrices of the form 

[Bik]~ = (j~lm _(j~gim. 

Equations (2) and (5) are equivalent, as 

lr [Bik]mA - lr kmA lr imA 2 vik n m - 2 vnkg m -2 ving m 

= rvnkgkm Am = r~nAm' 

The matrices Bik are generators of the Lorentz group in the 4 x 4 real representation. 
If a covariant derivative of a function with different transformation properties is 
required, the generators are simply written in the appropriate representation, while 
the components of the connection r vik remain unchanged. Thus the covariant 
derivative of the Dirac spin or is 

tjJ;v = Ov tjJ - tr vik eik tjJ , 
where 

eik = i(yiyk_ykyi) 

and the yi, i = 0, 1,2,3, are the Dirac matrices satisfying yV + ykyi =2gik. 
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3. Minkowski Space with Torsion 

We consider a space with a non-flat connection, but with a Minkowski metric. 
Tetrads can be chosen as Kronecker deltas, and we do not use Greek indices anymore, 
as the coordinates will be the Minkowski coordinates from now on.. If we further 
require that the geodesics are straight lines, the components of the connection must 
have zero symmetric parts. 

Hence we have 
Fikl = -Fkil 

but, as the connection is still metric, we also have 

Fikl = -Filk • 

There are four independent components of such a connection. One can define a 
four-vector MI by 

Fikl = Biikl Mi , (6) 

where BUkl is the fully anti symmetric tensor (our convention is that B0123 = + 1). 
Under Lorentz transformations, Fikl transforms like it third-order covariant tensor, 

and M i like a contravariant vector. Substitution into the Dirac equation gives 

iyi{ai -!Fikl!<ykyl_ylyk)}ifJ +mifJ = 0 
or 

iyiaiifJ +mifJ -!iMi Biikl yiykylifJ = o. 
Further 

ikl-6 k5 BiiklY Y Y - gikY Y , 

where y5 = yOy1y2y3, so that the Dirac equation reads 

iykakifJ +mifJ -iTiginyny5ifJ = 0, (7) 
with 

Ti = lMi. 

It can be readily deduced from the requirement of covariance that under space 
inversion the time component of Ti changes its sign while the spatial part remains 
unchanged, and the situation is reversed under time inversion. Of course, this con­
forms with the definition (6) of the torsion vector, where MO is related to the spatial 
components of the connection, while M\ k = 1,2,3, is related to the components 
with one time index and two spatial indices. 

4. Solutions of Dirac Equation with Torsion 

We shall now find the plane wave solutions of equation (7), assuming that the Ti 
are constant. If we have 

ifJ(x) = u(p) exp(ixlPk) ' 

equation (7) yields 
(ykpk+iyky5Tk-m)u(p) = o. (8) 
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This system of four homogeneous linear equations has nontrivial solutions only when 
the determinant of the system is zero. Let 

S = ykpk+iykySTk-m. 

Then det S is a fourth-order polynomial in the components of P and T (and m) such 
that it is a Lorentz-invariant expression. We shall find it in a special coordinate 
system and deduce the general form from the result. 

In the rest system of the particle with the third axis in the direction of the spatial 
part of the torsion vector, 

S = yOpo + iyOyS To + iy3yS T3 - m . 
As 

ySSyS = yOpo+iyOySTo+iy3ysT3+ m 
and 

det(SySSyS) = (detS)2, 
we have 

(det S)2 = det(p~ - m2 - T~ + n + 2iyOy3ySpo T3) . 

Repeating the procedure with y1 replacing yS (y1 anticommutes with yOy3yS) we 
obtain 

(detS)4 = det[(p~-m2- T~+ T~)2 -4p~ T~], 

implying that det S is the expression in the square brackets. (Ambiguity of the sign 
is removed by realizing that det(poYO) = +pci.) Changing back to a general system 
of coordinates we have 

detS = (p2_m2_T2)2+4{p2T2_(pT)2}, (9) 
where 

p2 = gikpiPk , T2 = gik Ti Tk, (pT) = gik PI Tk . 

The plane wave solutions must satisfy the equation det S = 0, leading in general 
to four roots for Po. We see that the interaction with torsion can remove degeneracy 
of the energy levels for the two states with different spin directions. We notice that 
the degeneracy remains when the four-momentum of the particle is aligned with the 
torsion, i.e. when Tk = 1(Pk. In this case p2 - m2 - T 2 = 0 determines the energy 
levels, and the presence of torsion just makes an effective correction to the mass of 
the particle in the form p2 = m2 /(1- 1(2). 

In the particular representation of the Dirac matrices: 

yO = [I 0], 
o -I 

k_ , [ 
0 (l] 

y - _(1k 0 [ 0 -iI] yS _ 
- -iI 0' 

where I is the 2 x 2 unit matrix, k = 1,2, 3 and 

(11 = [~ ~], [0 -i] (12 -- " 

i 0 
(13=[1 0], 

o -1 

equation (8) yields 

(-po+m-(1kTk)U1-(To+~Pk)U2 = 0, (lOa) 
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(To + (iPk)u1 +(po+m+akTk)u2 = 0, (lOb) 
where 

u(p) = [::] . 

Equation (lOb) yields the relation between the 'large' and 'small' components of 
u(p): 

U2 
(Po +m- akTk)(To +akPk) 

(po+m)2-fT2 u1 , 
(11) 

where 
3 

fT2 L Tr 
k=l 

Alternatively, equation (lOa) yields 

( -Po +m+ akTk)(To + akPk) 
U 1 = ( )2 07'2 U2 • m-PO -,/ 

(12) 

In the specific system in which det S was evaluated, U1 (or alternatively U2) may 
be chosen as the eigenvectors of the third component of the spin: 

ui+) = [~] , ui-) = [~] . 

The energy levels for the two spin states are not in general identical. In fact ui +) 

corresponds to 
Po = T3 +(m2+ T6)t, 

while ui -) corresponds to 

Po = -T3+Cm2+T6)t. 

A similar situation holds for the negative energies, where 

(+) = [1] 
U2 0 corresponds to Po = T3-(m2+T6)t, 

u&-) = [~] Po = - T3 _(m2+ T6)t, 

and Ul is given by equation (12). 

5. Final Remarks 

The expression (9) for det S has been obtained via the rest system of the particle. 
Its validity is, however, more general and, in principle, solutions of det S = 0 by 
space-like energy-momentum vectors are possible. Nevertheless, time-like energy­
momentum vectors still playa special role. Once it is assumed that the four-momentum 
is time-like, four real solutions for Po always exist independently of the magnitude 
of the torsion. Space-like solutions do not exist for weak torsion fields when m =f. O. 
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The case m = 0 would deserve a separate discussion. We shall just comment that 
the two-component theory is still possible (equation (8) is still y5-invariant), but in 
general the four-momentum of the massless particle does not have to be a null-vector 
when torsion is present, and there are still four independent solutions of the Dirac 
equation. 

Acknowledgment 

One of us (P.K.S.) is grateful to the Physics Department of the University of 
Canterbury for the hospitality extended to him during his stay in Christchurch. 

References 

Brill, D. R., and Cohen, J. M. (1966). J. Math. Phys. (N.Y.) 7,238. 
Cartan, E. (1922). C. R. Acad. Sci. 174, 593. 
Hehl, F. W. (1973a). Gen. Relativity Gravitation 4, 333. 
Hehl, F. W. (1973b). Gen. Relativity Gravitation 5, 491. 
Majumdar, S. D. (1962). Phys. Rev. 126, 2227. 

Manuscript received 25 July 1977 




